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Loschmidt-echo decay from local boundary perturbations
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We investigate the sensitivity of the time evolution of semiclassical wave packets in two-dimensional
chaotic billiards with respect to local perturbations of their boundaries. For this purpose, we address, analyti-
cally and numerically, the time decay of the Loschmidt echo (LE). We find the LE to decay exponentially in
time, with the rate equal to the classical escape rate from an open billiard obtained from the original one by
removing the perturbation-affected region of its boundary. Finally, we propose a principal scheme for the

experimental observation of the LE decay.
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The study of the sensitivity of the quantum dynamics to
perturbations of the system’s Hamiltonian is one of the im-
portant objectives of the field of quantum chaos. An essential
concept here is the Loschmidt echo (LE), also known as fi-
delity, that was first introduced by Peres [1] and has been
widely discussed in the literature since then [2]. The LE,
M(1), is defined as an overlap of the quantum state e~"""| )
obtained from an initial state |¢,) in the course of its evolu-
tiorl through a time ¢ under a Hamiltonian H, with the state
e~ o) that results from the same initial state by evolving
the latter through the same time, but under a perturbed

Hamiltonian H different from H:

M(1) = [(ghole™"e=H1| ) |2. (1)

It can be also interpreted as the overlap of the initial state
|,) and the state obtained by first propagating |¢,) through
the time ¢ under the Hamiltonian H, and then through the

time —¢ under H. The LE equals unity at =0, and typically
decays further in time.

Jalabert and Pastawski have analytically discovered [3]
that in a quantum system, with a chaotic classical counter-
part, Hamiltonian perturbations (sufficiently week not to af-
fect the geometry of classical trajectories, but strong enough
to significantly modify their actions) result in the exponential
decay of the average LE M(t), where the averaging is per-
formed over an ensemble of initial states or system Hamil-
tonians: M(f)~e ™. The decay rate N equals the average
Lyapunov exponent of the classical system. This decay re-
gime, known as the Lyapunov regime, provides a strong,
appealing connection between classical and quantum chaos,
and is supported by extensive numerical simulations [4]. For
discussion of other decay regimes consult Ref. [2].

In this paper we report a regime for the time decay of the
unaveraged, individual LE for a semiclassical wave packet
evolving in a two-dimensional billiard that is chaotic in the
classical limit. We consider the general class of strong per-
turbations of the Hamiltonian that locally modify the bil-
liard’s boundary: the perturbation only affects a boundary
segment of length w small compared to the perimeter P, see
Figs. 1 and 2. Both w and the perturbation length scale in the
direction perpendicular to the boundary are considered to be
much larger than the de Broglie wavelength A, so that the
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perturbation significantly modifies trajectories of the under-
lying classical system, see Fig. 1. Our analytical calculations,
confirmed by results of numerical simulations, show that the
LE in such a system follows the exponential decay
M(t) ~ e, with y being the rate at which classical particles
would escape from an open billiard obtained from the origi-
nal, unperturbed billiard by removing the perturbation-
affected boundary segment. The LE decay is independent of
the shape of a particular boundary perturbation, and only
depends on the length of the perturbation region. Further-
more, our numerical analysis shows that for certain choices
of system parameters the exponential decay persists for times
t even longer than the Heisenberg time #y.
We proceed by considering a Gaussian wave packet,

1 ] —r)?
do(r) = m exXp épo ~(r—rp) - % > (2)

centered at a point r, inside the domain A of a two-
dimensional chaotic billiard (e.g., the solid-line boundary in
Fig. 1), and characterized by an average momentum p,, that
defines the de Broglie wavelength of the moving particle,
X=#/|py|. The dispersion o is assumed to be sufficiently
small for the normalization integral [ 4dr|¢(r)|? to be close

