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The functional dynamics exhibited by cell collectives are fascinating examples of robust, synchronized,
collective behavior in spatially extended biological systems. To investigate the roles of local cellular dynamics
and interaction strength in the spatiotemporal dynamics of cell collectives of different sizes, we study a model
system consisting of a ring of coupled cells incorporating a three-step biochemical pathway of regulated
activator-inhibitor reactions. The isolated individual cells display very complex dynamics as a result of the
nonlinear interactions common in cellular processes. On coupling the cells to nearest neighbors, through
diffusion of the pathway end product, the ring of cells yields a host of interesting and unusual dynamical
features such as, suppression of chaos, phase synchronization, traveling waves, and intermittency, for varying
interaction strengths and system sizes. But robust complete synchronization can be induced in these coupled
cells with a small degree of random coupling among them even where regular coupling yielded only intermit-
tent synchronization. Our studies indicate that robustness in synchronized functional dynamics in tissues and
cell populations in nature can be ensured by a few transient random connections among the cells. Such
connections are being discovered only recently in real cellular systems.
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I. INTRODUCTION

A single cell, which is the basic building block of all
living organisms, performs its functions through various sub-
strates that are produced by the intracellular network of regu-
lated biochemical reaction pathways. Even though end-
product inhibition is the single most common motif of
regulation in biochemical pathways, as it ensures homeosta-
sis, a large number of biochemical pathways consist of mul-
tiple regulatory loops through positive and negative feedback
processes such as, enzyme activation-inhibition, gene
induction-repression, etc. �1–3�. The chemical kinetics of
these feedback reactions and other intracellular processes in-
volve high order of nonlinearity, and, therefore, these path-
ways in the cells often show a variety of nonlinear phenom-
ena such as self-sustained oscillations, birhythmicity and
chaos �4–6�.

In a population and in the multicellular state �e.g., tis-
sues�, cells interact with each other directly or indirectly.
Hence, the dynamics of an individual cell may be influenced
by the interaction or coupling with other cells. Living sys-
tems use such interactions to coordinate and control many
biological functions �7–11�. There is a diversity of coupling
mechanisms that nature uses to enforce communication
among cells in a cellular ensemble. In biological tissues, the
arrangement and types of contacts complement their specific
functions. Such intercellular signaling couples the biochemi-
cal reaction pathways within each cell through diffusion of
the products of these reactions. Such diffusive coupling oc-
curs in metabolically coupled cells, which leads to robust
synchrony among cells and spatial patterns in cellular
ensembles �12–14�.

In reality, a small degree of randomness in spatial cou-
pling can be expected to exist along with the strict nearest

neighbor scenarios discussed above. Indeed, many systems
of biological, technological, and physical significance are
better described by randomizing some fraction of the regular
links �15�, as it allows information to be transferred at longer
distances in lesser time. Recently a diversity of interactions
have been shown to enforce communication among spatially
non-neighboring cells. Recent experimental demonstrations
of mechanisms of transient long distance interactions
through substrates or cellular processes �“nanotubes”�, are
shown to regulate multicellular functions �16�. It is not
clearly understood how the local functional dynamics of
each cell, the features of intercellular signaling, and the sys-
tem size interact to ensure that robustness and regulative
capacity emerges at the tissue or population level.

The most interesting feature of the coupled system is its
global behavior under different dynamic conditions of its
constituent cells. The two most important emergent behav-
iors in coupled systems are—synchrony and spatiotemporal
patterns �17�. Synchronization is a phenomena that widely
occurs in coupled nonlinear systems. Natural systems as di-
verse as clocks, flashing fireflies, cardiac pacemakers and
firing neurons exhibit a tendency to operate in synchrony.
One can have synchronization of a periodic oscillator by ex-
ternal force, or the well-known phenomena of phase locking
and frequency entrainment of periodic oscillators. Interest-
ingly, chaotic systems, though much more complex, also
synchronize in varying degrees, such as �i� complete syn-
chronization �CS� where the difference between signals vir-
tually disappears �18�; �ii� lag synchronization �LS� where
the subsystems are synchronized with a delay or time shift
�19�; �iii� generalized synchronization �GS� where the instan-
taneous states of subsystems are interrelated by a functional
dependence �20�; �iv� phase synchronization �PS� where the
systems remain largely uncorrelated, but the mean time
scales of their oscillations coincide or become commensurate
�21�, i.e., the phases of the systems are locked even though
the amplitudes may be uncorrelated; and �v� intermittent*Electronic address: sinha@ccmb.res.in
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phase synchronization �IPS� where the phase entrainment is
lost and regained intermittently �22�.

