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Velocity of propagation of electrical excitation in the heart is important for the understanding of complex
arrhythmias such as ventricular fibrillation �VF�. In this paper, we present a method to estimate the conduction
velocity of electrical activation wavefronts that are defined to be a particular isovalue of any scalar field, such
as electrical activation times, electrical phase, or indeed any other quantity that can be used to determine
excitation wavefronts. This general method is based on tracking trajectories of material points that are assumed
to be embedded within the wavefronts, whilst the direction of propagation is assumed to be perpendicular to
the wavefront. We have derived an explicit expression for the conduction velocity in terms of the spatiotem-
poral gradients of the scalar field used to define wavefronts. Moreover, although it is often difficult to use
activation times to compute conduction velocities during complex VF, we show that other scalar fields such as
detrended voltage or electrical phase, which can faithfully represent the electrical activity during fibrillatory
conduction, can be used to determine conduction velocities. We demonstrate the application of our method to
determine conduction velocities from contact mapping recordings over the entire epicardial surface of the
fibrillating pig heart.
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I. INTRODUCTION

Mechanisms underpinning ventricular fibrillation �VF� re-
main incompletely understood, although the existence of
dominant re-entrant sources �mother rotors�, and multiple
wavelets have both been implicated �1�. Vulnerabilities to the
onset and maintenance of VF have been linked to dynamic
properties of wavefront propagation �2�, such as the spa-
tiotemporal evolution of conduction velocity distributions
during regional cardiac ischemia, and the dependence of
wave speed on activation frequency �i.e., conduction velocity
restitution�.

Quantification of conduction velocity during VF remains
challenging. Conventional methods have classically relied on
the ability to determine activation times at electrodes �3–5�.
It is clear that simply dividing the distance between two
electrodes by the difference in their activation times can
yield spurious estimates of conduction velocity if the direc-
tion of wavefront propagation is not aligned with the seg-
ment connecting these electrodes �6�. On the other hand, if
the electrode alignment is in the direction of wavefront
propagation, then the above method provides a realistic esti-
mate of the conduction velocity. Thus, the calculation of con-
duction velocity requires the determination of wavefront
propagation direction, however, it can be difficult to deter-
mine these wavefront directions from activation times, par-
ticularly during complex VF �7�. To address the problem of
determining wavefront direction, previously published meth-
ods have computed conduction velocity using spatial gradi-
ents of the activation time field �6–8�. However, determining
the activation time field during complex fibrillatory activity
is inherently ambiguous �7�.

A recent study presents a method for estimating conduc-
tion velocity that is based on fitting splines to isopotential
contours of voltage �9�. Their method adopts the conven-
tional approach of dividing the distance swept out by a
wavefront �or waveback� across a number of frames by the
time taken to propagate this distance. They demonstrate that
this method is applicable to wavefronts with a variety of
shapes. However, their method was not applied to complex
activation patterns such as multiple-wavelet VF in this re-
port.

In order to determine conduction velocity during complex
VF, we have developed a general method that does not im-
plicitly require the determination of an activation time field,
nor the use of wavefronts in successive frames. Instead, our
method computes conduction velocity using the spatiotem-
poral gradients of any scalar field for which a particular is-
ovalue delineates excitation wavefronts. The method effec-
tively tracks material particles that are assumed to be
embedded within wavefronts, and assumes that the direction
of propagation is perpendicular to the wavefront. Here we
present the theoretical development of our method, together
with illustrations of its application for the analysis of con-
duction velocity on the surface of the pig heart during orga-
nized and complex VF.

