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We propose a new model to approximate spatiotemporal noise covariance for use in neural electromagnetic
source analysis, which better captures temporal variability in background activity. As with other existing
formalisms, our model employs a Kronecker product of matrices representing temporal and spatial covariance.
In our model, spatial components are allowed to have differing temporal covariances. Variability is represented
as a series of Kronecker products of spatial component covariances and corresponding temporal covariances.
Unlike previous attempts to model covariance through a sum of Kronecker products, our model is designed to
have a computationally manageable inverse. Despite increased descriptive power, inversion of the model is
fast, making it useful in source analysis. We have explored two versions of the model. One is estimated based
on the assumption that spatial components of background noise have uncorrelated time courses. Another
version, which gives closer approximation, is based on the assumption that time courses are statistically
independent. The accuracy of the structural approximation is compared to an existing model, based on a single
Kronecker product, using both Frobenius norm of the difference between spatiotemporal sample covariance
and a model, and scatter plots. Performance of ours and previous models is compared in source analysis of a
large number of single dipole problems with simulated time courses and with background from authentic
magnetoencephalography data.
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I. INTRODUCTION

The physical and physiological consequences of the cor-
related activity of substantial populations of neurons can be
detected with noninvasive measurement techniques, includ-
ing electroencephalography �EEG� and magnetoencephalog-
raphy �MEG�. These macroscopic electrophysiological tech-
niques can resolve the time course of neural population
activation with millisecond temporal resolution. Neural elec-
tromagnetic �NEM� responses are governed by the same
physical processes that give rise to electric and magnetic
fields in other systems: vector currents established by poten-
tial differences along cellular structures give rise to an elec-
tric field aligned with the current and an orthogonal magnetic
field that encircles the current element. Because many differ-
ent sensors typically detect signal contributions from a given
source, data sets often contain identifiable patterns of spatial
covariance associated with sources of interest as well as
background processes. Because neural activation typically
proceeds with a characteristic time course, spatial covariance
components often exhibit structured temporal covariance and
correlation.

The unique strengths of neural electromagnetic methods
stem from their capacity to define the dynamics of neural
population activity. Even a single electrode pasted to the
scalp may disclose a complex temporal wave-form consist-
ing of a series of peaks and valleys. The first 50 years of
work with EEG involved little quantitative effort to localize
the sources of observed topographies in the surface potential
data. Inspection or simple quantification of temporal wave-
form features served as the basis of diagnostic procedures in

clinical neurology as well as experimental studies of cogni-
tive processing. The development of MEG and the recogni-
tion that many observed field distributions could be ex-
plained by a simple forward model lead to advances in
procedures that have subsequently been applied to EEG data.
Basic and clinical neuroscience are very motivated to iden-
tify the anatomical sources of observed functional activity, as
evident in the explosion of interest in functional magnetic
resonance imaging �fMRI�. Suitable geometric models of
neural sources, coupled with physical “forward models” de-
scribing the relationships between sources, detectors, and the
tissue medium, and adequate optimization strategies, enable
useful localization of neural electromagnetic sources, in spite
of the ill-posed, ambiguous nature of the inverse problem.
Even if the objective of analysis is to describe the dynamics
of neural activation, this is most effective in the context of an
adequate model of the underlying neural sources.

Ongoing spontaneous activity recorded at the surface of
the human head using MEG or EEG, typically is character-
ized by regions of relatively large amplitude oscillatory pat-
terns that vary as a function of position on the head and state
of the subject. The signals associated with responses to indi-
vidual stimuli or other punctuate cognitive or control pro-
cesses are typically much smaller and require specialized ex-
perimental paradigms and signal processing techniques to
pull the signals out of the noise. In order to enhance the
consistent aspects of the neural response while suppressing
the contribution of other physiological processes or environ-
mental noise, most investigators employ sensory-evoked re-
sponse or event-related paradigms, averaging temporal se-
quences time locked to the stimulus or a behavioral response.

The central limit theorem lends support to the common
assumption that the averaged background data are Gaussian
distributed, even though the distribution of a single trial*E-mail address: pliz@lanl.gov
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background may not be Gaussian. The log likelihood func-
tion is a common mathematical expression quantifying the
likelihood that a given model �e.g., of neural current� could
have produced the measured data. For Gaussian, zero-mean-
averaged background noise, the log likelihood function is
given by

−
1

2 �
ktk�t�

�bkt −� Lk�x�j�x,t�dx�Ckt;k�t�
−1

��bk�t� −� Lk��x��j�x�,t��dx�� . �1�

Here, bkt are the averaged measurements �the data being ana-
lyzed� at sensor k and time t; j�x , t� is the neural �source�
current distribution over space x and time t; Lk�x� is the
forward or lead field for sensor k, i.e., the linear operator that
connects source currents to predicted measurements in the
absence of noise. C is the covariance of the averaged back-
ground activity, which describes second-order statistical
properties of the MEG/EEG data in the absence of sources.
This activity mainly consists of signals created by brain
function, sensor noise, and external noise that was not ad-
equately shielded or canceled. Typically, such cumulative ac-
tivity is not of interest in inverse analysis, e.g., ERP analysis,
and is considered noise. In this paper, we interchangeably
use terms noise and background to refer to the ongoing
activity of no interest.

