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Feedback suppression of neural synchrony by vanishing stimulation
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We suggest a method for suppression of collective synchrony in an ensemble of all-to-all interacting units.

The suppression is achieved by organizing an interaction between the ensemble and a passive oscillator.
Technically, this can be easily implemented by a simple feedback scheme. The important feature of our
approach is that the feedback signal vanishes as soon as the control is successful. The technique is illustrated
by the simulation of a model of an isolated population of neurons. We discuss the possible application of the

technique in neuroscience.
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I. INTRODUCTION

This work is motivated by the importance of macroscopic
rhythmical neural activity in physiological and pathological
brain functioning (see, e.g., Refs. [1-3], and references
therein). In particular, well-pronounced brain rhythms, which
are registered by means of electro-or magnetoencephalogra-
phy in patients suffering from Parkinson’s disease and essen-
tial tremor syndrome, cause the involuntary shaking of
limbs, called tremor. Obviously, quenching of these rhythms
constitutes an important clinical challenge. The technique,
currently used in medical practice and known as Deep Brain
Stimulation (DBS), implies a permanent electrical stimula-
tion of certain brain structures via implanted microelectrodes
[4-6]. The mechanisms of DBS are yet poorly understood.
To our knowledge, the only analysis of the action of high-
frequency stimulation with the help of a realistic model of
the brain circuitry involved in the tremor generation has been
undertaken in Ref. [7].

A commonly used theoretical description of macroscopi-
cal brain rhythms assumes their appearance due to synchro-
nization in a large population of interacting neurons [1]; this
viewpoint is supported by experimental observations [8—11].
Because of a rich connectivity in such a population, the dy-
namics is often modeled by an ensemble of dynamical neu-
rons with an all-to-all coupling. The simplest model for the
synchronization in such an ensemble is a Kuramoto transi-
tion [12] in a population of all-to-all coupled phase oscilla-
tors. Correspondingly, the problem of suppression of neural
synchrony is often formulated as the problem of desynchro-
nization of a large neuronal population [1]. This means that
the desired stimulation technique should not suppress oscil-
lations of individual neurons, but only destroy the synchrony
between them. Another important requirement is to minimize
the intervention into the live system by reducing the intensity
of the applied stimulation.

Several methods for a suppression of neural synchrony,
closely related to the theoretical understanding of the prob-
lem, have been suggested recently. One theoretical approach
to desynchronization is based on the implementation of
phase resetting of ensemble elements by precisely timed
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pulses (see Refs. [1,13], and references therein), whereas an-
other approach exploits a time-delayed feedback [14-17].
Although motivated by applications in neuroscience, both
methods are of general interest, because a control of collec-
tive dynamics in a large population of units is not only rel-
evant because of possible neuroscience applications, but rep-
resents an interesting physical problem. The mostly
illustrative example of a physical system, where collective
synchrony was highly undesirable and had to be suppressed,
is the London Millennium bridge that exhibited high-
amplitude lateral sway on the day of its opening [18,19]. We
mention here also recent experiments on the desynchroniza-
tion of a population of coupled electrochemical oscillators
[20].

Our purpose in this paper is to develop and analyze an
efficient technique for desynchronization in a population of
interacting units. The main requirement for this method is to
provide a vanishing-stimulation control [21]. That is, the
magnitude of the control input (stimulation) C should be pro-
portional to the synchronous rhythmic activity and must van-
ish as soon as the suppression is achieved. This can be ac-
complished by a feedback technique, where the control input
decreases to the fluctuation level as soon as the rhythm is
suppressed. Accordingly, we assume that in an experiment
the mean field (or a related quantity, see Sec. III B) can be
measured and subsequently used for stimulation of the en-
semble via a feedback loop (see Fig. 1).