II. CONDUCTION VELOCITY

A. Activation wavefronts and trajectories

We treat the propagation of electrical excitation through
myocardial tissue as a wave-like phenomenon, and begin by
considering the motion of a material particle P embedded
within the wavefront. We denote the position of P at time
instant t as xP�t�. The trajectory of the particle, TP, is the set
of successive locations occupied by P:

TP = �xP�t�;t � 0� . �1�
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The Lagrangian description of the velocity of P at time
instant t is

VP�t� =
dxP�t�

dt
. �2�

We now examine the behavior at a fixed spatial point M
with location x= �x ,y ,z�. We assume that the particle P is
located at position M at time instant t, and that at some later
time t+�t, a different particle Q occupies the location M:

xP�t� = xQ�t + �t� . �3�

Let v�x , t� denote the velocity of the particle located at M
at time instant t. Using an Eulerian frame of reference, the
trajectory of the particle P is given by

TP = �x such that
dx

dt
= v�x,t�� . �4�

The Lagrangian and Eulerian descriptions of VP�t� and
v�x , t� are related using

VP�t� = v�xP�t�,t� . �5�

Now consider the case of the propagation of electrical
excitation through cardiac tissue. We define the activation
wavefronts as the isolines �in two dimensions �2D�� or the
isosurfaces �in 3D� of a given scalar field, such as activation
time or electrical phase. Let FP�t� and f�x , t� be the Lagrang-
ian and the Eulerian representations, respectively, of the se-
lected scalar field. Thus

FP�t� = f„xP�t�,t… . �6�

Without loss of generality, we assume that the wavefront
at time instant t, WF�t�, is defined to be the isoline �or the
isosurface� of zero �in general, any given isovalue would
suffice here�:

WF�t� = �x such that f�x,t� = 0� . �7�

Let P be a material particle embedded within the wave-
front WF�0� at time instant zero. Thus FP�0�=0. We then
track the particle during wavefront propagation. Therefore,
along the trajectory TP we have

FP�t� = 0 ∀ t � 0. �8�

Consequently, the time rate of change of FP�t� is also
zero, thus

�FP�t�
�t

=
Df�xP,t�

Dt
=

�f�xP,t�
�t

+ v�xP,t� · �f�xP,t� = 0,

�9�

where Df /Dt denotes the particle derivative and �f de-
notes the spatial gradient of f .

B. Closed form expressions for conduction velocity

In order to determine an explicit expression for the con-
duction velocity, Eq. �9� must be combined with constraints
on the wavefronts. To this end, we assume that the conduc-

tion velocity v�x , t� is perpendicular to the wavefront, which
is consistent with previous studies �3,5–7,9,10�.

1. Excitation in a 2D plane or 3D volume

For electrical activity in a 2D plane or 3D volume, since
the conduction velocity v�x , t� is assumed to be perpendicu-
lar to the wavefront, then v�x , t� is parallel to the normal of
the wavefront N�x , t�. Using this, the conduction velocity can
be obtained by solving Equation �9� to yield

v�x,t� =
− 1

��x,t�
�f�x,t�

�t
N�x,t� ,

where

��x,t� = N�x,t� · �f�x,t� . �10�

Since wavefronts correspond to f�x , t�=0, then the normal
vector N�x , t� can be defined using

N�x,t� = �f�x,t� . �11�

Substituting this into Eq. �10�, yields the general form of
the conduction velocity for activity in a 2D plane or a 3D
volume:

v�x,t� =
− �f�x,t�
	�f�x,t�	2

�f�x,t�
�t

. �12�

Note that if the spatial gradient of the field is zero �i.e., if
the field is constant� over a particular region, then the wave-
front normal cannot be defined, and consequently, the con-
duction velocity cannot be defined across this region.

For the special case in which wavefronts are defined as
the isochrones of the activation time T�x�, the scalar field f
can be defined as f�x , t�=T�x�− t. Consequently, a simplified
relationship for the conduction velocity based on activation
times is given by

v�x� =
�T�x�

	�T�x�	2
�13�

which has been previously published �6,7�.
When dealing with a surface in 3D space, �f�x , t� is not

necessarily tangent to the surface. However, the vector nor-
mal to the wavefront lies on the surface, thus Eq. �11� does
not apply. One way to address this issue is to use a 2D
parametrization of the surface in 3D space, as explained in
the next section.

