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The effect of an external applied lateral tension on the line tension between two domains of different
thickness in a lipid bilayer membrane is calculated. The thick domain is treated as a liquid-ordered phase in
order to model a raft in a biological membrane; the thin domain is considered a liquid-disordered phase to
model the surrounding region. In our model, the monolayers elastically distort at the boundary to create a
smooth rather than steplike boundary to avoid exposure of the hydrophobic interior of the thick raft to water.
The energy of this distortion is described by the fundamental deformations of splay and tilt. This energy per
unit length of boundary yields the line tension of the raft. Applying lateral tension alters the fundamental
deformations such that line tension increases. This increase in line tension is larger when the spontaneous
curvature of a raft is greater than that of the surround; if the spontaneous curvature of the raft is less than that
of the surround, the increase of the line tension due to application of the lateral tension is more modest.
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I. INTRODUCTION

The activity of many membrane proteins is regulated by
their lipid environment. Binding of specific lipids to proteins
is one regulatory mechanism. There are also at least two
mechanisms for this regulation that are not contingent upon
direct lipid binding: �1� integral membrane proteins may be
strongly affected by the physical and chemical properties of
the immediately surrounding lipids; �1–3� �2� the activation
of proteins that interact with other can be enhanced if they all
reside in the same small domain. �4,5� Because protein func-
tion can be dependent upon their location, there is much
interest in lipid domains in biological and model membranes.
In lipid bilayer membranes, cholesterol and sphingomyelin
can definitely form domains by phase separation. These do-
mains can merge to very large sizes, on the order of many
micrometers. �6� There is considerable evidence that such
domains also exist in biological plasma membranes, but if
they do, they remain small. �7� Small size has been an ex-
perimental detriment for definitively ascertaining whether
rafts do exist in biological membranes. Some proteins
thought to reside in rafts definitely move along the plane of a
membrane as if they remain in a relatively stable domain
�i.e., it exists for a long time� of diameter �30 nm. �7� This
domain thus appears to move along the plane of the mem-
brane as if it were a “raft.” �8� Rafts have been implicated in
cell processes as diverse as signal transduction �3,4,9,10�,
endocytosis �11–13�, intracellular trafficking �14,15�, and
membrane fusion �7�. Because the rafts are small in biologi-
cal membranes, they are not only difficult to identify but
their physical properties have not been measured, although
physical properties of domains in lipid bilayers that are
thought to model rafts have been determined. Atomic force
microscopy has consistently shown that these domains are
thicker than the surrounding membrane �16,17�. This differ-
ence in thickness, known as “height mismatch,” can be a

dominant contributor to the boundary energy or “line ten-
sion” of the domain �18�.

Conditions have been found in which cholesterol and sph-
ingomyelin phase separate in lipid bilayers to form
nanoscopic-sized rafts that do not merge to large sizes
�19–22�. Merger lowers the total length of the boundary of
the merged domains and thus lowers the boundary energy.
The higher the line tension, the greater is the lowering of
boundary energy upon raft merger, but this favorable lower-
ing of free energy upon merger is opposed by the resulting
decrease in entropy of the raft ensemble. The decrease in
entropy that results from the smaller number of rafts after
merger is independent of line tension. As a result, physical
and chemical forces that regulate the value of line tension
can determine whether rafts merge and this can control the
size distribution of rafts �23�. Experimentally, application of
lateral tension to a giant unilamellar vesicle �GUV� promotes
the creation of micrometer-sized rafts �24�. We previously
developed a theory that predicts the line tension of a raft
having a thickness greater than that of the surrounding bi-
layer �25�. The calculated value of raft line tension depended
on physical parameters such as the degree of height mis-
match, the elastic moduli, and the spontaneous curvatures of
the raft and surrounding bilayer. The consequences of lateral
tension were not considered. In the present study we gener-
alize the theory and show that line tension increases upon
application of a lateral tension.