From a rather general physical viewpoint the population
of neural oscillators to be controlled can be considered as an
active medium. The main idea of our approach is to couple it
to an additional passive oscillator. If we model the dynamics
of the active medium by a single nonzero mode, then the
problem is similar to a classical problem of the oscillation
theory and nonlinear dynamics, where an interaction of an
active, self-sustained oscillator, with a passive load (resona-
tor) has been considered (see, e.g., Ref. [22]). It is known
that under certain conditions such a passive system can
quench the active oscillator. Similarly, the appearance of col-
lective synchronization in a mixed population of active and
passive oscillators depends on the proportion of passive ele-
ments; this effect, called aging, has been recently studied in
Refs. [23,24]. However, in the context of neuroscience ap-
plications, a special consideration is necessary, because there
appear three additional requirements to the suppression
scheme: (i) the stimulation should compensate the unknown
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FIG. 1. (Color online) Suggested suppression scheme. The local
field potential related to the mean field of the population is mea-
sured by the recording electrode and is fed back via the field appli-
cation electrode. The feedback loop contains a passive oscillator
playing the role of a bandpass filter, an integrator, a summator, and
two amplifiers. Stimulation is characterized by an a priori unknown
phase shift.

phase shift inherent to stimulation (see Fig. 1 and the discus-
sion below); (ii) the controller should be able to extract the
relevant signal from its mixture with the rhythms produced
by neighboring neuronal populations and with the measure-
mental noise; (iii) the control scheme should be able to com-
pensate the latency in measurements. In our approach, pre-
sented below, we construct an auxiliary passive oscillator
whose interaction with the ensemble of all-to-all coupled ac-
tive units destroys the collective synchrony under the re-
quirements formulated.

II. STABILIZATION OF AN ACTIVE OSCILLATOR BY A
PASSIVE ONE

In this section we consider the stabilization problem on a
macroscopic level, taking into account only the collective
motion. In this way the problem is reduced to stabilization of
a low-dimensional dynamics (see, e.g., Refs. [25-33], and
references therein). However, the known techniques gener-
ally do not meet the above formulated requirements and
therefore are not appropriate for the considered neuroscience
application. Thus, we assume that the collective oscillating
mode is active and close to a Hopf bifurcation,

A=(E+iw)A—|APA+CeP. (1)

Here A is the complex amplitude of oscillations having fre-
quency o, ¢ is the dimensionless parameter describing the
instability of the equilibrium A=0, which we want to stabi-
lize, and C is the control signal (stimulation). The parameter
B describes the uncertainty of our action on the active oscil-
lator: in a realistic application, the way the external force is
coming in the equations is typically unknown.

Our aim is to construct the control signal C based on a
scalar observable which, without lost of generality, can be
chosen proportional to X(¢)=const+Re(A); here the constant
reflects the fact that for neuronal models, the fixed point of
collective oscillations is typically not at zero. (Note also that
the case of other linear in A observable corresponds to a shift
of the parameter B.) In Refs. [14,15] a time-delayed propor-
tional feedback C~[X(z—7)—X(¢)] has been suggested and
treated numerically and analytically. Theory and simulation
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with bursting and spiking neurons, also with synaptic con-
nections [17], as well as recent experiment [20], show that
such a control scheme provides a reliable suppression of os-
cillations, i.e., var(X)—0, with vanishing stimulation, C
—0. On the contrary, if a feedback is proportional to the
delayed mean field, C~X(t—7) [14,15] or to its power
[16,27,28], then the stimulation is generally not vanishing;
i.e., a permanent stimulation with C=const is required for the
maintenance of the suppressed state, var(X) —0. A general
disadvantage of a delayed feedback is a new, undesirable,
instability, which the delay term can bring into the system.
To overcome this, we suggest a suppression scheme without
delay, which exploits an additional passive oscillator.

The above-formulated requirements for the suppression
can be now specified as follows: (i) a constant component in
the observed field should be washed out; (ii) there should be
a possibility to vary the phase shift in the feedback loop in a
large range, to be able to compensate for the unknown phase
factor B, and for a possible latency in the observations; (iii)
noise and other components in the observed field, which are
not related to the main rhythm should be washed out.

Let us include in the control loop a linear-damped oscil-
lator in a way that it is driven by the measured signal,

ii + i+ wu = X(1). )

The parameter w, is taken to be equal to the frequency w of
macroscopic oscillations in Eq. (1) without control; this fre-
quency can be easily measured in an experiment. This means
that the driven oscillator (2) is in resonance with the forcing
(for a moment we can consider it as a harmonic one with the
frequency w) and the phase of the output u is shifted by 7/2
with respect to the phase of the input X(z), whereas the phase
shift of the derivative of the output signal # with respect to
the input X(7) is zero. It is important to note that the variable
u does not contain a constant component, {iz)=0, even if the
observed field does. Thus, stimulation proportional to # van-
ishes as soon as the control is successful, and the require-
ment (i) to the control strategy is fulfilled. Moreover, the
output u can be considered as an application of a bandpass
filter to the input signal X, which filters out noise and other
components outside of the vicinity of the main oscillation
mode—this accomplishes the requirement (iii).