2. Excitation on a surface

For the analysis of propagation of electrical excitation on
an infinitesimally thin surface, activation wavefronts corre-
spond to 1D curves located on the surface. In this case, the
conduction velocity vector is perpendicular to the wavefront
and tangent to the surface. We define the surface using the
parameters �u ,v�:

S�u,v� = „Sx�u,v�,Sy�u,v�,Sz�u,v�… . �14�
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The trajectory of a particle P embedded within a wave-
front in the surface is then given by

x�t� = Sx„u�t�,v�t�…; y�t� = Sy„u�t�,v�t�…;

z�t� = Sz„u�t�,v�t�… , �15�

and the conduction velocity v= �vx ,vy ,vz� is given by

v =
�S

�u
u̇ +

�S

�v
v̇ , �16�

which ensures that v is tangent to the surface.
If f is the scalar field defined over the surface and is now

considered to be a function of �u ,v , t�, then we have

FP�t� = f„u�t�,v�t�,t… = 0, �17�

and the particle derivative of f is

�FP�t�
�t

=
Df�u,v,t�

Dt
=

�f�u,v,t�
�t

+
�f

�u
u̇ +

�f

�v
v̇ = 0. �18�

The assumption that the conduction velocity is perpen-
dicular to the wavefront requires that

v · � = 0, �19�

where � denotes a vector that is tangent to the wavefront, and
is given by �see the Appendix�

� =
�S

�u

�f

�v
−

�S

�v

�f

�u
. �20�

The quantities u̇ and v̇ are obtained by solving Eqs. �18�
and �19�, and are given by

u̇ =
1

�

� �S

�u
·
�S

�v
� �f

�v
− 
 �S

�v

2 �f

�u
� �f

�t
,

v̇ =
1

�

� �S

�u
·
�S

�v
� �f

�u
− 
 �S

�u

2 �f

�v
� �f

�t
, �21�

where

� = 
 �S

�u

2� �f

�v
�2

− 2� �S

�u
·
�S

�v
� �f

�u

�f

�v
+ 
 �S

�v

2� �f

�u
�2

.

Substituting u̇ and v̇ into Eq. �16� yields a closed form
expression for the conduction velocity on the surface.

In the case where


 �S

�u

 = 
 �S

�v

 = 1 and

�S

�u
·
�S

�v
= 0, �22�

Eq. �21� simplifies to

u̇ =
− 1

�

�f

�u

�f

�t
, v̇ =

− 1

�

�f

�v
�f

�t
, where � = � �f

�u
�2

+ � �f

�v
�2

.

�23�

This simplified form has been previously used to estimate
conduction velocity on the ventricular epicardial surface us-
ing the activation time field, where a local Cartesian fiber
coordinate system was defined at each point on the surface

�8�. However, their coordinate system does not satisfy Eq.
�22� and thus neglects the effects of surface curvature on the
conduction velocity estimate.

In the clinical setting, cardiac electrograms are typically
recorded at the endocardium or epicardium using balloon
catheters or contact electrode arrays. It is important to note
that in this case, the recording surface is an external bound-
ary of an excitable 3D volume �the myocardium�. Therefore,
a recorded wavefront corresponds to the intersection of a 3D
isosurface of excitation propagation with the external bound-
ary. Consequently, the conduction velocity that we compute
on the surface using Eq. �12� or Eqs. �16� and �21� does not
represent the true conduction velocity of the 3D intramural
wavefront. Instead, we are examining the apparent conduc-
tion velocity of the wavefront at the surface of the tissue.

3. Uniqueness of the conduction velocity

We now show that the calculation of the conduction ve-
locity is equivalent regardless of the field that is chosen to
define activation wavefronts. To this end, consider f�x , t� and
g�x , t� to be two arbitrary scalar fields with particular isov-
alues that delineate activation wavefronts. If v f�x , t� and
vg�x , t� denote the conduction velocities obtained from f and
g, respectively, then it can be shown that v f�x , t�=vg�x , t�,
∀x , t.