Several classes of techniques have been used for neural
electromagnetic source localization �1–6�, but most use the
likelihood formulation in some way. Source localization
methods such as these can be applied to account for a field or
potential distribution observed at an instant in time. How-
ever, spatiotemporal techniques that attempt to account for
the full data set using a limited number of sources, each with
an associated time course, have proven to be much more
powerful. For example, such methods allow the resolution of
sources with overlapping field or potential distributions and
overlapping activation time courses, which are ambiguous in
a single spatial map. These methods operate by implicitly
considering the structure in the spatiotemporal covariance of
the signals. As a consequence, covariance that exists in the
data set but is not explicitly modeled by component sources
may lead to mislocalization or biased estimates of source
time courses �7�. Despite ample evidence that the back-
ground is correlated over space and time, the covariance is
commonly taken to be diagonal �8–10�. In order to address
this problem, we have undertaken the development of meth-
ods to characterize the data covariance due to correlated
noise or background physiological activity.

The sample covariance of the averaged background data
is related to the sample covariance of the single-trial back-

ground data by a simple expression: C= 1
M Ĉ. Here, M is the

number of trials being averaged and Ĉ is the sample covari-
ance of the single-trial background data. This relation as-
sumes the trials are independent draws from the single-trial
distribution but does not assume a particular form for
this distribution. The task of estimating the average back-
ground covariance may be accomplished by estimating the

single-trial background covariance and scaling it by the
number of trials in the average.

Given that MEG/EEG is measured in M trials, on L sen-
sors and in C time samples, let Em be the L�C single-trial
noise matrix at trial m. In this case, the conventional way to
estimate the full covariance matrix of dimension N=LC for
the averaged noise is by

C =
1

M�M − 1� �
m=1

M

�vec�Em� − vec�Ē���vec�Em� − vec�Ē��T,

�2�

Ē =
1

M
�
m=1

M

Em, �3�

where vec�E� is all the columns of E stacked in a vector. In
order to simplify notation in this paper, we use M both for
the number of available noise samples and for the number of
stimuli over which averaging is done. Note that, in the
general case, these numbers may not be the same.

There are a number of reasons why this estimate of the
full covariance is difficult to use and why an approximation
is needed. First, even for modern multisensor detectors, suf-
ficient experimental data are rarely available to adequately
estimate the large number of parameters present in the full
covariance matrix. For example, for 35 time samples and 121
channels and considering the fact that the covariance matrix
is symmetric, 8 969 730 parameters should be determined
(�121�35���121�35�+1� /2). This far exceeds the amount
of data available. Second, because the spatiotemporal noise
covariance matrix is so large, a tremendous amount of
memory is required for its storage. Third, this full covariance
is almost impossible to handle in the likelihood formulation,
since the computation time of calculating the inverse still
renders the task infeasible in most interesting cases, even if it
was possible to estimate the covariance with the given data.
A naive algorithm for matrix inversion takes O�N3� time,
where N is the dimensionality of the matrix. Though there
are some improvements over this result for large matrices
�11,12�, the problem is overwhelming for typical computing
equipment and for interesting values of N. To summarize, it
is almost always impossible to estimate the full spatiotempo-
ral covariance due to lack of data; in those cases when the
estimation is possible, the inversion is computationally hard,
and in any case, the amount of storage required is high. Be-
cause of all these difficulties with the estimation of the full
spatiotemporal covariance, an accurate approximation is
needed. In addition to addressing the three problems men-
tioned above, a good approximation should capture as much
of the structure in the noise as possible and reduce the errors
in inverse solutions.

In this paper, we describe two spatiotemporal covariance
models tailored for use in localization algorithms �Sec. III�.
The first model is a multipair Kronecker product �KP� ap-
proximation based on an orthogonal spatial basis, and the
second one is an extended, more general variant based on an
independent spatial basis.
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Two common models are described �Sec. II�. The first is
the widely used diagonal approximation, which has no spa-
tial or temporal correlation and whose diagonal elements
consist of sensor noise variances. The second model is a KP
approximation of a temporal covariance and a spatial cova-
riance under the assumption that spatiotemporal covariance
is separable �13�. Motivation for the need of a more complex
model is given.

In order to compare how well our models approximate the
full spatiotemporal sample covariance, we used criteria based
on the Frobenius norm and scatter plots. These criteria ap-
plied to the single Kronecker product model and our models
help to order models by how structurally close they are to the
modeled matrix.

Since the goal of better noise characterization by covari-
ance modeling is to improve results of inverse algorithms,
we have chosen to test and compare our models to some of
the existing ones by using them in algorithms for source
localization. Performance of the approximations in recon-
structing dipole locations and time courses is tested using a
large number of simulated single-dipole data sets constructed
from empirical data for background noise and simulated di-
pole sources covering a wide range of locations and orienta-
tions �Sec. IV�. We note that many of the most serious prob-
lems with source localization arise from the presence of
multiple nearby sources with overlapping time courses.
However, a systematic investigation of such issues is beyond
the objective and scope of the work reported here.