Phase synchronization is the weakest form of synchroni-
zation and is observed typically when coupling is weak. As
coupling strengths increase more ordered stages of synchro-
nized dynamics are obtained, such as lag synchronization
followed by the strongest synchronization, the complete syn-
chronization �17�. It has also been observed that at the onset
of these kinds of synchronization, at the thresholds of cou-
pling strengths, one obtains intermittent behavior �such as
IPS�. This intermittency precedes regular synchronized dy-
namics and is characterized by epochs of synchronization
interrupted by intervals of loss of synchronization. In bio-
logical systems, it is hard to find two exactly identical sys-
tems, and hence phase synchronization is more natural com-
pared to the complete synchronization. Thus, the concept of
phase synchronization has been applied for the study of
synchrony in many biological processes �23�.

In this paper we have studied a model cell-collective—a
ring of coupled cells, each incorporating a three-step model
biochemical network, that involves a positive and a negative
feedback process. The pathway reactions are of the activator-
inhibitor type, which have commonly been found underlying
pattern forming mechanisms in tissues and organisms
�24–28�. The coupling among the cells are diffusive through
the end product of the pathway to their nearest neighbors in
the lattice. We choose parameter regimes where the local
dynamics of the pathways are chaotic in the uncoupled cells
�29�. We have analyzed the collective behavior of the ring of
cells on coupling, with the aim to investigate the role of
coupling strength and type �i.e., local or transient long
distance�, and system size �i.e., the number of cells�.

We observe that this coupled cell system does not follow
any predicted route of synchronization with system size and
coupling strength as discussed earlier. It shows complete
chaotic synchronization for all coupling strengths only in the
case of small lattice sizes. Mostly it shows intermittency for
weak and very high levels of coupling for medium and larger
lattices. For a narrow range of medium lattice sizes, it shows
complete suppression of chaos to higher periodic �P4� oscil-
lations, and spatiotemporal patterns, including chaotic trav-
eling waves for a number of initial conditions, for a small
range of coupling strengths. The coexistence of lower sub-
harmonic oscillations with constant phase slips is a new kind
of standing wave pattern observed in this coupled cell model.
Though intermittency is the primary dynamical behavior ex-
hibited by this ring of cells, we also demonstrate that the
introduction of a few transient nonlocal connections between
the cells can have a dramatic effect on synchronizing the
cells dynamics for a large range of coupling strength and
system sizes. This has important implications in synchroni-
zation of functional dynamics in cell ensembles under widely
different conditions. This also argues against the requirement
of strict conditions for robust synchronized activity in tissues
and multicell systems, which is unrealistic in natural or
experimental conditions.

II. MODELS AND METHOD

A. Single cell model

The model single cell incorporates a representative bio-
chemical pathway that is regulated by negative and positive

feedback processes. It is a three-step activator-inhibitor reac-
tion sequence regulated by the end product through two feed-
back loops—end-product inhibition of the first substrate, and
autocatalytic activation, through an allosteric enzyme-
mediated reaction, of the end product. The abundance of
negative feedback control in biochemical reaction pathways
helps maintaining homeostasis in cellular functions by sup-
pressing stochastic variations �30�, and thereby provides the
required robustness in cellular functions. Though less preva-
lent, positive feedback processes in both metabolic and ge-
netic regulations are used for important activities through
amplification of signals, rapid response pathways, “switch-
ing” activities, and in cellular processes that show periodic
and complex dynamics, such as glycolytic oscillations in cell
free extracts of yeast cells, peroxidase-oxidase reactions, in-
sulin secretion in pancreatic beta cells, calcium oscillations,
and amplification of cAMP signal in the aggregation of cel-
lular slime molds �4,31�. Thus we consider this three-step
model pathway to be a simple and general scheme that may
represent a large variety of functional dynamics observed in
cellular systems. The details of the model are given in Ref.
�32�.

The change in the concentrations of the three substrates in
this reaction pathway can be described by the following
equations:

dx

dt
= F�z� − kx ,

dy

dt
= x − G�y,z� ,

dz

dt
= G�y,z� − qz , �1�

where x, y, and z are the normalized concentrations of the
substrates, and k and q are the rates of degradation of the first
substrate and end product, respectively, which follow first
order kinetics and are nonsaturated. The functions F�z� and
G�y ,z� represent the negative and positive feedback pro-
cesses �viz. end-product inhibition and the autocatalytic ac-
tivation�, which are nonlinear kinetic processes. The molecu-
lar interactions for such biochemical regulations are modeled
using reactions that are widespread in both genetic and meta-
bolic reactions underlying cellular processes, such as, the cell
cycle, gene repression-induction, glycolysis, hormonal sig-
naling, cAMP oscillations in cellular slime molds, calcium-
induced-calcium-release �CICR�, etc. �4,33�. These are given
by

F�z� =
1

1 + z4 , G�y,z� =
Ty�1 + y��1 + z�2

L + �1 + y�2�1 + z�2 , �2�

where, L and T are related to the allosteric constant and
maximum velocity of the enzyme.