We provide the proof for the particular case when we can
define the activation time field. Let T�x� denote the activa-
tion time field, and let f�x , t� denote any other scalar field
with zero isovalues that correspond to the activation wave-
fronts. Consequently, the following equation is implicitly sat-
isfied:

∀x, f„x,T�x�… = 0, �24�

thus the spatial gradient is identically zero:

∀x, �f„x,T�x�… +
�f

�t
„x,T�x�…�T�x� = 0. �25�

If we substitute Eqs. �24� and �25� into the general expres-
sion for the conduction velocity �Eq. �12��, we get

v f„x,T�x�… =
− �f„x,T�x�…
	�f„x,T�x�…	2

�f

�t
„x,T�x�… =

�T�x�
	�T�x�	2

, �26�

resulting in the same expression for the conduction velocity
as given in Eq. �13�, which is calculated directly from the
activation time field. Thus we have demonstrated the theo-
retical equivalence of the conduction velocity as computed
from T and any other field f �such as electrical phase� whose
zero isovalues correspond to the activation wavefronts. In the
next section, we present a numerical comparison of these
relations using experimental recordings from the fibrillating
pig heart.

III. APPLICATION TO EXPERIMENTAL DATA

A. Methods

1. Data acquisition

As previously described �11�, a 29 kg pig was anesthe-
tized, artificially ventilated, thoracotomized, and instru-
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mented with an elasticized sock containing 280 unipolar con-
tact electrodes �inter-electrode spacing 5–10 mm� connected
to a UnEmap system �Auckland UniServices Limited, New
Zealand� with the reference electrode attached to the chest
retractors. During an episode of spontaneous VF, 10 s of
electrical activity was sampled at 1 kHz over the entire ven-
tricular epicardium.

Subsequently, the electrode sock was placed over a heart-
shaped model of similar dimension to the pig heart, and the
3D locations of the epicardial electrodes were digitized. As
previously described �1�, the electrode coordinates were pro-
jected onto a 2D polar plot, which is illustrated in Fig. 1. A
triangular mesh was constructed to connect the neighboring
electrodes in the polar projection. Using this triangular mesh,
the signals were linearly interpolated from the electrodes
onto a fine regular grid �100�100 grid points�.

2. Signal analysis

As previously described �1�, activation times were defined
as the times at the minimum negative slope of the electro-
grams �12�. We assumed a minimum refractory period of
100 ms, and following an activation time, the subsequent
activation for the same electrogram was assumed to occur
between 100 ms and 300 ms later.

Electrical phase can be characterized using an angular
representation given by the phase-plane plot of two state
variables �13�. In order to compute phase, we first applied a
signal detrending process similar to that used in �14�. This
procedure consisted of subtracting from V�x , t� a quadratic
function between two successive activation times. The effect
is that the voltage is zero at the minimum dV /dt �activation
time�, whilst the signal mean is also zero. The detrended
signals obtained from this procedure are denoted Vd�x , t� be-
low. We computed the Hilbert transform �15� of the de-
trended signals HVd�x , t�, and the phase ��x , t� was com-
puted following �13� using

��x,t� = atan2„Vd�x,t�,HVd�x,t�… . �27�

Activation wavefronts are commonly idealized as one-
dimensional lines separating tissue that has just been acti-
vated from tissue that is about to be activated. Wavefronts
can be identified as the isochrones of the activation time.
Due to the detrending step we have used, wavefronts can
equivalently be identified using the isolines of zero de-
trended voltage �with negative dV /dt� or using the isolines of
zero phase �under the Hilbert transform�, which can be de-

termined by tracking active edges �14�. Consequently, the
use of the activation time �if it is well-defined everywhere�,
detrended voltage, or phase results in the same estimate of
wavefront conduction velocity, due to the uniqueness of the
conduction velocity regardless of the field used to define
wavefronts.

We estimated the conduction velocity of the epicardial
wavefronts using Eqs. �16� and �21�. Consistent with previ-
ous similar studies, this corresponds to an apparent conduc-
tion velocity, since we do not have access to the electrical
activity within the 3D volume �i.e., the measurements are
restricted to the epicardial surface�, thus we are unable to
compute the true 3D conduction velocity.

B. Results

We determined the apparent conduction velocity on the
ventricular epicardial surface of a fibrillating pig heart at
several time instants. During a relatively organized period of
VF activity, we compared conduction velocity estimates de-
termined from the spatial fields of activation time, detrended
voltage, and phase. We also quantified conduction velocities
obtained from detrended voltage and phase during complex
VF activity, for which the activation time field could not be
determined.