II. SOME OF THE COMMON MODELS

It is common when solving the inverse problem to model
covariance as a diagonal or even as an identity matrix. In the
diagonal case, the approximated full spatiotemporal covari-
ance is expressed as C�T � S, where T is the temporal co-
variance that is taken to be the identity; S is the diagonal
spatial covariance with elements of the diagonal being sensor
variances; and � is the Kronecker product. This model is
easy to estimate. It has only L parameters, where L is the
number of sensors. At the same time, this simple model is
better than not using any covariance estimate at all as in the
ordinary least-squares �OLS� approach.

In order to improve localization results achievable with
the very simple diagonal model, more complicated models
were sought. De Munck et al. �13� proposed a model based
on the assumption that the spatiotemporal covariance of the
background in MEG and EEG is separable. This assumption
naturally leads to the use of KP in the model formulation:

C 	 T � S = 

t11S t12S ¯ t1CS

t21S t22S ¯ t2CS

� � �
tC1S tC2S ¯ tCCS

� . �4�

Temporal covariance is a C�C matrix T and spatial covari-
ance is an L�L matrix S, where C is the number of time
samples and L is the number of sensors. In �13�, the temporal
covariance matrix, T is normalized to 1.

In addition to being more descriptive than the diagonal
model, the KP model has an easy inverse. This makes it

useful in source localization. As demonstrated in �13� the
analysis results improve considerably using the KP model
compared to results when using the diagonal model.

However, because it employs a single spatial and tempo-
ral covariance pair, the simplest KP model can only describe
a very limited range of covariance. In order to reduce this
limitation, others have suggested the use of a sum of KPs of
temporal and spatial covariances as an approximation to the
full spatiotemporal covariance matrix �14�. This allows the
description of several background processes each with their
own spatial and temporal patterns. Though shown potentially
to be useful, this model is not well suited for source analyses
since its inversion is computationally demanding.

In this paper, we introduce and compare models that are
conceptually between the computationally convenient but re-
strictive KP model of �13� and the very general sum of KPs
model of �14�, which is not well suited for source analysis. In
Sec. III, we present two models that allow more temporal
variability than the KP model does. These models are useful
for source analysis because they have a computationally
manageable inverse in contrast to the sum of KP model. But
they are not as general in their descriptive power.

III. SERIES KP MODELS

In the Kronecker product model described above, all spa-
tial components of the background have the same temporal
covariance structure. This statement describes the main as-
sumption of the KP model. In order to motivate multipair
models, we rewrite the KP model in the following way. First,
perform a spectral decomposition of the spatial covariance:

T � S = T � �
l=1

L

�lSl, �5�

where Sl=vlvl
T is an orthonormal basis component repre-

sented as a rank 1 matrix, �l is an eigenvalue, and vl is an
eigenvector. This form is one of the conventional ways of
writing a spectral representation of a matrix. Using the iden-
tity A � �B+C�=A � B+A � C, Eq. �5� can be represented
as

�
l=1

L

T � �lSl = �
l=1

L

�lT � Sl. �6�

The left-hand side of Eq. �6� makes it obvious that each
spatial component has the same temporal covariance. The
contribution of each temporal covariance is weighted by the
variance of the corresponding orthonormal spatial compo-
nent, as seen from the right-hand side of �6�. In the final sum,
such weighting of temporal covariances makes no difference
because they all are the same.

In a more realistic case, several noise generators having
distinct spatial patterns �or belonging to separate spatial
components� may also have different and independent tem-
poral structure. Furthermore, some background sources of
noise that are external to the head can also be captured by
such a model.
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A. Orthogonal basis multipair model

We propose an alternative KP model of the spatiotemporal
noise covariance that is a series of orthonormal spatial com-
ponents Sl of the background data and their corresponding
temporal covariance matrices T lexpressed as

C 	 �
l=1

L

T l
� Sl. �7�

The model is built on the following assumptions: A1, Spa-
tiotemporal noise is generated by L spatially orthogonal gen-
erators that do not change their location during the period of
interest; A2, each spatial component defined in signal space
has a time course uncorrelated with those of other compo-
nents; and A3, superposition of time courses of each compo-
nent measured at the sensors has a Gaussian distribution with
zero mean.

Let us assume for now that we are given the orthonormal
components Sl=vlvl

T. �We will discuss a way to obtain those
later in the section.� As in �5�, the orthonormal basis spans
the whole sensor space having dimension L. The next task is
to estimate temporal covariances T lof each component. This
can be done due to the assumption A3 that the background is
Gaussian and using the maximal likelihood estimation as
demonstrated in Appendix A. Assume that we have M
single-trial noise samples Em– a L�C matrix with L number
of sensors and C number of time points. Now we can sum-
marize orthogonal basis multipair model in the following
way:

C 	 C̃ 
 �
l=1

L

T l
� Sl,

T l =
1

M2 �
m=1

M

Em
T SlEm,

Sl = vlvl
T. �8�

Expression �8� represents a model for the averaged noise;
hence, the normalizing factor in the estimate of T lis
squared.

Another important feature expected of a covariance model
to make it useful in source analysis is a computationally
manageable inverse. The inversion of this multipair model
can be expressed by

C̃−1 = �
l=1

L

�T l�−1
� Sl �9�

�see Appendix B for details�. This inversion is easily man-
ageable.

