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Two trains of light pulses at periods that are equally shifted from the harmonics of a missing fundamental are
combined in a nonlinear crystal. As a result of a noncollinear phase-matched second-order nonlinear genera-
tion, a new train of pulses is obtained. When the temporal width of the input pulses is large, the frequency of
the resulting pulse train follows the observations from classical experiments on the perception of virtual pitch
by the brain. On the other hand, when the width of the input pulses is small, the generated pulse train exhibits
much lower frequencies, analogous to those observed in the motor neural system. Our experimental setup
allows us to explore, systematically and continuously, the transition between these two regimes, while at the
same time to demonstrate that the functionalities that have been observed in the nervous system are similar to
the ones we observe from coincidence detection in quadratic nonlinear systems.
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One of the most remarkable features of nonlinear systems
is their ability to process complex input signals. A classical
example is the perception of virtual pitch by the brain. In that
context, it is well known �1� that a missing fundamental tone
can be perceived upon exposure to only some of its harmon-
ics. Psycophysical experiments by Schouten et al. �2�
showed that when a set of consecutive harmonics were
equally shifted in frequency, it was not the frequency differ-
ence �i.e., the original fundamental� that was perceived. In-
stead, the perceived pitch varied linearly with the frequency
shift. Specifically, Schouten and co-workers considered input
tones of frequencies

f i = �k + i − 1�f0 + �f , i = 1, . . . ,n , �1�

where f0 is the missing fundamental frequency, k�1 is an
integer, and �f is the frequency detuning which makes the
input frequencies to be inharmonic. Under these conditions,
the perceived pitch was seen to be given by a frequency that
matches the following expression:

fr = f0 +
�f

k + �n − 1�/2
. �2�

Recently, Chialvo et al. �3� proposed a simple and elegant
mechanism that accounts for this response, involving a linear
superposition of the input harmonics and a nonlinear noisy
detection of the frequency �2� via a threshold. The mecha-
nism, subsequently named ghost resonance, has been experi-
mentally verified in lasers �4–6� and in electronic circuits
�7�.

Experimental results using magnetoencephalographic
measurements �8� showed that the missing fundamental illu-
sion also arises when the harmonic inputs are presented

binaurally—i.e., when different harmonics are applied to
each of the two ears. The mechanism of Chialvo et al. �3�
was extended to that situation by modeling separate neuronal
pathways that detected two different input harmonics �9�.
That study showed that in the context of distributed inputs,
the mechanism of ghost resonance heavily relies on the co-
incidence detection of synaptic pulse trains �transduced by
the input neurons that receive the input harmonic signals� by
an integrating neuron. An experimental realization of this
effect has been recently performed in a real neurophysiologi-
cal setting involving the motor system of cats �10�. That
experiment has shown that when the input trains are inhar-
monic �i.e., frequency shifted with respect to the original
harmonics�, the processing neuronal pool responds at fre-
quencies much lower that those expected from expression
�2�. Subsequent experiments with nonlinear electronic cir-
cuits �11� indicate that the difference in the response is due to
the small width of the pulses acting upon the integrating
neuron, in contrast with the larger width presumably associ-
ated with acoustic neuronal pathways.

The examples of ghost resonance studied so far, and de-
scribed above, involved systems exhibiting excitability, a
property shared by neurons and many other physical sys-
tems, characterized by the existence of an activation thresh-
old. Even though the original mechanism proposed by Chi-
alvo et al. �3� relied on the existence of such a threshold,
recent studies �9–11� have shown that the main ingredient of
the phenomenon, when the inputs are distributed upon dif-
ferent coupled-threshold devices, is coincidence detection. In
this paper, we use an experimental setup that does not exhibit
excitability, but that provides a mechanism of coincidence
detection. Specifically, we use the phenomenon of second-
harmonic generation in a nonlinear optical crystal, through
which light at a given optical frequency �2fopt� is generated
within the crystal only when two distinct beams at half that
optical frequency �fopt� are present. We show that ghost reso-
nance arises also in this context and address the question of
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the influence of the input pulse width on the ghost resonance
response. This allows us to �i� perform systematic measure-
ments for continuously varying pulse widths, with high con-
trollability and reproducibility, �ii� ascertain the generality of
the phenomenon reported, which is seen to arise in any sys-
tem that operates via coincidence detection, and �iii� suggest
a possible functional role of this phenomenon in nonlinear
photonic devices, with potential applications in all-optical
signal processing. Lasers have already been proposed, in the
context of optical neurocomputing, as building blocks in op-
tical neural networks �12�, which perform functions such as
routing, buffering, and associative memory �13�. The results
presented here indicate that similar functionalities might be
expected from simpler nonlinear optical elements.