1. Organized VF activity

We analyzed a short segment of organized activity, for
which VF was driven by a single activation wavefront. Dur-

FIG. 1. �a� 3D representation of the ventricles. �b� 2D polar
projection showing anatomical orientation.

FIG. 2. �Color� An activation wavefront during a period of or-
ganized VF activity, showing conduction velocity estimates from
activation time �left column�, from detrended voltage �middle col-
umn�, and from phase �right column� represented using a pseudo-
color spectrum. Top panels illustrate the location of the activation
wavefront using the 2D polar projection �see Fig. 1�. For these
maps, the mean conduction velocity magnitudes over all points on
the wavefront were 	vT	=47.2 cm/s, 	vVd

	=46.6 cm/s, and 	v�	
=46.9 cm/s. A local comparison of conduction velocity for the re-
gions indicated by A and B are expanded in rows 2 and 3, respec-
tively. For each panel, the value indicates the mean conduction
velocity for the pixels shown.

AYMAN MOURAD AND MARTYN P. NASH PHYSICAL REVIEW E 75, 011914 �2007�

011914-4



ing this period, each point of the epicardium was activated
just once, and could thus be assigned a unique activation
time represented as T�x� on the epicardial surface. Conse-
quently, an appropriate choice for the required scalar field f
was f�x , t�=T�x�− t, which enabled us to determine the con-
duction velocity over the entire epicardium using Eqs. �16�
and �21�. To compare with these estimates, we also computed
conduction velocities using the detrended voltage or phase
fields, for which we defined the function f in Eqs. �16� and
�21� to be Vd�x , t� or ��x , t�, respectively.

Figure 2 illustrates a wavefront during the organized pe-
riod of VF. The pseudocolor spectrum along the activation
wavefront indicates the magnitude of the conduction veloc-
ity, which was computed using the scalar fields of activation
time vT �left�, detrended voltage vVd

�middle�, and phase v�

�right�. We have shown that conduction velocities computed
from these fields are theoretically equivalent. The data in
Fig. 2 demonstrate the experimental equivalence of these es-
timates. Focusing on two portions of the wavefront �denoted
A and B in Fig. 2� and using vT as the reference, the local

FIG. 3. �Color� Activation wavefronts at three time instants during complex VF. Left column: wavefronts at time t, WF�t�
�light blue� plotted together with the wavefronts 1 ms later WF�t+1� �orange�. The pixels that belong to both wavefronts are represented in
brown. Conduction velocity computed from detrended signals �middle column� and phase �right column� is indicated along the
wavefronts using a pseudocolor spectrum. From top to bottom: across all wavefronts for each time instant, the mean conduction velocity
magnitude 	vVd

	 was 25.5 cm/s, 42.7 cm/s, and 30.4 cm/s, respectively, and the mean 	v�	 was 24.9 cm/s, 43.2 cm/s, and 31.9 cm/s,
respectively.
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estimates vVd
and v� differed by 0.4% and 2%, respectively

�portion A in Fig. 2�, and 0.2% and 1.6%, respectively �por-
tion B in Fig. 2�. The relative differences in the mean con-
duction velocity computed over the entire wavefront were
1.3% and 0.6%, respectively, compared to vT.

2. Complex VF activity

Figure 3 presents examples of activation wavefronts and
their conduction velocities during complex VF activity. Illus-
trated in the left column are wavefronts at a particular time
instant �light blue� together with the locations of the same
wavefronts 1 ms later �orange�. The pixels that belong to
both wavefronts are colored brown �in which case, the wave-
front motion between the time instants was very small�.
Similar conduction velocity estimates were determined from
the spatial fields of detrended voltage �middle panels� and
phase �right panels�, although numerical issues led to minor
differences in magnitude that were typically less than
2 cm/s. These epicardial conduction velocity estimates are
consistent with previously published data from fibrillating
pig hearts �7�. The portions of the wavefronts that moved
substantially �as indicated in the left panels� were associated
with the parts of the wavefront that had a high conduction
velocity �red portions of the wavefronts in the middle and
right panels�. On the other hand, locations at which the
wavefront was almost stationary had very low conduction
velocity �blue� as expected.