FIG. 1. An unperturbed, chaotic billiard (solid line), together
with the perturbation (dashed line). The boundary of the unper-
turbed billiard consists of two segments, 3, and 3;. The perturba-
tion replaces the latter segment by B, rendering the perturbed bil-
liard to be bounded by 5 and B 1- The initial Gaussian wave packet
is centered at r. Three possible types of trajectories, s, s;, and 57,
leading from r, to another point r, are shown.
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FIG. 2. Forward-time wave packet evolution in the unperturbed
DD billiard, followed by the reversed-time evolution in the per-
turbed billiard. The initial Gaussian wave packet is characterized by
the size 0=12 and de Broglie wavelength X=15/m; the arrow
shows the momentum direction of the initial wave packet. The DD
billiard is characterized by L=400 and R=200+10. The perturbation
is defined by w=60 and r=30. The propagation time corresponds to
approximately ten collisions of the classical particle.

to unity. We let the wave packet evolve inside the billiard
through a time ¢ according to the time-dependent
Schrédinger equation with hard-wall (Dirichlet) boundary
conditions. This evolution yields the wave function ¢,(r)
=(r|e”""| ), where H stands for the Hamiltonian of the
billiard. Then, we consider a perturbed billiard obtained from
the original one by modifying the shape of a small segment
of its boundary. Figure 1 illustrates the perturbation: the un-
perturbed billiard is bounded by segments B, and B,
whereas the boundary of the perturbed billiard is composed

of B, and gl. The perturbation, Bl—>gl, is assumed to be
such that the domain A of the perturbed billiard entirely
contains the domain A of the unperturbed one. The time
evolution of the initial wave packet, Eq. (2), inside the per-
turbed billiard results to &,(r)=(r|e”"*|¢,), with H being
the Hamiltonian of the perturbed billiard. Then, the LE, de-
fined in Eq. (1), reads
2

M) = ; 3)

f dr, (r) ,(r)
A

where the asterisk denotes complex conjugation.

We now present a semiclassical calculation of the overlap
integral Eq. (3). As the starting point we take the expression
[3,4] for the time evolution of the small (such that o is much
smaller than the characteristic length scale of the billiard)
Gaussian wave packet, defined by Eq. (2):

H(0) = 4mad)? D K(r,rp,n)e " P02 (4

s(r,rg.0)

This expression is obtained by applying the semiclassical
Van Vleck propagator [5], with the action linearized in the
vicinity of the wave packet center r(, to the wave packet
¢o(r). Here, the sum goes over all possible trajectories
s(r,rg,1) of a classical particle inside the unperturbed billiard
leading from the point r, to the point r in time 7 (e.g., tra-
jectories s, and s, in Fig. 1), and
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K(r.ro.) = exp(éss(r,ro,» - iﬂ), (5)

2

where S,(r,r(,7) denotes the classical action along the path
s. In a hard-wall billiard S(r,ry,7)=(m/ 2t)Lf(r,r0), where
L(r,ry) is the length of the trajectory s, and m is the mass of
the moving particle. In Eq. (5), D,=|det(=3*S,/ drdr,)| is the
Van Vleck determinant, and v, is an index equal to twice the
number of collisions with the hard-wall billiard boundary
that a particle, traveling along s, experiences during time ¢
[6]. In Eq. (4), p,=—0dS,(r,r(,t)/dr, stands for the initial
momentum of a particle on the trajectory s. The expression
for the time-dependent wave function ¢,(r) is obtained from
Eq. (4) by replacing the trajectories s(r,ry,f) by paths
5(r,rg,) that lead from ry to r in time ¢ within the bound-
aries of the perturbed billiard (e.g., trajectories s, and §; in
Fig. 1).

The wave functions of the unperturbed and perturbed bil-
liards at a point r € A can be written as

&) = 0 (r) + ¢V (r),

&(r) = ¢0(r) + G (x), (6)

where qﬁgo)(r) is given by Eq. (4) with the sum in the right-
hand side (RHS) involving only trajectories s, which scatter
only off the part of the boundary, B, that stays unaffected by
the perturbation, see Fig. 1. On the other hand, the wave

function d)gl) ((7)51)) involves only such trajectories s, (5]) that
undergo at least one collision with the perturbation-affected

region, B, (B,), see Fig. 1. The LE integral in Eq. (3) has
now four contributions:

J dr ;= J dr|g”)? + f dr[ "] ¢}V
A A A

o atdred s [ aiara. o
A A

We argue that the dominant contribution to the LE overlap
comes from the first integral in the RHS of the last equation.
Indeed, all the integrands in Eq. (7) contain the factor
expli(S;—Sy)/h—im(vs—v,)/2], where the trajectory s is ei-
ther of the type s, or s, and s’ is either of the type s, or 5],
see Fig. 1. An integral vanishes if there is no correlation
between s and s’, since the corresponding integrand is a rap-
idly oscillating function of r. This is indeed the case for the
last two integrals: they involve such trajectory pairs (s,s’)
that s is of the type s, or s;, and s’ is of the type 5}, so that
the absence of correlations within such pairs is guaranteed by
the fact that the scale of the boundary deformation is much
larger than X. Then, we restrict ourselves to the diagonal
approximation, in which only the trajectory pairs with s=s’
survive the integration over r. The second integral in the
RHS of Eq. (7) only contains the trajectory pairs of the type
(s9,s51), and therefore vanishes in the diagonal approxima-
tion. Thus the only nonvanishing contribution reads
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where DSO:|det((9px0/&r) , with P, being the initial momen-
tum on the trajectory so(r,ry,?), serves as the Jacobian of the
transformation from the space of final positions r € A to the
space of initial momenta p € P,(A). Here, P,(A) is the set of
all momenta p such that a trajectory, starting from the phase-
space point (ry,p), arrives at a coordinate point r € A after
the time ¢, while undergoing collisions only with the bound-
ary By (and thus avoiding B,), see Fig. 1. Thus fAdr|¢£0)|2 is
merely the probability that a classical particle, with the initial
momentum sampled from the Gaussian distribution, experi-
ences no collisions with B; during the time ¢. Therefore if the
boundary segment 5, is removed, this integral corresponds
to the survival probability of the classical particle in the re-
sulting open billiard. In chaotic billiards the survival prob-
ability decays exponentially [7] as ¢™”, with the escape rate
v given by

w
y=v—_. )

where v=|py|/m is the particle’s velocity, and A stands for
the area of the billiard. Equation (9) assumes that the char-
acteristic escape time 1/ is much longer that the average
free flight time #;. In chaotic billiards the latter is given by [8]
t;=mA/vP, where P is the perimeter of the billiard. Condi-
tion ;<< 1/ is equivalent to w<<P.

In accordance with Egs. (3) and (7) the LE decays as

M(t) ~ exp(—=2y1). (10)

Equation (10) constitutes the central result of the paper. To-
gether with Eq. (9) it shows that for a given billiard the LE
merely depends on the length w of the boundary segment
affected by the perturbation and on the de Broglie wave-
length X=#A/mv. It is independent of the shape and area of
the boundary perturbation, as well as of the position, size,
and momentum direction of the initial wave packet. (We ex-
clude initial conditions for which the wave packet interacts
with the perturbation before having considerably explored
the allowed phase space.)

The decay rate 7y, and thus the LE, are also related to
classical properties of the chaotic set of periodic trajectories
unaffected by the boundary perturbation, i.e., to properties of
the chaotic repellor of the open billiard [9]:

(1

where A, is the average Lyapunov exponent of the repellor,
and hgg is its Kolmogorov-Sinai entropy. Thus Egs. (10) and
(11) provide an interesting link between classical and quan-
tum chaos.

In order to verify the analytical predictions we simulated
the dynamics of a Gaussian wave packet inside a desymme-
trized diamond (DD) billiard, defined as the fundamental do-
main of the area confined by four intersecting disks centered
at the vertices of a square. According to the theorem of Ref.
[10] the DD billiard is chaotic in the classical limit. It can be
characterized by the disk radius R and the length L of the
longest straight segment of the boundary, see Fig. 2. We
consider the Hamiltonian perturbation that replaces a straight
segment of length w of the boundary of the unperturbed bil-
liard by an arc of radius r, see Fig. 2. In general, w=<2r.

To simulate the time evolution of the wave packet inside
the billiard we utilize the Trotter-Suzuki algorithm [11]. Fig-
ure 2 illustrates the time evolution of a Gaussian wave

Y= )\r_hKS’
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packet in the DD billiard followed by the time-reversed evo-
lution inside the perturbed billiard. The parameters charac-
terizing the system are L=400, R=200y10, w=60, and r
=30. The Gaussian wave packet is parametrized by o=12,
X=15/r; the arrow shows the momentum direction of the
initial wave packet. The evolution time ¢ in Fig. 2 corre-
sponds to some ten free flight times of the corresponding
classical particle, i.e., r=10¢;.