To compensate the unknown phase shift B8 [requirement
(ii)] we include a unit described by the following equation:

ud+d=1i. 3)

For pw>1 this unit operates as an integrator (with an addi-
tional multiplication by the factor 1/u), whereas for u—0
its transfer function is 1. Hence, the output of system (3) has
the same average as the input, i.e., (d)=0. Finally, the control
signal C is taken proportional to the weighted sum of # and
d: Csf(u+ vd), where the parameter y determines the desired
phase shift. The units performing this summation and the
integration according to Eq. (3) form the phase shifter. It is
seen from Fig. 2 that the phase difference 6 between the
output i+ yd of the phase shifter and its input # is
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FIG. 2. (Color online) Illustration of the function of the phase
shifter. The input to the shifter is represented by the vector . Inte-
grator delays this input by 7r/2 and multiplies by 1/(uw); a result
of this operation is represented by vector d. The output of the shifter
is the sum i+ yd. It is easy to see that the phase difference 6 be-
tween the output of the phase shifter and its input is determined by
the free parameter y according to Eq. (4). For the stimulation we
use the output (bold blue line), normalized by V1+9*/w?u’ [see
Eq. (5)], which provides an independence of the amplification in the
feedback loop from 6.

0=— arctan( l) , (4)
wu

and therefore can be arbitrarily varied in the interval —m/2

< 6#</2. The phase shift in the interval 7/2<0<3m/2

can be obtained by the sign inversion: &,— —g,. Summariz-

ing, the control input C to the system is constructed as

C=+

it Pl (1t + yd) = &7 cos (it — wpud tan 6),

)

where V1+9?/w’u*=1/cos @ is the normalization coeffi-
cient. It ensures an independence of the amplification in the
feedback loop from the phase shift 6, so that this amplifica-
tion is completely determined by &;. At the points 6=+ /2
the control term is calculated as C=gwud.

To complete the design of the control loop, we have to
choose the parameter «, which is the damping factor of the
oscillator (2). This parameter determines the width of the
bandpass, Af=a/2. Having in mind the application to Par-
kinsonian rhythms with realistic values for the bandpass
from 10 to 13 Hz, we choose Af/f=0.3, which gives «
=0.3w.

The final equations for the controlled system read

A=(E+i0)A—|APA + ———(ii + yd)e™®,

V1 + Y/’

ii + aui + ’u=Re(A),

ud+d=1. (6)

In the following we denote E=g,/\1+y*/ u?w*=g;cos 6.
The desired asynchronous state of the ensemble corre-

sponds to the fixed point A=0 in the model equation. To

analyze the stability of this solution, we consider only the
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FIG. 3. Stability domains for the model equation (6) for differ-
ent values of 8. (a) B=0, (b) B=/20, (c) B=m/10, (d) B=—=/1T.
The domains represent large, closed islands, which extend to large
negative values of ez only areas of strong stability are shown here.

linear terms of Egs. (6), substitute A=x+iy and #=v, and
rewrite the system Egs. (6) as a system of five real differen-
tial equations of first order. Seeking the solution in the form
x=XeM, y=YeN, u=UeM, v=VeM, d=DeM, we obtain the
algebraic system of five linear equations. This system has a
nontrivial solution if its determinant is equal to O; this con-
dition provides the equation f(\,&,y)=0 [its exact form is
given by Eq. (Al)]. The border of the stability domain is
determined by the condition Re(\)=0. Therefore, taking A
=i() on the stability border and separating real and imagi-
nary parts, we obtain two real equations,

Q€9 =0,

ft(Q’g7 7’)=0 (7)

Both equations are linear with respect to £ and . Therefore
this system can be resolved with respect to y and £ and, with
the account of Eq. (4) and & cos =&, rewritten as

0= 6(Q)),

8f= Sf(Q) (8)