IV. DISCUSSION

We have presented a general method for quantifying the
conduction velocity of excitation wavefronts in the fibrillat-
ing heart. This method is based on tracking material particles
that are assumed to be embedded within the propagating
wavefronts, whilst the direction of the conduction velocity
vector for each point on the wavefront is assumed to be
perpendicular to the wavefront. We have followed several
recent studies �3,5–7,9,10� in making this assumption, al-
though this has attracted some controversy �16�. Our method
relies on using a given direction of conduction and solving a
particle derivative expression �Eq. �9�� in order to obtain the
conduction velocity magnitude. Hence, it would be straight-
forward to incorporate a different conduction direction.

Previously published methods to estimate conduction ve-
locity have typically relied on computing gradients of the
activation time field, and this has been successfully applied
to characterize organized electrical activity �6,7�. Our overall
aim was to study complex VF activity, for which the com-
putation of an activation time field �and hence its gradient� is
ambiguous �7,17�, since some sites may be activated twice or
more over a specific period, whilst others may not be acti-
vated at all during this period. In the absence of spatiotem-
poral gradients of the activation time field, the conduction
velocity cannot be determined using conventional methods.
On the other hand, phase analysis is a well-established tech-
nique for studying the complex electrical activity during VF
�14�. Activation wavefronts correspond to the isolines of zero
detrended voltage �with negative dV /dt�, and thus to the iso-
lines of zero phase under the Hilbert transform. Moreover,

detrended voltage and phase, and their spatial gradients, are
well defined everywhere at all times.

In this paper, we have shown that the conduction velocity
can equivalently be calculated from the spatial fields of ac-
tivation time, phase, or indeed any other scalar field for
which a particular isovalue defines the activation wavefronts.
We derived an explicit expression for the conduction velocity
in terms of the spatiotemporal gradients of the scalar field
used to define wavefronts �Eq. �12��. We demonstrated that
existing methods for estimating conduction velocity from ac-
tivation times in 2D �7� and 3D �6� are specific cases of this
general method. We have also shown how our formulation
can be transformed to determine conduction velocity from
epicardial surface recordings using Eqs. �16� and �21�.

To complement our theoretical findings, we analyzed a
period of organized electrical activity recorded from the epi-
cardium of the pig heart, and demonstrated the equivalence
of conduction velocity estimates as determined from the ex-
perimentally derived activation times, phase, and detrended
voltage. We observed minor differences in these numerical
estimates that are likely to be due to the finite difference
approximations of the spatial and temporal derivatives of the
various fields. We also observed small differences in the con-
duction velocity estimates computed from phase and from
detrended voltage during complex VF activity in the pig
heart. This suggests that our method is an improvement over
previous methods, because our analysis of complex VF does
not require the calculation of an activation time field.

We have developed and illustrated the applicability of a
method for estimating conduction velocity during complex
multiple-wavelet VF. Quantification of conduction velocity
and its dynamic restitution properties in the intact fibrillating
heart will help to provide insight into the mechanisms under-
lying VF, which may in turn inform the design of therapies to
prevent or terminate VF.
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APPENDIX: DERIVATION OF A WAVEFRONT TANGENT
VECTOR

At any time t, a wavefront on the surface S�u ,v� given by
Eq. �14� can be parametrized using S(u�s� ,v�s�), where s is
an arc length parameter that varies along the wavefront. A
vector � that is tangent to the wavefront can be obtained by
differentiating S(u�s� ,v�s�) with respect to s as follows:

� =
�S

�u

du

ds
+

�S

�v

dv
ds

. �A1�

On the other hand, the wavefront is defined as the zero iso-
line of f , which implies that f(u�s� ,v�s� , t)=0. Differentiat-
ing this with respect to s gives
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�f

�u

du

ds
+

�f

�v

dv
ds

= 0. �A2�

Solving this equation, we obtain

du

ds
= c

�f

�v
,

dv
ds

= − c
�f

�u
. �A3�

Combining Eq. �A1� and Eq. �A3� we obtain an expres-
sion for the wavefront tangent vector:

� =
�S

�u

�f

�v
−

�S

�v

�f

�u
. �A4�
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