The experimental setup is shown in Fig. 1. A 76-MHz
train of 130-fs pulses, produced by a Ti-sapphire laser at a
wavelength of 800 nm, was divided into two beams using a
50/50 beam splitter. These two beams are recombined in a
BBO crystal cut for noncollinear phase matching, which gen-
erates second-harmonic light at a wavelength of 400 nm
when both beams are present simultaneously in the crystal.
The coincidence of the short laser pulses is obtained using a
movable translation stage, as shown in Fig. 1. Both beams
are gated using electromechanical shutters S1 and S2 at re-
spective frequencies f1 and f2 on the order of Hz, much
smaller than the repetition rate of the pulsed laser beam. This
leads to wide light pulses which are, in turn, composed of the
130-fs ultrashort pulses described above. In what follows, we
will refer to those wide gated packages as pulses, ignoring
their substructure at ultrashort time scales, which is not rel-
evant for the behavior reported here.

The gating process is computerized, which enables con-
trol of the shutter frequencies and ensures a constant �stable�
phase relation between them. The input signals consist of
two pulse trains of dynamical frequencies f1 and f2, repre-
sented by the two upper thin traces in Fig. 2. The width and
dynamical frequency of the pulses are controlled by the op-
tical shutters.

When two input pulses coincide inside the nonlinear crys-
tal �upper two time traces in Fig. 2�, the generated light at
2fopt is detected by the photomultiplier �lower time trace in
Fig. 2�. The nonlinear crystal acts as a coincidence detector
and replaces the threshold of detection of previous systems
where ghost resonance has been studied �3,7,9,11�. In the
particular case of Fig. 2, we have set f1=2 Hz and
f2=3 Hz, which corresponds to n=2, k=2, f0=1 Hz, and
�f =0 in Eqs. �1� and �2�. Given the thresholdless nature of
the quadratic nonlinear interaction, in this particular case a
pulse train at the ghost frequency (fr=1 Hz �see Eq. �2��) is
always generated and its detection is only limited by the
sensibility of the overall detection system.

In order to check the validity of Eq. �2� for inharmonic
inputs, we now detune f1 away from the harmonic of f0 by
setting f1=kf0+�f , varying �f between 0 and 1 Hz while
keeping f2= f1+ f0 and f0 fixed. We start by setting the pulse
width �tp to a relatively large value: namely, �tp=60 ms.
Figure 3�a� shows the instantaneous response frequency fr

�defined as the inverse of the time interval between output
pulses� as a function of the input frequency f1. The response
frequency is seen to follow well the relation predicted by Eq.
�2� for n=2 and k=2,3 �dashed lines in the figure� for almost
the whole range of f1. Note that for a fixed f0, a given value
of f1 can be obtained from Eq. �1� via different choices of k
and �f . That is the reason why multiples lines of different k
are observed in Fig. 3�a� for the same range of f1 values.

A linear response at large frequencies is also observed,
however, in plot 3�a�. This high-frequency response is a di-
rect consequence of consecutive coincidences of the �wide�
pulses, as can be seen from Fig. 4. The resulting frequency is
the inverse of the silent period of the slower input signal
�T1= 1

f1
−�tp�, as can be deduced from this figure, and there-

fore, for this case, the response frequency fr should follow
the curve

FIG. 1. �Color online� Schematic representation of the experi-
mental array. We split the laser output, thin line, into two beams
with a beam splitter, BS, and determine the frequencies of the
pulses using one shutter for each beam, S1 and S2, both of them
controlled by a code written in LABVIEW �National Instruments�.
The thick dashed line is for the second harmonic at the exit of the
nonlinear crystal, BBO; M are mirrors, F are filters to stop the
pump beam, CC are corner cubes, PMT is a photomultiplier tube,
and MTS indicates micrometric translation stage.

FIG. 2. �Color online� Time series of the input pulsed signals
�two upper lines, shifted vertically for clarity� of frequencies 2 Hz
and 3 Hz and of the response signal of the nonlinear crystal �lower
line� at the ghost frequency 1 Hz, as detected by the photomulti-
plier. The amplitude of the input signals has been vertically shifted
in order to ease comparison between time series.
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fr =
1

1/f1 − �tp
. �3�

This expression is represented by the upper �unlabeled� solid
line in Fig. 3�a� and exhibits good agreement with the ex-
perimental results.

We now turn our attention to the opposite limit of very
narrow pulses. To that end we apply pulses of width
�tp=5 ms �the narrowest we can get given the speed limita-
tions of the shutters�. Figure 3�b� shows the instantaneous
response frequency fr, again as a function of slowest input
frequency f1. We can see that the relation given by Eq. �2�
holds only in the neighborhood of the harmonic case
�f1=2 Hz and 3 Hz, fr=1 Hz�. On the other hand, in most of
the inharmonic region, the system responds with pulse trains
of very low frequencies, in agreement with previous experi-
mental results in the motor neural system �10� and in elec-
tronic circuits �11�. These responses are grouped in families
of lines following fr= �f

b , with b being an integer, as shown
in Fig. 3�b�. The line with b=1 was observed experimentally
in Ref. �11�, and its origin was determined analytically. The
closer we are to the limit of zero-width pulses, the more lines

appear. These lines arise from the condition of coincidence,

lT1 = mT2, �4�

where l and m are integers and T1 and T2 are the input peri-
ods: respectively, T1= 1

f1
= 1

kf0+�f and T2= 1
f2

=1 � �k+1�f0+�f .
When the condition given by Eq. �4� is fulfilled, both input
trains coincide and a pulse is detected. When potential coin-
cidences at frequency �f �0 are themselves missed, lower
frequencies �f

b are generated. This gives rise to different
families of lines �quasipyramids in Fig. 3�b��, depending on
the value of k that relates f1 and f0.