These are the equations of the stability border in the param-
eter plane (6,&) in the parametric form; these lengthy ex-
pressions are given in the Appendix. Figure 3 shows stability
domains according to Egs. (8) for different values of the
phase shift 8 and for the following values of the parameters:
w=21/32.5, a=0.3w, ©=500, £=0.0048. These parameters
are chosen for comparison of the theory with the results of
numerical simulation presented below. The domains quanti-
tatively agree with the suppression domains, obtained in
simulations of a stimulated ensemble of all-to-all coupled
Bonhoeffer—van der Pol oscillators (see Figs. 5 and 6 below).
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III. CONTROL OF SYNCHRONY IN NEURAL
ENSEMBLES

To demonstrate the efficiency of our technique, we start
by consideration of a simple model of collective synchrony.
In a population of neurons each unit usually interacts with
many other units, and, therefore, the collective dynamics is
typically described by a mean-field model, which assumes a
global (all-to-all) coupling between the elements. However,
simulations with a Rulkov neuronal model [34] show that a
randomly coupled population with a rather low connectivity
of about 0.5% can be with a good precision described by a
mean-field model [17].

A. Bonhoeffer—van der Pol oscillators

As the first example, we take an ensemble of N
Bonhoeffer—van der Pol oscillators, coupled via the mean
field in the x variable,

x,-=x,»—x?/3—y,-+ll-+8X,

¥i=0.1(x;+0.7-0.8y,). ©)

Here i=1,...,N is the index of the neuron, X=N"'S.; is the
mean field, and the parameter & quantifies the strength of the
mean-field coupling. Let us first discuss the dynamics of the
autonomous ensemble, i.e., the case when the stimulation is
absent. The parameter /; has the meaning of the external
current and directly influences the spiking frequency of ele-
ments of the ensemble. They are not identical: the parameter
I; is taken as [;=0.6+0, where o is a Gaussian-distributed
number with zero mean and 0.1 rms value. For the coupling
strength below the critical value, € <g.=~0.018, one ob-
serves small irregular fluctuations of the mean field X around
Xy=—0.26; these fluctuations are due to the finite size of the
ensemble. With the increase of & beyond the critical value
e>¢,~0.018, the oscillators of the ensemble synchronize.
Synchronization manifests itself via the appearance of a non-
zero (macroscopic) oscillation of the mean field, whose am-
plitude grows with the supercriticality & —¢_,.

The stimulation C is modeled by including an additional
term into the right-hand side of the Bonhoeffer—van der Pol
model (9). However, in fact it is unknown, which variable, x
or y, is affected by the stimulation. Therefore, for the gener-
ality, we assume that the stimulation is applied to both equa-
tions for x and y,

)éi=xi—x?/3—yi+li+ 8X+CCOS l,//,

y,»=0.1(x[+0.7—0.8y,-)+Csin l,b, (10)

where the parameter ¢ governs the distribution of the stimu-
lation between two equations. Note that the parameter ¢ is
related but not equal to the parameter 8 in Eq. (1). Indeed, as
was shown in Ref. [15], even if =0, in the corresponding
amplitude equation for the collective oscillations near the
bifurcation point there appears a phase shift 8, which is gen-
erally not zero. (3 is determined by the organization of global
coupling in the ensemble and by the properties of individual
units. This parameter characterizes the a priori unknown
phase shift, inherent to the stimulation.
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FIG. 4. (Color online) Suppression of synchrony in the popula-
tion of Bonhoeffer—van der Pol oscillators, Egs. (10). (a, b) The
mean field X and the control signal C vs time. (c) Synchronous and
asynchronous dynamics of two neurons in the absence and in the
presence of the stimulation, respectively. The arrows indicate when
the control is switched on.

We emphasize that model (10) is quite general, and,
though we are speaking about interacting neurons here, our
method can be applied to control the dynamics of a popula-
tion of limit-cycle oscillators of any physical nature. On the
other hand, model (10) lacks several important features spe-
cific for neuronal interaction. These features are considered
in a more realistic model below.