The parameter values used in this model pathway are cho-
sen keeping in mind the following pathways incorporating
positive and negative feedback processes—cell cycle, glyco-
lytic cycle, and cAMP oscillations in slime molds �1,34�. The
normal parameter values in this pathway are L=106, T=10,
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k=1, and q=0.01, where it shows simple limit cycle oscilla-
tions. The dynamics exhibited by this pathway is a function
of the parameters �29,35�. The orders of magnitude of the
three variables are quite different as a small variation in x
leads to large variations in y and z due to the autocatalytic
effect, even though, due to the negative feedback, this large
variation is suppressed to smaller amplitude oscillations in x.
The temporal variation of the end-product z, being of
primary interest, is displayed in all figures.

B. Coupled cell model

The model single cells �Eq. �1��, are coupled with their
two nearest neighbors by the diffusion of the end product of
their respective activator-inhibitor reaction pathways, on a
one-dimensional lattice with periodic boundary conditions
�36,37�. The coupled-cell model can be written as

dxi

dt
= F�zi� − kxi,

dyi

dt
= xi − G�yi,zi� ,

dzi

dt
= G�yi,zi� − qzi − �zi +

�

2
�zi−1 + zi+1� , �3�

where, � is the diffusive coupling strength of the end prod-
uct, and, i, the cell number that ranges from 1 to N, where N
is the lattice size. For numerical simulation we have used the
discretization scheme of Oono and Puri �38�, and the fourth-
order Runge-Kutta scheme. Simulations have been per-
formed on lattices with varying number of cells, with ran-
dom initial conditions uniformly distributed around the
steady state �z*±2 ,z*�5.163�. Simulations have been per-
formed for t�105, and results are presented for the last 5000
time units.

III. RESULTS

A. Single cell dynamics

The biochemical pathway �Eq. �1�� in the single cell ex-
hibits a wide range of dynamics—equilibrium, limit cycle,
period-doubling, birhythmic, complex, and chaotic—
depending on the values of parameters and initial conditions
�29�. For parameters k=0.003, q=0.1, the pathway exhibits
chaotic oscillations. Figure 1 shows various aspects of cha-
otic behavior in a single cell. The time series of z �Fig. 1�a��
and the �z-y� phase portrait �Fig. 1�c�� clearly show that the
oscillations of multiple time scales are associated with the
chaotic state of the cell. Earlier studies �29� have shown that
there are more than one overlapping attractors that exhibit
period-doubling to chaos in this system. The multilayered
structure of the return map �Fig. 1�b��, constructed from the
successive maxima of z, shows evidence of homoclinic chaos
�39�. The power spectrum �Fig. 1�d�� constructed from the
time series of z shows a broadband structure with peaks at
two major frequencies and also at their higher harmonics.
These frequencies �f1=0.0114� and �f2=0.0012� correspond

to the two different time scales of oscillations associated
with the different attractors embedded in the chaotic attractor
observed here �35�.

Dynamics of uncoupled cells. In a population of similar
cells �i.e., having the same parameter values�, each cell may
differ with each other due to unequal amount of the sub-
strates. The pathway in each cell will be showing chaotic
oscillations, and the collective temporal behavior of the un-
coupled cells will be a simple superposition of all the cells’
behaviors. Figure 2�a� shows the superposition of time series
of z in 50 uncoupled cells, where the temporal evolution of
the cells’ dynamics are totally uncorrelated and the time se-
ries are randomly overlapped in the figure. The space-time
plot of the end product z in these cells �Fig. 2�b�� shows that
each cell continues to synthesize the end product z in a
chaotic manner.

B. Dynamics of coupled cells

Two main parameters associated with the coupled system
are the total number of cells, N, and the coupling strength, �.
Here, we present the results of our study of the collective
dynamics of this cell system for different N and �.

1. The role of number of cells „N…

The collective dynamics of cells was studied by varying
the number of cells in the ring from N=10 to 100 by mul-
tiples of 10 for �=0.72. Table I shows the variation of local
and global dynamics of the coupled cells with increasing N.
The simulations have been done for 10 different initial
conditions.