The two situations depicted in plots �a� and �b� of Fig. 3
represent two opposite limits of the coincidence detection
mechanism: for long pulse widths the standard response of
the system is given by Eq. �2� �dashed lines labeled k=2,3 in
Fig. 3�a��, whereas for short pulse widths the system re-
sponds preferentially at much smaller frequencies of the or-
der of �f �dotted lines labeled b=1,2 ,3 in Fig. 3�a��. In
order to systematically investigate the transition between
these two scenarios, we now fix the frequency shift �f �0
and vary continuously the pulse width. The corresponding
behavior is shown in Fig. 5. In this figure, horizontal dashed
lines represent the standard ghost frequency responses as
predicted from Eq. �2�. We are interested in examining how
the response at low frequencies �data points at frequencies
below the k=3 line in the figure� behave as the width of the
input pulses increase. Figure 5 shows how the low frequen-
cies gradually increase with the width of the input pulses,
until only the standard ghost responses remain for pulse
widths larger than 40 ms.

We have used here a classical nonlinear optical interaction
as a tool to investigate the processing of complex distributed
signals via the paradigm of ghost resonance. This phenom-
enon provides the simplest explanation to date of the long-
standing problem of the missing fundamental illusion. Our
results show that excitability, ubiquitous, for instance, in
neural systems �where the missing fundamental illusion was
originally reported�, is not necessary for ghost resonance to

FIG. 3. �Color online� Interpulse instantaneous frequency for
increasing values of �f . The horizontal axis corresponds to the slow
input frequency f1 given by f1=kf0+�f . The shutters were here
driven for trains of rectangular pulses of width 60 ms �a� and 5 ms
�b�. Symbols �black circles� represent experimental data that are
statistically significant �representing more than 10% of all inter-
pulse events�; the dashed lines labeled k=2,3 ,4 �in both panels�
indicate the expected ghost frequencies predicted by Eq. �2�, and
the unlabeled solid line in panel �a� represents the relation given in
Eq. �3�. Finally, the dotted lines labeled b=1,2 ,3 in �b� represent
the low-frequency response at fr=�f /b �see text�.

FIG. 4. �Color online� Time series of the input signals �upper
panel, shifted vertically for clarity� and response signal of the non-
linear crystal �lower panel�, in the inharmonic case, for frequencies
f1=3.4 Hz and f2=4.4 Hz. We can see two dominant frequencies in
this response: the lowest frequency corresponds to the values pre-
dicted by Eq. �2�, and the higher one arises from consecutive coin-
cidences of the broad pulses used in these sequence of experiments.
Here the pulse width was set to �tp=60 ms.
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occur. A system that is not excitable but only shows coinci-
dence detection, such as the one presented here, exhibits the
same phenomenology. We use second-harmonic generation
as a means of separating the input signals from the output

response, the same thing that a neuron does when transduc-
ing the applied input currents into a membrane potential.

The results clearly show a transition from a low-
frequency response regime to another regime completely
dominated by relation �2�, as the width of the pulses in-
creases. Such a transition between regimes could underlie the
differences observed between previous psychophysical ex-
periments on auditory response �2� and recent experiments
on the motor neural system �10�. In the former, expression
�2� held unambiguously; in the latter, on the other hand, that
behavior gave way very frequently to low-frequency re-
sponses. Correspondingly, synaptic pulses are known to be
wider in the auditory system than in the motor reflex system.
Finally, from a technological viewpoint, the present results
also show that nonlinear optical crystals carry out nontrivial
signal processing tasks that mimic those of more compli-
cated systems such as the brain.
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FIG. 5. �Color online� Interpulse instantaneous frequency for
increasing values of � f as a function of the pulse width. The input
frequencies are f1=2.7 Hz and f2=3.7 Hz, which correspond to a
detuning �f =0.7 Hz with respect to the harmonic k=2 frequencies
2.0 Hz and 3.0 Hz �see Eq. �2��. As in Fig. 3, symbols �black
circles� represent significant experimental data; the dashed lines la-
beled k=2,3 indicate the expected response frequencies predicted
by Eq. �2�. The solid unlabeled line represents the relation given in
Eq. �3�.
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