Although this model has far fewer free parameters than
the full spatiotemporal covariance estimate �2�, the number
of parameters is larger than that of KP model �though not by
a great amount�. The increase in parameters provides an in-
crease of expressive power beyond that of the single-pair
model �4�. Furthermore, it is free from assumptions of iden-

tical temporal character of the noise over all spatial locations
and, hence, may capture more information about the struc-
ture of the noise.

We derived this model without any assumptions about
how spatial orthogonal components were obtained. That
means that, in principle, any set of such components should
keep the validity of the derivation and retain the invertibility
of the model. However, since we assume that the background
has the distribution close to the Gaussian, then it is natural to
use singular value decomposition �SVD� to obtain orthogo-
nal spatial components. The result of SVD �which performs
principal component analysis �PCA� in our case� are spatial
components whose time courses have a cross correlation of
zero. It is used in this work to estimate the spatially orthogo-
nal components of the orthogonal basis multipair model.
SVD of the noise data collected in matrix A by stacking M
single-trial spatiotemporal samples Em looks like A=U�VT.
U is a CM �L orthogonal matrix; � is a L�L diagonal
matrix with singular values of A �l as diagonal elements; and
V is an L�L orthogonal matrix of spatial components. Each
row of VT is a spatial component vl that is used to form
orthogonal spatial components Sl of our model �7�.

Very often SVD is used for dimensionality reduction
when only the most significant singular values are accounted
for and all other values are neglected �15�. In this applica-
tion, we do not use SVD for this purpose. Dimensionality
reduction, i.e., approximation of the full covariance, is al-
ready performed in �7� based on the stated assumptions. The
sole purpose of SVD in estimation of this model is to find
spatially orthogonal components and their corresponding
time courses.

B. Independent basis multipair model

The model introduced in Sec. III B has greater expressive
power than the models presented previously. Nevertheless,
its reliance on PCA lets it find those noise generators whose
time courses are uncorrelated by placing an additional or-
thogonality constraint on spatial components. However, there
is no guarantee that background activity components will be
orthogonal. A better physical model would be to assume that
noise generators produce time courses statistically indepen-
dent from one another. In addition to better describing dif-
ferent processes generating background �e.g., alpha rhythm,
unfiltered sensor noise, environmental perturbations�, it
removes the orthogonality constraint. Thus, instead of find-
ing spatially orthogonal and temporally uncorrelated compo-
nents, we derive components that are temporally
independent.

Let us assume that we are given independent spatial com-
ponents of the background. Denote each independent com-
ponent as wl, its corresponding spatial matrix as Rl=wlwl

T,
and the matrix in which the lth row is the wl vector as W−1.
In this framework, the only assumption needed is indepen-
dence of each wl from the rest of the components. Estimation
of temporal covariances of each independent spatial compo-
nent can be performed in the Maximum likelihood
framework �see Appendix A�,

C 	 C̃ 
 �
l=1

L

T l
� Rl
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T l =
1

M2 �
m=1

M

Em
T WWTRlWWTEm

Rl = wlwl
T. �10�

Here, wl stands for the lth row vector of W−1 as previously
described and M2 is due to the averaged noise modeling.

The model is more general compared to the one using
orthogonal bases from Sec. III A. It can be constructed in
terms of any spatially independent basis set, which also in-
cludes orthogonal sets. At the same time, its inversion is still
manageable and can be expressed as �see Appendix B for
details�

C̃−1 = �
l=1

L

�T l�−1
� �WWTRlWWT� . �11�

This makes the model useful in source analysis.
The above reasoning applies to any statistically indepen-

dent components of the measured signal. It is crucial to adopt
an independent component analysis �ICA� algorithm well
suited to the neuroimaging signals. Different ICA algorithms
have been applied to MEG �16–20� and EEG �21–23� data.
Among them, the most widely used are second-order blind
identification �SOBI� �24�, Infomax �25�, and fICA �26�. The
SOBI algorithm was used in �17,18�, and a solid motivation
for applying it to MEG data is given there. Following this
motivation, we chose the SOBI algorithm for this research.
In this paper, we have used a SOBI algorithm implementa-
tion provided by the ICALAB toolbox �27� with the default
settings.

Our goal in this paper is not to evaluate performance of
different ICA algorithms in the suggested framework. Rather,
here we chose one algorithm to demonstrate the feasibility
and applicability of ICA for finding independent spatial com-
ponents Rl for modeling background noise. The procedure
we used can be described as follows.

Assume that we have M times single-trial noise data and
that an ICA algorithm is applied to this data constructed in a
matrix A,

�E1
T

�
EM

T � = A = �U1

�
UM

�W−1. �12�

In Eq. �12�, W is a L�L unmixing matrix obtained as a
result of an ICA algorithm, the Um form a CM �L matrix of
independent components U. This W matrix is the matrix
used in �10� and �11�.

Although ICA is widely used for dimensionality reduc-
tion, we note that in this application no dimensionality re-
duction is performed based on ICA; the technique is used
exclusively as a discovery tool.