II. STATEMENT OF THE PROBLEM

If a raft and the surrounding membrane were unperturbed
at their boundary, a height mismatch would lead to the ex-
posure of the hydrophobic membrane interior to water �Fig.
1�a��. A simple estimation shows that the energy of such
exposure �per unit length of the boundary� is extremely high,
�20–40 pN for a height mismatch of �0.5–1 nm. This is
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much greater than experimentally estimated values, �1 pN,
of line tension �24�. To reduce the boundary energy, the
thicker membrane �raft� will deform near its boundary to
decrease its thickness, and the thinner membrane �surround�
will deform to increase its thickness so that hydrophobic
exposure of bilayer interior to water is prevented. In our
model, the line tension of a raft is the mechanical energy per
unit length of boundary necessary for the membrane to elas-
tically deform to the extent that height mismatch is elimi-
nated at the boundary �Fig. 1�b��.

A. Setting up the system

We analyze a bilayer that consists of two identical mono-
layers �Fig. 1�b��. Because these monolayers exhibit mirror
symmetry relative to the monolayer interfaces �i.e., the mid-
plane of the bilayer�, we can consider a single monolayer
with a planar interface. We treat the raft and the surrounding
region as a semi-infinite monolayer sheet, placing the raft on
the left and the surround on the right �see Fig. 1�. The bound-
ary is approximated as a straight line when viewed from the
top of the monolayer. This approximation is valid for a raft
radius that is large compared to the characteristic length of
the deformations, which is usually about several nanometers.
Quantitatively, we describe this monolayer by a Cartesian
coordinate system with origin O at the raft boundary. The Ox
axis is in the plane of the interface of the monolayer and is
directed perpendicular to the raft boundary and into the sur-
round; the Oy axis is directed along the boundary; the Oz
axis is perpendicular to the plane of the monolayer interface
�Fig. 1�b��. �The origin of this coordinate system, and the Oy
axis, are not shown.� The system is invariant to translations
along the Oy axis. In short, the raft is the x�0 region, the
surround is the x�0 region, and the boundary is located at
x=0.

We treat the monolayer as a continuous elastic anisotropic
medium having a hydrophobic interior that is everywhere
volumetrically incompressible. We characterize the average
orientation of an asymmetric lipid molecule by a unit vector
n, referred to as a director. A neutral surface, by definition, is

the surface where the deformations of splay and area
compression/stretching are independent of each other. As de-
termined experimentally, it lies between the lipid polar head-
groups and the hydrophobic tails at a distance of �0.5 nm
from the external surface �26�. The shape of the neutral sur-
face is characterized by a unit normal vector N directed into
the monolayer, from headgroup to acyl chain. We refer to the
distance h�x� between the neutral surface and monolayer in-
terface as the monolayer thickness �Fig. 2�. All deformations
are described by the vector fields of N and n on the neutral
surface.

B. Deformations

We consider small deviations of a monolayer from its
unperturbed state. In this state, the neutral surface is flat and
all directors are parallel to each other and perpendicular to
the neutral surface �Fig. 2�a��. In continuum elastic theory of
membranes, all perturbations of a membrane can be de-
scribed by three independent deformations. These fundamen-
tal deformations and their elastic moduli are area lateral
compression/stretching �Ka�, splay �B�, and tilt �k�. For a
typical lipid bilayer containing appreciable amounts of cho-
lesterol Ka�k and Ka�B /hm

2 �where hm�2 nm is the
monolayer thickness� �27� and, hence, the contributions of
area compression/stretching can be neglected. In other
words, the membrane is effectively unstretchable.

The deformation of tilt is characterized at every point on
the neutral surface by the deviation of the director from the
normal �Fig. 2�b��. The tilt vector t is given by t=n�n ·N�
−N. �28�. For a small deformation t�n−N, and here the
length of the tilt vector is numerically equal to the angle
between the director and the normal.

The deformation of splay is given by div n along the
neutral surface. That is, splay is the angle between the direc-
tors at adjacent points of the neutral surface �Fig. 2�c��
�28,29�. Expressing the director as n= t+N, we obtain
div n=div t+div N=div t−J, where J�−div N is the geo-
metric curvature of the neutral surface. Thus, the deforma-
tion of splay is a combination of nonuniform tilt and bending
of the neutral surface.