We introduce the control loop via Egs. (2), (3), and (5)
above. We simulated the system (10) for N=10 000 and in-
ternal coupling £=0.03. The parameters of the bandpass filter
are w=21/32.5, a=0.3w. The parameter of the integrator is
m=500. The results for =0, #=0 are shown in Fig. 4. The
control was switched on at 7,=300, i.e., sf:O for 1<t and
£;=-0.009 for t=1,. The panels (a) and (b) present the mean
field and the control signal, respectively. It is seen that the
stimulation results in a rapid suppression of the collective
oscillation of the ensemble, where only small noiselike fluc-
tuations remain. We quantify the suppression by the coeffi-
cient

_Ax
T AX

where X and X are the mean fields in the absence and pres-
ence of the feedback, and AX and AX; are their root mean
square values, respectively. For the example shown in Fig. 4,
we get §=157. Generally, the suppression coefficient de-
pends on the population size N like S~ VN (cf. Ref. [14]).
It is important that as soon as the suppression is achieved,
the feedback signal practically vanishes, (C)=-5X 107 and
rms(C)=0.0005, to be compared to the amplitude of indi-
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FIG. 5. (Color online) Domains of suppression for N=500
Bonhoeffer—van der Pol neurons (10) in dependence on the damp-
ing parameter « of the oscillator (2). The suppression factor S is
shown in blue-scale coding. (a) @=0.1w, (b) @=0.3w, (¢) a=0.5w,
(d) @=0.7w. Note that only the regions with a relatively large sup-
pression factor are shown: actually the stability domains extend for
quite large negative values of & (cf. Fig. 3).

vidual units =~1.8. The dynamics of two neurons is shown in
Fig. 4(c). One can see that the feedback control does not
affect oscillations of individual units, but just destroys the
synchrony between them so that they oscillate incoherently
and therefore produce no macroscopic oscillation.

To illustrate the effect of damping parameter a of the
filter on suppression we present in Fig. 5 the dependencies of
the suppression coefficient S on 6, &, for an ensemble of N
=500 Bonhoeffer—van der Pol oscillators (10); here =0.
The domains, where suppression is effective, represent
closed, isolated areas. From these figures we can conclude
that suppression of synchrony is observed for a relatively
large parameter range. One can also see that with the in-
crease of the damping parameter «, the suppression domains
increase as well.

Figure 6 illustrates the functioning of the phase shifter.
Here we show the suppression domains S=S(6,&;) for dif-
ferent values of the phase shift ¢ [see Eq. (10)]. For ex-
ample, for ¢y=m/10, the collective synchrony cannot be sup-
pressed for 6=0, i.e., the suppression is achieved only with
the help of the phase shifter.

B. Desynchronization in a model of neuronal ensemble with
synaptic coupling

In this section we make a step towards more realistic
modeling of controlled neuronal dynamics. For the introduc-
tory example we used a quite abstract model (10); now we
take into account several important features of the measure-
ment of the collective neuronal activity and of the coupling
between the neurons.

We have assumed that the collective activity of the popu-
lation is reflected in the local field potential (LFP); the latter
can be registered by an extracellular electrode. The question
is how to relate the variables of conductance-based neuronal
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FIG. 6. (Color online) Domains of suppression for N=500
Bonhoeffer—van der Pol neurons (10) for different values of the
phase shift ¢ (a) ¢=m/10, (b) y==/20, (¢) Y=—m/7, (d) ¢
=/3. These domains confirm that the phase shifter indeed ensures
suppression. The damping parameter a=0.3w. These numerical re-
sults agree with theoretical results (cf. Fig. 3).

models to the LFP. The extracellular potential can be ob-
tained via a solution of the Poisson equation with the mem-
brane currents [35] determining the boundary condition
[36,37]. Thus, the potential registered by the electrode is ®
~2/Z;/r;), where r; is the distance between the current
source, i.e., the membrane current of the ith neuron Z;, and
the measuring point. Hence, in the first approximation, ne-
glecting the spatial structure of the ensemble, we can repre-
sent the measured signal as

7, is the right-hand side of the equation for the membrane
potential V; of a conductance-based neuronal model

dav;
C— =1,
dt

where C; is the capacitance of the membrane. Note that Z; are
the total membrane currents, which contain the currents
through different ion channels and external currents, includ-
ing the current due to stimulation. Using the notations of

Egs. (10), we can write ® ~ 2,Z;=3 x,=NX. It means that the
stimulation is now proportional to the derivative of the mean
field.