IV. COMPARING PERFORMANCE OF COVARIANCE
MODELS

The empirical MEG data and anatomical information used
in this work were acquired in the following experiment:

Electrical stimulation of the median nerve �at the wrist�
was applied at the motor twitch threshold, using a block
design of 30 s on, 30 s off for a total of ten blocks for each
of eight runs. The stimulus alternated across runs, with four
runs each of left-side stimulation and of right-side stimula-
tion. The ISI �interstimulus interval� was randomized be-
tween 0.25 and 0.75 s �Fig. 1�. Since there is no stimulus for
long periods, this design provides a large sample of brain
noise data, which is useful in other noise studies. Data were
collected on a 4D Neuroimaging Neuromag-122 whole-head
gradiometer system with 122 channels �28�. The experiment
used a male subject, age 38, sampling rate was set to
1000 Hz. In this paper, data from sensor 51 was not used
since its output had too many artifacts, leaving 121 usable
channels.

This somatosensory data set contained high-frequency
transient signals resulting from the electrical stimulus. These
transients are distorted when filtered with a linear filter, due
to ringing effects and adversely affect nearby data, including
the expected early response at about 20 ms poststimulus. To
avoid this and still be able to remove low-frequency drifts, a
median filter was used as follows. First, the signal was fil-
tered with a median filter of window size set to obtain a 1 Hz
low-pass filter �1000 samples, in our case�. Second, the result
from the previous step was subtracted from initial measure-
ments to obtain a 1 Hz high-pass filtered signal. The large
60 Hz noise and harmonics in the data were reduced but not
removed by replacing the points in the power spectrum in the
data near 60 Hz and harmonics with values that interpolated
between adjacent power spectrum points.

Many different approaches can be used to evaluate how
well various models approximate the full spatiotemporal co-
variance. Typically, some norm of the difference between
true sample covariance and its approximating model is cal-
culated, for instance, the Frobenius norm. Kullback-Leibler
divergence �29� is also a popular measure. A scatter plot can
be a good “visual” tool for comparison as described, for
example, in �30�.

Measures such as the above-mentioned Frobenius norm
give a cumulative quantitative basis for comparing how well
a model approximates the sample covariance. In order to
compute the Frobenius norm, the sample spatiotemporal co-
variance needs to be estimated. The experimental setup used
to obtain the data for this work provided plenty of back-
ground data not available in a typical experiment. This back-
ground comes from periods free from stimulus. Abundance

FIG. 1. The manner in which stimuli were applied in the experi-
ment. The x axis shows time samples, and y axis shows stimulus
types for the right-hand stimulus, no stimulus, and left-hand stimu-
lus. Within each stimulus block, there is a series of 	60 stimuli at
random ISI.
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of the background data allowed us to reliably estimate
sample spatiotemporal covariance for 121 sensors and 35
time points �35 ms�. Using this estimate of the sample cova-

riance C̃, we were able to calculate a normalized Frobenius
norm of the difference between the modeled covariance and
each of the models according to expression �13�, where � · �
denotes Frobenius norm.

�C̃ − M�

�C̃�
100 % . �13�

Results of this comparison for the single KP model, orthogo-
nal basis multipair model, and independent basis multipair
model are summarized in Table I. We have also looked at
Kullback-Leibler divergence using a smaller subset of sen-
sors and time points in order to provide invertibility of the
full sample covariance needed for calculations. The behavior
was very similar to the one in Table I.

Using a cumulative measure to compare models is useful,
but different cumulative measures can give different and
even contradictory results. In order to provide an additional
reference point of model comparison, we used scatter plots.
Scatter plots contain more information about structural dif-
ferences and similarities of the models. In the case when
matrices are identical, all points should fall on the 45° line
between the x- and y-axes. Deviation from this behavior
demonstrates differences between models at values of differ-
ent magnitude. Each of the models compared to the full spa-
tiotemporal sample covariance using Frobenius norm was
compared using a scatter plot of a model across the full co-
variance as shown in Fig. 2.

Scatter plots allow us to compare two matrices A and B
element by element �aij with bij� and give an idea of dissimi-
larities in their structure. One can conclude from Fig. 2, that
independent basis multipair model of Fig. 2�c� is structurally
the closest to the spatiotemporal sample covariance when
comparing it to scatter plots in Figs. 2�a� and 2�b�. This
means that in terms of modeling the spatiotemporal sample
covariance it gives the best approximation. The conclusion is
also supported by the Frobenius norm results of Table I.

The ultimate goal of modeling full spatiotemporal covari-
ance is to achieve better source analysis, including estima-
tion of source location and time course. Thus, evaluation of
model performance in a dipole-based source analysis is em-
ployed as an evaluation metric in this study. A large number
of single dipole data sets were analyzed using different back-
ground noise models. Each data set was constructed using
empirical whole head MEG background data together with
simulated dipole sources.

Noise samples of 35 ms latency were extracted from the
prestimulus area of right-side stimulation no earlier than
300 ms after the previous stimulus was applied. Since filter-
ing can affect temporal covariance it is important to estimate
covariance after filtering has been applied. All covariance
models in this section were estimated using this continuous
background data, scaled appropriately to obtain covariances
of the noise averaged over 602 samples. All the covariance

TABLE I. Frobenius norm of the difference between sample
spatiaotemporal covariance and three models: single KP model, or-
thogonal basis multipair model, and independent basis multipair
model.