FIG. 1. Compensation of hydrophobic mismatch by elastic de-
formations of a membrane. �a� Initially, there is a steplike boundary
where a thick �raft� and thin bilayer �surround� meet. This causes
significant exposure of a hydrophobic surface to water. �b� The
hydrophobic core of the membrane is sequestered from water after
the monolayers elastically deform near the boundary. The Ox and
Oz axes of the Cartesian coordinate system are shown. The Oy axis
�not shown� projects into the plane of the figure.

FIG. 2. Deformations of a monolayer. �a� The initial unde-
formed state of a monolayer is planar. The director, n, and the
normal, N, are parallel to each other and perpendicular to the neu-
tral surface. �b� Deformation of tilt. The director deviates from the
normal by the tilt vector, t. �c� Deformation of splay. Directors at
adjacent points of the neutral surface deviate from each other but
remain parallel to their corresponding normals �not shown�. h�x� is
the distance between the monolayer interface and the neutral sur-
face; it is referred to as the monolayer thickness.
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For a one-dimensional system, the vectors n, N, and t
depend only on the x coordinate. The monolayer can thus be
described by the projections of these vectors onto the Ox axis
�i.e., nx=n, Nx=N, and tx= t�. For small deformations, the
divergence along the neutral surface is the same as deriva-
tives with respect to x, so div n=dn /dx. In the initial flat
state, the projections of all three vectors are everywhere
equal to zero.

C. Volumetric incompressibility

The deformations are constrained for a volumetrically in-
compressible monolayer. For uniform tilt, the area of the
neutral surface is constant and so the thickness of the mono-
layer must also remain constant �Fig. 3�d��. Physically, the
lipid tails elongate and approach each other as they incline.
In contrast, for the splay deformation, the directors do not
remain parallel so splay alters the monolayer thickness.
Physically, the lipid tails elongate if directors incline toward
each other and shorten if directors incline outward �Figs.
3�b� and 3�c��. The condition of volumetric incompressibility
can be written as:

h�x� = h −
h2

2
n��x� or ��x� = h − h�x� =

h2

2
n��x� , �1�

where h �without the argument x� is the monolayer thickness
in the initial state and the superscripted prime denotes a de-
rivative with respect to x. It follows from Eq. �1� that tilt
does not change monolayer thickness but splay does: for
pure tilt, the orientation and length of n is constant, so n�
=0; for pure splay, div n=const and so n��0.

D. The energy of deformations

We calculate the elastic free energy, F, of a monolayer
relative to the unperturbed flat state. Splay and tilt contribute
quadratically with small deformations to yield:

F =� 	B

2
�div n + J0�2 −

B

2
J0

2 +
k

2
t2
dA + ��A �2�

where �A is the variation of the area of the neutral surface, J0
is the spontaneous curvature of the monolayer, and � is the
lateral tension applied to the monolayer. Integration is per-
formed over the entire neutral surface of the monolayer. The
first two terms under the integral arise from the splay defor-
mation and the third arises from tilt. The last term is the
work that must be performed against the lateral tension to
change the area of the neutral surface of the monolayer: At
the boundary of two height-mismatched domains, the defor-
mations cause the neutral surface to deviate from planar. The
area of the neutral surface that is needed to cover the same
projected area thus becomes larger �Fig. 4�. Because we as-
sume that the neutral surface is nonstretchable �i.e., the area
per lipid remains constant�, its area increases at the boundary
by incorporation of additional lipids into the monolayer from
regions far from the boundary. Work must be performed
against the lateral tension � if the area is to increase, as given
by the last term in Eq. �2�.

The assumption that the boundary of the raft remains
straight yields that the area variation �A per unit length in the
Oy direction is given by

�A =� ��1 + h��x�2 − 1�dx . �3�

Expanding �A and dA into a Taylor series for small defor-
mations �h��1� and truncating terms higher than needed for
the required order of accuracy yields

�A =� ��1 + h��x�2 − 1�dx �� 1

2
h��x�2dx ,

FIG. 3. Elastic deformations of an element of a volumetrically
incompressible monolayer when the area of its neutral surface is
constant. �a� The initial undeformed state. �b� Deformation of nega-
tive splay. The thickness of the monolayer must increase if the
volume of the element and the area of the neutral surface are to be
conserved. �c� Deformation of positive splay. This results in a de-
crease in monolayer thickness. �d� Deformation of tilt. Monolayer
thickness is not altered. The dashed line indicates the initial shape
of the monolayer element.