Now we explore the efficacy of the suppression of collec-
tive thythms in a neuronal ensemble with all-to-all synaptic
connections. Indeed, interaction via the electrical (gap junc-
tion) coupling is possible only if the neurons are spatial
neighbors [38]. Therefore, in a large network, where even
spatially distant neurons can be synaptically linked by long
axons, synaptic coupling plays a more important role.

Each neuron is modeled by the Hindmarsh-Rose equa-
tions [39], whereas the model and parameters of the inhibi-
tory synaptic coupling are taken from Ref. [40]. Thus, the
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FIG. 7. (Color online) Domains of suppression for the ensemble
of 200 synaptically coupled spiking Hindmarsh-Rose neurons [see
Eq. (12)].

dynamics of the ensemble is described by the following set
of equations:

. €
x,-=y,-+3x,-2—x?—z,»+ll-—ﬁ(xi+ V.)

N _ -1
X2{1+exp<u>] +C,
Y

J#Fi
yi=1-5x -y,

Z=rlvlx; = x) =zl (12)

where r=0.006, v=1, y=-1.56. ¢ is the strength of the syn-
aptic coupling with the reverse potential V.=1.4; other pa-
rameters of synapses are 7=0.01, x,=0.85. [; is taken as [;
=4.2+0, where o is Gaussian distributed with zero mean
and a 0.05 rms value. For zero coupling, each neuron exhib-
its regular spiking. With the increase of the synaptic coupling
between the neurons, the model demonstrates a transition
from independent firing to coherent collective activity [41].
In modeling the suppression, we again assume that the
stimulation can be described as an additional external cur-
rent, identical for all neurons. The LFP measurement is mod-
eled according to Eq. (11). The result of simulation for N
=200 nonidentical inhibitory coupled neurons is presented in
Fig. 7 for the following values of the parameters: £=0.15
and a=0.3w. The average frequency of the mean field is
estimated as w=2m/3.82. Note that in this model the mean
action on each element is not the mean field X. Nevertheless,

the measurement of X suffices to ensure desynchronization in
the ensemble.

Finally, we consider the case when individual neurons ex-
hibit chaotic bursting, i.e., generation of action potentials
(spikes) alternates with the epochs of quiescence, so that the
oscillation can be characterized by two time scales. This dy-
namics is provided by Eq. (12) with the following set of
parameters: r=0.006, v=4, y=-1.6; the parameters of cou-
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FIG. 8. (a) Mean field in an ensemble of synaptically coupled
bursting Hindmarsh-Rose neurons is irregular but has a strong pe-
riodic component. The control has been switched on smoothly be-
tween =3000 and 7=5000. The suppression factor is §=6.5, &,
=-0.12, 6=-1.2, @=0.3w. Note that for the measured signal we
took the derivative of the mean field, shown in (b).

pling are kept the same as in the previous example. Synchro-
nization occurs on the slower time scale, i.e., different neu-
rons burst nearly at the same time, whereas the spiking
within the bursts is not synchronous, and therefore is to a
large extent averaged out in the mean field [Fig. 8(a)]. How-
ever, some high-frequency jitter remains due to correlations
in spiking. As a result, the mean field is irregular; besides
this jitter, it also exhibits a low-frequency modulation. The
(average) frequency of the mean field is w=27/176; this
corresponds to the interburst intervals.

Figure 8(a) demonstrates that though the mean field is
irregular, it has a strong periodic component and therefore
we expect that our technique is efficient in this case as well.
This is indeed confirmed by the results of numerical simula-
tion for [;,=3.2, €=0.2, and various values of the damping
parameter « (see Fig. 9 [42]). Again, the stability domains
elongate for rather large negative values of &, and only parts
of them, corresponding to stronger suppression, are shown. It
can be seen that the increase of the damping parameter «,
i.e., the increase of the bandwidth of the filter, leads to the
extension of the suppression regions, similarly to the case of
periodic oscillators (cf. Fig. 5). We conclude that suppression
is possible in the case of irregular mean field as well, as long
as the latter has a strong periodic component (what is ex-
pected if the system is not too far from the point of transition
to synchronization). We are reminded that in order to simu-
late the measurement of LFP we use for stimulation the de-
rivative of the mean field. This process [Fig. 8(b)] is even
more complex than X; however, the suppression is achieved.