Model Single KP orthogonal independent

Difference �%� 81.5 27.2 17.8

FIG. 2. �Color online� Scatter plot of covariance models across
full spatiotemporal sample covariance: �a� single KP model, �b�
orthogonal basis multipair model, and �c� independent basis multi-
pair model.

PLIS et al. PHYSICAL REVIEW E 75, 011928 �2007�

011928-6



models yielded similar sensor variances, differences were
only observed in the correlation structure.

Continuous noise samples were combined in a way that
allowed for averaging over 602 independent samples. This
approach supplied six different average noise data sets. Dif-
ferent signal-to-noise ratios �SNR� for single dipole prob-
lems were obtained by scaling these noise samples before
combining them with simulated data. The measure of SNR
used in this paper was constructed by squaring all values of
the signal vector and then adding them together �inner prod-
uct of the signal vector� and dividing this value by squared
and summed values of the noise vector; a square root was
taken from the obtained ratio.

The locations and orientations of 50 dipoles were drawn
at random from the gray-matter voxels that had been tagged
from the subject’s anatomical MRI used in the empirical
MEG experiment. In order to mitigate the effect of depth vs
strength that would complicate the interpretation of results,
the area from which random locations were drawn was con-
strained to be further than 5 cm from the head center �Fig.
3�.

Each single dipole problem consisting of 121 sensor val-
ues over 35 ms �121�35 matrix� was constructed in the fol-
lowing way: �i� For each dipole in the set of 50, a sinusoidal
time course was used; �ii� this dipole was projected to the
sensor space using the Sarvas spherical head model �31�; and
�iii� one of the six noise sample sets was added to the simu-
lated signal. Noise was appropriately scaled in advance ac-
cording to the intended SNR.

The total number of single dipole problems run through
the inverse solution routine was 2400. This number com-
bines 50 dipoles with 6 noise kinds for each and 8 SNR
values �0.3, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0�. Figure 4 demon-
strates how different the noise samples were and what diver-
sity was introduced by changing SNR.

For each data set, we estimated the location, orientation,
and time course of a single dipole that maximized the like-
lihood, using the different background covariance models. In
these trials, the location and orientation of the dipole did not
vary over time. Initial attempts to solve for these parameters
using an optimization algorithm were plagued by local
minima problems, which is common in dipole inverse algo-
rithms �32,33�. The degree of these local minima errors con-
founded the errors between background covariance models.
To mitigate this confound, we employed a sampling algo-
rithm using Markov chain Monte Carlo �MCMC� �3,34,35�,
which sampled the location and orientation parameters from
the likelihood using the maximum likelihood time-course
values for a given set of location and orientation parameters.
From these samples, we then calculated the mean values of
the parameters and used this as our estimate of the maximum
likelihood result. This reduced the local minima problems
but did not eliminate them. To further reduce the local
minima effects, we ran multiple MCMC samplings for each
data set and chose the results that had the highest likelihood.
We are confident that the results from this set of procedures
primarily reflect the errors associated with the different back-
ground covariance models.

There are 300 results for each SNR value for each model.
Figure 5 shows a histogram of location errors for the diago-

FIG. 3. Dipoles randomly scattered over the cortex. These di-
poles give fairly uniform coverage of the cortex and with different
orientations create many possible realistic sources.

FIG. 4. Three noise sample sets and three
signal-to-noise ratios for one of the dipoles. Col-
umns have the same signal-to-noise ratio, and
rows have the same noise instance added to the
simulated dipole.
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nal model with SNR of 1.0. The shape of this distribution
�non-Gaussian with large tails�, is typical for all of the mod-
els and SNR values. From each of these distributions, we
calculated the point on the error axis below which 90% of
the probability mass is concentrated. Figures 6�a� and 6�b�
show these 90% error plots for location and time courses as
a function of SNR for each background covariance model.
Here, the location error was calculated as the root-mean-
squared error, and the time-course error was calculated as the
root of the squared error averaged over time. The two mul-
tipair models had the lowest errors, followed by the KP
model with slightly higher errors. Finally, the diagonal model
had by far the largest errors.

V. DISCUSSION

This work presents a model of spatiotemporal sample co-
variance, which is a significantly closer approximation than
the models suggested previously. By better modeling tempo-
ral variability in the background, it demonstrates improve-
ments in source time-course estimation and localization. Im-
provements in estimating the dynamics of sources is

expected to be even better in complex situations with greater
variability in the temporal behavior.

A spatiotemporal covariance model based on a sum of KP
proposed in �14� is interesting as a noise exploration tool, but
it is not well suited for inverse analysis because of its com-
putationally intensive inversion. Our work targeted the de-
velopment of practical models for analysis purposes that are
located between the KP model �13� and the sum of KP model
in the hierarchy of descriptive power. A simplification made
in our models that made them different from the model of
�14� is making spatial covariances rank 1. This made our
models less general but, importantly, allowed fast inversion,
which made them practical.

NEM analysis methods that are based on averaging as-
sume that the structure of the response of interest is static
from trial to trial and that background processes are unaf-
fected by stimulation. Both of these assumptions may be
violated in physiological data.