FIG. 4. The neutral surface of a monolayer in its initial planar
state �light gray� and after deformation �dark gray�. The neutral
surface has a larger area after deformation than before. After defor-
mation, the area of the neutral surface projects onto xy surface of
the initial area.
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dA = �1 + h��x�2dx � dx . �4�

By substituting t=n−N�n−h� for the projection of the tilt
vector, t, we can rewrite Eq. �2� to second order in deforma-
tions as

F =� �B

2
�n��x� + J0�2 −

B

2
J0

2 +
k

2
�n�x� − h��x��2dx

+ �� 1

2
h��x�2dx

=� �B

2
�n��x� + J0�2 −

B

2
J0

2 +
k

2
�n�x� − h��x��2

+
�

2
h��x�2dx . �5�

The condition of volumetric incompressibility �Eq. �1��
yields h��x�=n�h2 /2, which we substitute into Eq. �5� to ex-
press F as a function of only the directors n�x� and their
derivatives. After minimizing the functional Eq. �5� with re-
spect to n�x� we obtain the Euler-Lagrange equation,

h4	1 + 2
�

k

n�4��x� + 4�h2 − l2�n��x� + 4n�x� = 0 �6�

or

m4n�4��x� + 4v2n��x� + 4n�x� = 0, �7�

where m=h�1+2� /k�1/4, v=�h2− l2, l=�B /k.

III. SOLUTION OF THE PROBLEM

A. Energy of a semi-infinite monolayer with fixed boundary
conditions

We first consider one semi-infinite monolayer �the sur-
round, x�0� that has a fixed director n0 and a thickness
deviation �0=h−h�0� at its left boundary �x=0�. Because the
system is translationally invariant along the boundary �i.e.,
along the Oy axis�, we can rewrite Eq. �5� for the energy per
unit length of boundary as

W = �
0

+	 �B

2
�n��x� + J0�2 −

B

2
J0

2 +
k

2
�n�x� − h��x��2

+
�

2
h��x�2dx . �8�

Solving Eq. �6� for the surround yields

n�x� = e−ax�an0 +
2

h2�0

b
sin�bx� + n0 cos�bx�� , �9�

where

a =�m2 − v2

m4 , b =�m2 + v2

m4 . �10�

Inspection of Eq. �9� shows that the parameter a is the in-
verse of the characteristic length of the decay of the defor-

mations and b is the inverse characteristic length of their
oscillation. We use the volumetric incompressibility condi-
tion Eq. �1�, substitute n�x� from Eq. �9� into the functional
Eq. �8�, and integrate to obtain

W = − kl2n0J0 + k	am2

2
n0

2 + 	m2

h2 − 1
n0�0 +
am4

h4 �0
2
 .

�11�

For �=0, m=h, a= l /h2, and b=�2h2− l2 /h2, the energy per
unit length Eq. �11� is

W = − kl2n0J0 +
kl

2
	n0

2 +
2

h2�0
2
 . �12�

B. Line tension

We now consider the entire system of the raft and sur-
round �Fig. 1� in order to determine the line tension. We
denote variables referring to the raft by the index r and for
the surround by the index s. The energy per unit length of the
boundary Eq. �11� is

Ws = − ksls
2n0Js + ks	asms

2

2
n0

2 + 	ms
2

hs
2 − 1
n0�s +

asms
4

hs
4 �s

2

�13�

in the surround, and is

Wr = krlr
2n0Jr + kr	armr

2

2
n0

2 − 	mr
2

hr
2 − 1
n0�r +

armr
4

hr
4 �r

2

�14�

in the raft. The total energy per unit length of the boundary is

W0 = Ws + Wr. �15�

At the boundary, the thickness deviations, �r and �s, must
satisfy the condition that the monolayer thickness h�x� is
continuous �25�. This condition can be written in the follow-
ing forms:

h�0� = hs − �s = hr − �r, or equivalently, �s = �r − �hr − hs�

= �r − � . �16�

By substituting �s into Eq. �15� and minimizing the total
energy over n0 and �r, we obtain our final expression for the
line tension.