IV. CONCLUSIONS

We have proposed an efficient and simple technique for
control of synchrony in a population of globally coupled
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elements. Though we have concentrated on the problem of
desynchronization, the technique can be also used for exci-
tation of collective oscillation, if the coupling in the en-
semble is subcritical and, thus, the uncontrolled system is
stable. The suppression or excitation can be achieved if the
total phase shift provided by the feedback loop is 7 or zero,
respectively.

We hope that our technique can be used for the manipu-
lation of neuronal rhythms, at least in an isolated population
of neurons. This is confirmed by numerical simulations of a
model of neuronal population. Important advantages of the
technique are the simplicity of its practical implementation,
built-in bandpass filter, and the ability to compensate the
phase shift inherent to stimulation of the ensemble. We em-
phasize, that with our method we are able to stabilize the
unknown steady state of the ensemble, which can also drift
with time, and to maintain it by vanishingly small stimula-
tion (cf. Refs. [28-30]). No knowledge of the properties of
individual units and coupling between them is required. Fi-
nally, we remark that the latency in the measurement can be
easily compensated by the phase shifter.

The suggested technique may possibly substitute delayed-
feedback schemes in some other applications, e.g., in stabi-
lization of low-dimensional systems [25-33], control of
noise-induced oscillations [43], etc. As a problem for ongo-
ing research we mention a development of an adaptive, self-
tuning suppression technique.
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APPENDIX: STABILITY DOMAIN OF THE MODEL
EQUATION

The computation of the determinant of system (6) pro-
vides

Nu+ N1+ au—28u) + N} (Eu—Epcos B+ 20w
—2fau+ a—28) + N (w’ap—Ecos B—Eycos B
—2éw*u—2éa+ EEpm cos B+ Eau+ wEu sin B+ 2w
+ &) + M€ sin B+ £€ cos B+ wEysin B+ Ew’u
+ ot + a+ Ea—- 26w’ + Eycos B) + Ew’ + ot

=0. (A1)

Stability domain in the parameter plane (y,&), or, equiva-

lently in the parameter plane (6,e/), is determined by the

condition Re(\)<0. (We are reminded that y=—wu tan 6

and E=g;cos 6.) Taking A=i() on the stability border and
separating real and imaginary parts, we obtain

Q*ap+1-2&u) + QHE cos Bl — Eu+ ) — wus sin B
+2ba—-20% - &€ + 280’ - ?au— Eaul + ot + Eo?
=0, (A2)

QO+ QO u(Ecos B— & —2w* +2Ea) + 26— a] + (1

+ ¥ (wsin B+ Ecos B) + 0 (Ep+a—28) + o'u

+&a}=0. (A3)

Thus, we have two equations for two variables (vy,£), and
() is a parameter. It is easy to check that (1=0 provides no
solution, therefore we divide Eq. (A3) by ) # 0 and express
£ from this equation. Substituting it into Eq. (A2) we get 7.
Then, substituting +y into the expression for £ we finally ob-
tain £. Hence,
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vy=AIB,
where

A=wsin BQu + Q1 - 20’ 1> + 2 b — 2 &)
+ 0P8 - 207 + W' P+ 2éa - &) + Eo’ + 0]
+cos Bl ap® — &u?) + O a- £- Ep2 + Epla
— lapd) + Q(Ea-ta- &+ gl + Eplod)
+ £’ + 0'e], (A4)
B=wsin BO*2éu— au—-1) + QX (Eau - 2é0’u - 2éa
+ &+ 0’ + 0*ap) - Ew’ — 0] +cos BQu+ QM aué

+&u-20u+é—a)+ QN o*'u- o’ u+ ’aué

PHYSICAL REVIEW E 75, 011918 (2007)

+Eau-Ea+’a+ &) - Ew’ - e (A5)
and
E=0CID,
where
C=cos Bl- Vou+Q'Qe’*u- Eu— apé+a-§)
+ QX E*u- 8- o*u-Eau- ?apé+ Ea- w'a)
+ 8w’ + 0*é] + wsin BLOY1 - 2Eu + au) + Q*(2éa
+2b0’p - rap - Eap - € =207 + o'+ £0],
(A6)
D = uQ?[éw sin 23+ w” + cos® B(Q? + & — o?)].
(A7)
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