Single-pass analytical methodologies are increasingly ap-
plied to the analysis of neural electromagnetic data. Fre-
quency decomposition techniques have been used to explore
the putative role of oscillatory activity in certain perceptual
processes. Spatial filtering techniques �based on a computed
or assumed source model� can be applied to the data to esti-
mate the activation time course of the source. Techniques
such as minimum variance beam-forming, synthetic aperture
magnetometry, magnetic field tomography, and some forms
of ICA are most effectively applied to analysis of single trial
data. However, these methods suffer from the fact that noise
and background activity may greatly exceed the signals of
interest.

Our studies of source localization did not disclose large
advantages of ICA relative to the orthogonal basis model.
The problem is that both PCA and ICA analysis did a good
job for this instantiation of noise. Bases on the norm metric
and scatter plots, even a perfect sample covariance model
would make no significant improvement in source localiza-
tion in this case. Previous experience shows that noise causes
the greatest problems for source localization algorithms

FIG. 5. Location error histogram for the case of using the diag-
onal covariance approximation at SNR 1.0.

FIG. 6. Combined 90% location error measure �a� and combined 90% time-course errors �b� for a series of single dipole problems: D,
diagonal covariance model; S, single KP model �Eq. �4��; O, orthogonal basis model �Eq. �8��; and I, independent basis model �Eq. �10��.
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when noise components look like signal: i.e., with dipolelike
spatial distributions that overlap spatially with target signals
and have correlated time courses �cf. �13,36,37��. We could
redesign our simulated source model to better match features
in the noise in order to make baseline source localization
performance worse, but this effectively rigs the test. We have
little doubt that in authentic data signal and noise are more
similar in structure and, thus, more likely to interact. This
suggests that the relative advantage due to the use of noise
covariance models will be greater.

It is important to note that, even though we observed lim-
ited performance advantages of our models for location esti-
mation at low SNR, our models were always superior in
time-course estimation. If the models are evaluated on the
basis of combined spatial and temporal performance, then
multipair models always performed better. In single-trial
analysis, localization performance might not be of as much
of an importance as estimation of the time-course dynamical
features. For this type of analysis, dynamical features of the
background can play a much greater role due to phase lock-
ing and similar phenomena. Even small consistent improve-
ments of estimating noise temporal behavior may be of great
importance in such a setting.

Figure 7 shows contour plots of spatial components from
the orthogonal basis series model and their corresponding
temporal covariances. There are clear differences among the
temporal covariances. However, if one takes out the compo-
nents that are either sensor dominated with very short tem-
poral correlations �B2, B6 and D6� and the large 60% pow-
erline component �B1�, the remaining components, which are
presumably dominated by background brain activity, have
similar temporal correlation structure. It will be interesting to
see if in future work this feature is observed across multiple
subjects and over a more extended temporal range.

The assumption that each noise generator contributing to
the measured background retains a consistent spatial distri-
bution is supported by observations of stability of brain func-
tion in the resting state �38�. Spatial diversity of the back-
ground signal can be observed, for example, as nonuniform
spatial distribution of the � rhythm over the cortex. More-
over, the background may not have many generators with
distinct independent time courses. In the data examined here,
the temporal covariances across components were relatively
similar in the multipair models. This is a possible explana-
tion of why the multipair models yield relatively little im-
provement over the KP model in these studies.

Despite almost identical performance of the multipair
models, we suggest that, in terms of generality, the model
based on independent basis should be preferred. Structural
comparisons using Frobenius norm and scatter plots also
demonstrate that the independent basis multipair model is
closer to the full spatiotemporal sample covariance. Its
power is not only in the increase of degrees of freedom and,
consequently, the ability to describe a bigger class of pos-
sible spatial components, but also in the discriminative cri-
terion. The main criterion used in PCA is minimization of the
reconstruction error �39�. As a result, this produces spatially
uncorrelated components. This may not be a good model of
the MEG/EEG background, especially that due to the back-
ground brain activity. It seems more reasonable to assume

that different noise generators are independent. In that case,
the independent basis model is complex enough to describe
the underlying process, and a correct choice of algorithm �for
example an ICA algorithm� can estimate independent genera-
tors.

Considering the observation that not all spatial compo-
nents may have distinct temporal structure, a further gener-
alization is needed. The multipair model can have an addi-
tional parameter for the number of significant components.
In this case, only significant components will contribute to
the final covariance with their respective distinct time
courses. Other components would be suppressed. Spatial co-
variances of components may have different rank depending
on areas they cover. Such reasoning goes in accordance with
noise generator models, that state that different regions �or
resting networks� acting as background generators have their
own temporal structure �40,41�. Unfortunately, an approach
to achieve this generalization is not obvious since special
care should be taken to retain inversion of the model.

Multipair models can, in principle, be directly applied to
the analysis of EEG data. Though the topic needs further
study, it is expected that the different structure of EEG would
not affect the multipair models as much as the possible added
complexity of the noise. We expect that in the case of the
heterogeneous noise sources expected in EEG signals, mul-
tipair models should show even better performance due to
their increased expressive power and ability to incorporate
information about many noise components.