Lipid bilayer membranes can only sustain lateral tensions
of at most 5–10 mN/m before they rupture �30�. Therefore
� is typically much smaller than the tilt elastic modulus k
�40 mN/m. The exact values of elastic moduli of rafts are
unknown, but it is very likely that they are equal to or larger
than those of a surround �27�. Assuming ��k, the Taylor
series of the right-hand side of Eq. �15� can be truncated
beyond the linear term in � �see Eqs. �7� and �10��; for hr
−hs=�, ��h0, and hr�hs�h0, the Taylor series of Eq. �15�
can be truncated beyond the quadratic term in �. Carrying
out the minimization procedure on Eq. �15� and truncating
the Taylor series as described, we obtain the dependence of
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line tension to first order in � and second order in �:


 = 
0 +
�

�krlr + ksls�2�	 kr
2lr

3 + ks
2ls

3

2lrls
+

lrls�kr
2lr + ks

2ls�
h0

2 
�2

+ �krlr + ksls��J� +
�lr + ls�h0

2

4lrls
��J�2 , �17�

where 
0= �krkslrls�
2 / �krlr+ksls�h0

2�− ��J2 /2�krlr+ksls��, �J
=krlr

2Jr−ksls
2Js=BrJr−BsJs.

IV. RESULTS

A. Line tension depends on lateral tension

From Eq. �17�, we obtain the linear contribution of lateral
tension to line tension, 
�, for ��k,


� =
�

�krlr + ksls�2�	 kr
2lr

3 + ks
2ls

3

2lrls
+

lrls�kr
2lr + ks

2ls�
h0

2 
�2 + �krlr

+ ksls��J� +
�lr + ls�h0

2

4lrls
��J�2 , �18�

The expression in brackets in Eq. �18� is quadratic in the
variables � and �J. Although �J can be negative, the
Sylvester criterion for positive-definiteness shows that the
term within brackets is positive for all physical values of
parameters �see Appendix�. Thus, the application of lateral
tension always increases line tension. Equation �18� is the
work that must be performed against lateral tension in order
to create the difference between the projected area and the
actual area after deformation of the neutral surface within the
proximity of the boundary �Fig. 4�.

B. Elastic moduli of raft and surround membrane

Values of elastic moduli depend on membrane composi-
tion. For typical surrounds, the splay modulus varies in the
range of 5–20 kT/monolayer �31� �kT�4�10−20 J�; we use
B�10 kT for purposes of illustration. It has been argued on
theoretical grounds that the tilt modulus of a monolayer
should be well approximated by the surface tension of a
hydrocarbon/water interface �i.e., k�40 mN/m� �28,32,33�,
and this approximation has been used to quantitatively ac-
count for experimental data �33�. The elastic moduli for rafts
are unknown. The splay moduli of membranes with high
cholesterol content are two to three times larger than for
membranes not containing cholesterol �27�, but a high con-
tent of cholesterol increases the splay modulus of mem-
branes in the HII phase by only 30–40% �34�. If the tilt
modulus can be estimated from the surface tension of a
hydrocarbon/water interface, it should be roughly the same
for a raft and a surround. In view of the uncertain elastic
moduli, we consider three cases.

In the first, we consider a “soft” raft where Br=Bs=B
=10 kT and kr=ks=k=40 mN/m. The line tension is


soft =
kl

2h0
2�2 −

kl3

4
�Jr − Js�2 + �	h0

2 + 2l2

4h0
2l

�2 +
l

2
�Jr − Js��

+
lh0

2

8
�Jr − Js�2
, l =�B

k
. �19�

For the second case, we describe a “firm” raft by Br=4Bs
=4B=40 kT and kr=ks=k=40 mN/m; the line tension is


 firm =
2kl

3h0
2�2 −

kl3

6
�4Jr − Js�2 + �	8l2 + 3h0

2

12h0
2l

�2 +
l

3
��4Jr − Js�

+
lh0

2

24
�4Jr − Js�2
 . �20�

In the last case, we consider a “rigid” raft where Br=4Bs
=4B=40 kT, kr=4ks=4k=160 mN/m; the line tension is


rigid =
4kl

5h0
2�2 −

kl3

10
�4Jr − Js�2 + �	17�2l2 + h0

2�
50h0

2l
�2 +

l

5
��4Jr

− Js� +
lh0

2

50
�4Jr − Js�2
 . �21�

C. Line tension for �J=0

Line tension generally depends on the spontaneous curva-
tures of the raft and surrounding monolayers. For the specific
case that spontaneous curvature does not contribute to line
tension �i.e., �J=krlr