Figure 3 shows the time dependence of the LE computed
for the DD billiard system characterized by L=400, R
=200110, o=3, and X=>5/ 7. The initial momentum direction
is the same as in Fig. 2. The different LE decay curves cor-
respond to different shapes of the local boundary perturba-
tion: the width of the perturbation region stays fixed, w=60,
and the curvature radius of the perturbation arc takes the
values r=30, 35, 40, and 45. In all four cases the LE displays
the exponential decay for times 7 up to 407,—45¢; followed by
LE fluctuations around a saturation value, M. The thick
solid straight line shows the trend of the e~2” exponential
decay, with y given by Eq. (9). One can see strong agree-
ment between the numerical and analytical LE decay rates.
We have also verified numerically that the LE decay rate is
independent of the momentum direction of the initial wave
packet.

The inset in Fig. 3 presents the time decay of the average
LE M(r), with the averaging performed over 16 individual
decay curves M(t) corresponding to different values of the
arc radius r, ranging from r=30 to 45. The saturation mecha-
nism for the LE decay was first proposed by Peres [1] and
later discussed in Ref. [4]. The LE saturates at a value M,
inversely proportional to the number N of energy levels sig-
nificantly represented in the initial state. If the areas of the
unperturbed and perturbed billiards are relatively close, then
N=A/c”> and M,~ c*/A. (We have verified the latter rela-
tion by computing the LE saturation value for billiards of
different area.) Thus one might expect the exponential decay
of the LE to persist for times #=<z,, with the saturation time
t;=(1/2yv)In N. The latter can be longer than the Heisenberg
time ty=A/2mv for a system with sufficiently large effective
Hilbert space, since 7,/ ~ (X/w)In N. Indeed, for the system
corresponding to Fig. 3 one has f;=29¢;, whereas the expo-
nential decay persists for times 7<<40t;.

Finally, we sketch a principal experimental scheme for
measuring the LE decay regime proposed in this paper. Con-
sider a two-dimensional, AlGaAs-GaAs heterojunction-based
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ballistic cavity with the shape of a chaotic billiard, e.g., Fig.
1. Let the initial electron state be given by |Wo)=|¢po) ® |x),
where |¢,) is the spatial part defined by Eq. (2), and
Ix)=2""2(|1)+]|)) represents a spin-1/2 state. Here, |1)
and || ) are the eigenstates of the spin-projection operator in
the z-direction, perpendicular to the billiard plane. Then, |x)
is the eigenstate of the spin-projection operator s,=5 o, with
o =|TYL|+[1)T], in some x-direction, fixed in the billiard
plane. Suppose now that a half-metallic ferromagnet, magne-
tized in the z-direction, is attached to the boundary of the
ballistic cavity. (One may consider the region bounded by 5,
and B, in Fig. 1 to represent the ballistic cavity, and the

region bounded by 5, and 51 to represent the ferromagnet.)
Then the ferromagnet-cavity interface will reflect the
|T)-component of the state, but will transmit the
| | )-component. As a result, the two components will evolve

under two different spatial Hamiltonians, H and ﬁ, corre-
sponding to the geometry of the ballistic cavity and the ge-
ometry of the cavity-ferromagnet compound, respectively.
Then | W) will evolve to

1 =
W)= E[e‘l””h|¢o> ® 1) +e gy @ )], (12)

The expectation value of the projection of the spin in the
x-direction is related to the LE overlap by

h CTE
5(0) = (U |5, |W,) = > Re( pole™ e~ gy, (13)

where Re denotes the real part. As we have shown above,
this overlap is real and decays exponentially in time. There-
fore the average spin projection in the x-direction will also
relax exponentially with time, i.e., 5,(¢ ~% exp(—yr), with
the relaxation rate y determined by Eq. (9). This result pro-
vides a link between the spin relaxation in chaotic, mesos-
copic structures [12] and the LE decay due to local boundary
perturbations.
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