Different models that would cover the range between the
diagonal and the KP model can be developed. For such mod-
els, additional study is needed to investigate how spatial
models alone or temporal models alone would compare in
performance. These truncated models can be useful in the
case when only a small amount of data is available for esti-
mation. But when the single-pair model can be estimated it
subsumes all lower-order models and should not perform
worse than these. As we show in this paper, multipair models
subsume the KP model and, thus, should not perform worse.
This was demonstrated by the increased accuracy in localiza-
tion and especially time-course estimation. In the case when
sufficient estimation data are available and the additional
computational load of multipair models does not make a sig-
nificant difference, we suggest using multipair models to in-
crease accuracy. We believe that even in the worst case, mul-
tipair models should perform as well or better than the one-
pair model.

Many of the methods employed for source-based analysis
of neural electromagnetic data have their roots in methods
developed in other areas of physics and engineering, e.g.,
MUSIC �2� and beam-forming �4� approaches are based on
techniques used for signal extraction from phased array an-
tennas. In turn, methodological development and enhance-
ments for biomedical application have been used in other
disciplines of physical science. We anticipate that the meth-
ods described here for characterizing the spatiotemporal co-
variance structure in neural electromagnetic data will find
application in other physics applications, such as geophysical
inverse problems, mapping of lightening strikes, and other
noise-limited analysis problems that depend on the integra-
tion data from an array of discrete sensors.
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FIG. 7. Contour plots of the first ten most significant spatial components with corresponding temporal covariance functions and of two
of the least significant spatial components.
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VI. CONCLUSIONS

In this paper, we present two multipair spatiotemporal co-
variance models that better capture temporal variability in
background activity. A significant improvement over previ-
ous attempts to use sum of KP is that our models produce
computationally manageable inverse. The increased ability to
describe temporal structure improved the detection of tem-
poral dynamics of the signal and localization results. The
accuracy of the structural approximation was compared us-
ing both a norm metric and scatter plots. Models were com-
pared on the basis of their performance in a localization al-
gorithm. Performance statistics were gathered from inverse
solutions to a large number of single dipole problems with
simulated sources and background from real MEG data. In
terms of localization error and detection of signal dynamics,
the orthogonal basis and independent basis multipair models
demonstrated the best performance.
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APPENDIX A: DERIVATION OF MULTIPAIR MODELS

In the following derivation, we use determinants of the
multipair models. Calculation of these determinants is omit-
ted for brevity. The inverse of the orthogonal basis multipair
model obtained in �9� is utilized in the following. Using
these result, the log likelihood for the Gaussian probability
density function �PDF� for the orthogonal basis multipair
model is expressed by

L = const −
M

2 �
l=1

L

ln��T l�� −
1

2
tr��
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�
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�A1�

Differentiating with respect to T lresults in
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Setting the above derivative to zero in order to find the maxi-
mum,

−
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M
�
m=1

M

Em
T SlEm��T l�−1�� = 0

�A3�
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Em
T SlEm��T l�−1 = �T l�−1, �A5�

and multiplying both sides of Eq. �A5� by �T l�−1from the
left and right, we obtain the final result,

T l =
1

M
�
m=1

M

Em
T SlEm. �A6�

Next, we estimate temporal covariance for the indepen-
dent basis multipair model. The inverse of this model is
taken as in �11�. The log likelihood in this case,

L = const −
M

2 �2C ln��W−1�� + �
l=1

L

ln��T l���
−

1

2
tr��

m=1

M

�
l=1
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Em
T WWTRlWWTEm�T l�−1� �A7�

Following the same path for derivation as for the orthogo-
nal basis model case, we end up with

T l =
1

M
�
m=1

M

Em
T WWTRlWWTEm. �A8�

APPENDIX B: INVERSION OF THE MULTIPAIR
MODELS

We need the following identity for derivations of this sec-
tion:

�A1 � B1��A2 � B2� = �A1A2 � B1B2� . �B1�

First, let us prove that the inverse for the orthogonal basis
multipair model is as in �9�. By the orthogonality of Sl

�SlSl�=0 if l� l��,
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C̃C̃−1 = ��
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�l
2T l

� Sl���
l=1
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�l
−2�T l�−1

� Sl�
= �
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L

I � �Sl�2. �B2�

By two properties of Sl: �i� �Sl�2=Sl; �ii� �l Sl=I due to
orthogonality of V, we obtain the desired one,

C̃C̃−1 = �
l=1

L

I � �Sl�2 = I � �
l=1

L

Sl = I � I = I . �B3�

Properties of Sl are proved as follows:
Property �i�:

�Sl�2 = �vlvl
T��vlvl

T� = vl�vl
Tvl�vl

T

= vlvl
T �vl

Tvl = 1 by orthogonality of V� = Sl

�B4�

Property �ii�: I=VVT=�l vlvl
T.

Now we show that the inverse of the independent compo-
nents multipair model is as in �11�. Using the identity �B1�,
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According to the definition of Rl,

Rl = wlwl
T = �W−1�Telel

TW−1. �B6�

Here �el � l=1, ¯ ,L� are orthonormal canonical bases vec-
tors. By the orthogonality of el and substituting �B6� into
�B5�, we obtain
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Finally, we obtain the desired result,
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