2Jr−ksls
2Js=0�, we have


 = 
0 +
��2

�krlr + ksls�2	 kr
2lr

3 + ks
2ls

3

2lrls
+

lrls�kr
2lr + ks

2ls�
h0

2 
 ,

�22�

where 
0= �krkslrls /krlr+ksls���2 /h0
2� is the line tension for

�=0. For a soft raft, Eq. �22� becomes


 =
�Bk

2

�2

h0
2 +

�Bk

2

�2

h0
2�	 1

2B/h0
2 +

1

k

 . �23�

The application of a lateral tension alters both the splay and
tilt deformations. These changes are described by the two
terms in the parenthesis in Eq. �23�. The first term arises
from the influence of lateral tension on splay deformations
near the boundary, and the second one arises from its influ-
ence on tilt deformations. As is readily seen, if a deformation
cannot occur �i.e., B→	 eliminating any splay or k→	
eliminating any tilt�, the corresponding term reduces to zero.

We illustrate the dependence of the line tension of a raft in
a bilayer, 2
, on the lateral tension, 2�, for soft, firm, rigid,
and perfectly rigid rafts �Fig. 5�. The slopes of all lines are
positive. The slight increase in slope as the raft becomes
more rigid illustrates that line tension increases more steeply
with lateral tension for a rigid than for a soft raft. As can be
appreciated from Eq. �18�, the slope also increases if � be-
comes greater or h0 becomes smaller.

D. Line tension for nonzero spontaneous curvatures

The spontaneous curvatures of a raft and a surround are
generally neither equal to each other nor equal to zero. We
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illustrate the dependence of raft line tension, 2
, on bilayer
lateral tension, 2�, for Jr= +1/20 nm−1 and Js=
−1/20 nm−1 for soft, firm, and rigid rafts �Fig. 6�. The slopes
of these lines are greater for Jr�Js than for Jr=Js=0 �Fig.
5�. The reason for these slope dependencies can be appreci-
ated by inspecting Eq. �18�. When Jr=Js=0, lateral tension
contributes through a single term proportional to �2. When
Jr�Js, two additional positive terms contribute, so lateral
tension has a greater affect on line tension. For bilayers com-
posed of cholesterol, 1,2–dipalmitoyl-sn-glycero-3–
phosphocholine �DPPC� �a saturated lipid�, and 1,2–
dioleoyl-sn-Glycero-3–phosphocholine �DOPC� �an
unsaturated lipid�, the DPPC is enriched within the raft phase
and DOPC is depleted �20�. Both acyl chains of DPPC are
saturated whereas those of DOPC are monounsaturated, so
DPPC should have a more positive spontaneous curvature
than DOPC. A raft and surround contain approximately the
same percentage of cholesterol, so the spontaneous curvature
of a raft should be more positive than that of surround �i.e.,
Jr�Js�. The same situation should apply to membranes con-
taining sphingomyelin in place of DPPC because they have
the same headgroup and sphingomyelin also has saturated
acyl chains. �These expectations of spontaneous curvature
have not yet been experimentally explored.� Because it is
most likely that Jr�Js, we expect that the line tension of a
raft would exhibit the strong dependence on applied lateral
tension that is illustrated in Fig. 6.

We can also consider the case Jr�0�Js. Here, the slopes
and the increase in slope with the firmness of the raft �Fig. 7�
are less than for �J=0 �Fig. 5�. This readily follows from

Eq. �18�, because for Jr�0�Js the term proportional to
��krlr

2Jr−ksls
2Js�=BrJr−BsJs is negative for all values of

splay moduli, and so lateral tension makes less of a contri-
bution to line tension. In contrast, if 0�Jr�Js, then �J
=BrJr−BsJs can be either positive or negative when Br�Bs,
and so the cross term ����J� can have either sign.

V. DISCUSSION

In the present study we have calculated the consequence
of applied lateral tension on the interfacial energy, or equiva-
lently, the line tension, between a raft and a surround. We
have shown that if line tension is due to height mismatch
between the raft and surround, the application of lateral ten-
sion must cause the line tension to increase. The amount of
the increase strongly depends on the values and signs of the
spontaneous curvatures of the raft and the surrounding mem-
brane. Height mismatch and spontaneous curvatures are de-
termined by lipid composition. In our model, contributions to
line tension caused by interactions between lipids, such as
chemical or Van der Waals forces, are ignored, but a rela-
tively small height mismatch, on the order of 0.5 nm for a
bilayer, should dominate the consequences of these interac-
tions on line tension �25�. Thus, our model should be appli-
cable for quantitatively determining the values of line ten-
sion over a wide range of lipid compositions.

Equation �18� is the central result of this study, because it
provides the means to calculate the contribution of lateral
tension to line tension 
� as a function of the spontaneous
curvatures of the raft and surround. We now consider the
three terms in this equation. Because we considered small
deformations, we calculated the elastic energy up to, and
including, all quadratic terms. One term in Eq. �18� is pro-
portional to �2 and another is proportional to �J2; these two
terms are obviously always positive. But the cross term, pro-
portional to ��J, can be either positive or negative. We show
in the Appendix that according to the Sylvester criterion, the
sum of the three terms of Eq. �18� is always positive. Thus,
the application of lateral tension always increases the total
energy of deformation at the raft boundary, or, equivalently,
always increases the line tension. What is the physical origin
of the two quadratic terms?

In order to consider the role of �, let �J=0 but ��0. After
the elastic deformations of a monolayer compensate for the
hydrophobic mismatch, the neutral surfaces of the raft and

FIG. 5. Dependence of bilayer line tension, 2
 �in pN�, on bi-
layer lateral tension, 2� �in mN/m�, for a soft, firm, rigid, and
perfectly rigid raft. Here and for Figs. 6 and 7, B=10 kT, k
=40 mN/m, h0=2 nm, and �=0.25 nm. For this figure, Jr=0 and
Js=0.

FIG. 6. Dependence of bilayer line tension, 2
 �in pN�, on bi-
layer lateral tension, 2� �in mN/m�, for a soft, firm, and rigid raft.
Here, Jr= +1/20 nm−1 and Js=−1/20 nm−1.

FIG. 7. Dependence of bilayer line tension, 2
 �in pN�, on bi-
layer lateral tension, 2� �in mN/m�, for a soft, firm, and rigid raft.
Jr=−1/20 nm−1 and Js= +1/20 nm−1.
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the surround deviate from their initial planar state, and so the
area of the deformed neutral surface is larger than the initial
onto which it projects. Work must be expended against the
applied lateral tension to provide this increase in area. For
small deformations, the amplitude of the deformation that
compensates the hydrophobic mismatch should be propor-
tional to �, but the contribution of lateral tension to the line
tension should not depend on whether the raft is thicker �i.e.,
��0� or thinner �i.e., ��0� than the surround. Thus, the
contribution should be proportional to �2. In our second-
order approximation, this is the simplest dependence on �
that is independent of the sign of �.

When �J=0, not only should the contribution of the lat-
eral tension to line tension 
� be proportional to �2, but the
total line tension, 
 �Eq. �17��, should be as well. Consider
the following process. Initially the raft and surround mono-
layers have the same thickness ��=0�, but they can have
different elastic moduli. A deformation does not occur, so the
line tension, 
, is equal to zero. Now, let the thickness of raft
increase while the thickness of surround is maintained �i.e.,
let ��0�. Elastic deformations �with amplitude proportional
to �� appear and 
 increases. If instead the thickness of the
raft were to decrease �i.e., ��0�, the line tension would still
increase in exactly the same manner. Because line tension
should not depend on the sign of the height mismatch, the
total line tension, 
, should be proportional to �2. �This can
be quantitatively seen from Eq. �17� by letting �J=0, ��0
and noting the form of the first term in 
0 and the first term
in brackets.�

To consider the third term in Eq. �18�, which is propor-
tional to �J2, we set �=0 and �J�0. Two phenomena need
to be considered. The first arises because if �J�0, the mem-
brane is under mechanical stress in its initial planar state.
The partial relaxation in stress after the monolayers elasti-
cally deform near the boundary contributes a negative ener-
getic term that is independent of the sign of �J. This term is
thus proportional to −��J�2 up to quadratic order. The second
phenomenon appears because, in increasing the area of the
neutral surface, the deformations must work against lateral
tension. This requires positive work that depends only on the
extent of the area increase. Because the exact shape of the
neutral surface is not relevant, this energy is independent of
the sign of �J. That is, this contribution to energy is propor-
tional to +��J�2. In Eq. �17� for total line tension, 
, the
second negative term in 
0 is a consequence of the relaxation
of stress and the third positive term in the brackets in 
�

arises from the work against lateral tension.
The physical meaning of the cross term is as follows:

Because the raft and surround thicknesses are different, ap-
plication of a lateral tension results in a torque at the bound-
ary that causes the boundary director n0 to slightly rotate
counterclockwise �if the raft is on the left and the surround is
on the right�—see Fig. 8. If the surround is made to have a
more positive spontaneous curvature �e.g., by addition of a
positive curvature lipid that preferentially partitions into the
surround�, �J ��J=BrJr−BsJs� becomes more negative. As a
result of the applied tension rotating the boundary director,
the splay in the surround becomes closer to its spontaneous
splay. This decreases the stresses and lessens the total work
expended against the lateral tension. In the opposite case, we

add negative curvature to the surround �e.g., add a lipid to
the surround with a narrow head group and wide tail, �J
�0�. Now the counterclockwise rotation of the boundary
director n0 causes the splay to increase its deviation of cur-
vature further away from the spontaneous curvature. This
increases the stress and thus leads to greater work expended
against lateral tension. The asymmetry in the direction of the
stress with respect to the sign of the spontaneous curvature is
accounted for solely by the cross term. When the cross term
is positive, lateral tension makes a greater positive contribu-
tion to the line tension �Fig. 6� than when the cross term is
negative �Fig. 7�.

The value of line tension of a raft in a membrane may be
of biological importance. The decrease in interfacial free en-
ergy upon merger of rafts promotes merger; this decrease
competes with the increase in entropic free energy caused by
the reduction in the number of rafts. Consequently, line ten-
sion influences the size distribution of a raft ensemble: at
equilibrium, rafts should have merged into one domain for a
high value of line tension, whereas a dispersion of many
nanodomains should coexist for low values of line tension.
In fact, there exists a critical line tension, 
c, such that rafts
merge for 
�
c and remain dispersed for 
�
c �23�. �The
value of 
c depends on lipid composition.� Based on the
demonstration that line tension increases as the applied lat-
eral tension is made greater, we predict that an ensemble of
rafts in a membrane, dispersed in submicroscopic resolution
sizes in the absence of lateral tension, would merge to create
microscopically observable rafts of several micrometers
upon application of significant lateral tension. We have ex-
perimentally found, using GUVs, that this is the case
�Ayuyan and Cohen, unpublished�. In the case of biological
cells, lateral tension is generated by interactions between the
plasma membrane and underlying cytoskeleton �35,36�.
These interactions can and do vary, and variation in local
lateral tension is thought to regulate some membrane pro-
cesses such as endocytosis �37–39�. It may be that cells regu-
late raft size through the dependence of line tension on lat-
eral tension—an increase in local lateral tension may
promote raft merger.
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APPENDIX

Equation �18� yields the contribution of lateral tension
upon line tension. We rewrite it as


� =
�

�krlr + ksls�2 �a�2 + 2b��J + c�J2� , �A1�

where

a =
kr

2lr
3 + ks

2ls
3

2lrls
+

lrls�kr
2lr + ks

2ls�
h0

2

b =
krlr + ksls

2

c =
�lr + ls�h0

2

4lrls
.

Because the term within the parentheses has a quadratic
form, it is positive if and only if ca−b2�0. In our case

ca − b2 =
1

8
�lr + ls��kr

2lr
3 + ks

2ls
3�	 h0

lslr

2

+
1

4
lrls�kr − ks�2

�A2�

is always positive because lr and ls are positive. It thus fol-
lows from the Sylvester criterion �40� that the right-hand side
of Eq. �A1� is positive definite.
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