Table I clearly shows that the inclusion of more cells af-
fects the local and global dynamics of the multicellular sys-
tem. The local behavior of the individual cells remains cha-
otic �CH�, except for N=50 where chaos is suppressed to
period 4 �P4� dynamics. Thus, under coupling, the local and
global dynamics can influence each other depending on the

FIG. 1. Single cell dynamics: �a� time series, �b� return map, �c�
�y-z� phase portrait, and �d� power spectrum, of z.
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size of the lattice. The global dynamical states found in the
coupled system are complete synchronization �CS�, phase
synchronization �PS�, and primarily intermittent phase syn-
chronization �IPS� �8 out of 10 lattices�. Figures 2�c�–2�h�
show examples of these different types of global dynamics in
lattices of different N.

Small lattices �N=10,20� show complete chaotic syn-
chronization �CS� of dynamics in all cells, and the global
dynamics is the same as the local chaotic dynamics �Figs.
2�c� and 2�d��. The superposition of time series plots of 10
cells gives a single trajectory implying that the end-product
concentrations in all cells are moving in exact synchrony on
coupling �Fig. 2�c��. The space-time plot Fig. 2�d� also con-
firms the perfect synchronization in the lattice. Thus small
coupled cell systems can synchronize their dynamics
completely to their local chaotic dynamics.

Lattices with increasing N, except for N=50, shows inter-
mittent phase synchronization �IPS�. This behavior has been
seen in larger systems �N=500� also. Figures 2�e� and 2�f�
illustrate the intermittent behavior of the system for N=70.
Figure 2�e� shows that the superimposed time series are not
exactly overlapping since both phase and amplitude of oscil-
lations in each cell are not perfectly correlated. Figure 2�f�
shows that the phase synchrony in the coupled cells is
lost for certain intervals of time and is regained within a
short span. The loss of phase synchrony appears as the tem-
porary overlap of the peaks in the time series, and local
spreads in the space-time plot. Here, the phase synchronized
and unsynchronized states form intermittent states, and the
system switches between these two states at irregular inter-

vals. This transient loss of synchrony in the lattice continues
for very long time. It may be noted here that the local dy-
namics of all cells remains chaotic.

The lattice with N=50 shows local and global dynamics
which are very different from that of the uncoupled system
�Figs. 2�g� and 2�h��. Local chaos is suppressed and each cell
shows stable period 4 �P4� oscillations. The global dynamics
of the cells are found to be phase synchronized with phase
slips �discussed later�. The time series plots in Fig. 2�g�
shows an interesting repeating time course of “two high
peaks and two lower peaks” that arise because the peaks of
the P4 oscillations in all cells do not overlap at the same
time. The space-time plot �Fig. 2�h�� also confirms the rela-
tive phase synchrony and periodic nature of the global
dynamics.

2. The role of coupling strength „�…

The coupling strength ��� plays an important role in
modulating the interaction between the local and global dy-
namics. We simulated the coupled cell system �N=50� for a
range of coupling strengths �0.1���0.9�, and studied their
long-term dynamics. It may be recalled that complete syn-
chronization is observed only for small system size. The
results are given in Table II.

Table II clearly shows that, except for �0.7���0.8�, the
primary mode of the collective dynamics shown by the lat-
tice is IPS. The other types of dynamics seen for some initial
conditions are traveling waves �TW� and periodic phase syn-
chronization �PS+P4�. For very small coupling strength
��=0.1�, the dynamics is IPS for all initial conditions stud-

FIG. 2. �Color online� Types of global dynam-
ics shown by the ring of cells of different sizes
for �=0.72. Plots in first and second columns rep-
resent superposition of time series and the space-
time plots of z in all cells. �a, b� N=50 uncoupled
cells in the lattice; �c, d� complete chaotic syn-
chronization �CS� for N=10; �e, f� intermittent
phase synchronization �IPS� for N=70; and �g, h�
suppression of chaos and phase synchronization
�PS� for N=50.

TABLE I. Variation of dynamics with cell number, N. Notations: CH, chaos; CS, complete synchronization; P4, period 4 cycle; PS, phase
synchronization; IPS, intermittent phase synchronization.

Number of cells 10 20 30 40 50 60 70 80 90 100

Global dynamics CS CS IPS IPS PS IPS IPS IPS IPS IPS

Local dynamics CH CH CH CH P4 CH CH CH CH CH
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ied. More cases of PS or TW are observed as the coupling
strength increases. For �=0.7, the system only showed pe-
riod 4 �P4� solution along with phase synchronization. For
higher values of coupling strength ��=0.8�, the dynamics is
primarily periodic though some cases of IPS were observed.
Unlike usual cases, for even stronger coupling ��=0.9�, the
lattice did not remain synchronized, and showed mostly IPS.

Traveling waves �TW� are good examples of spatially
nonlocalized structures observed in nonlinear media. Such
solutions have been reported earlier in coupled map lattices
�40�. For few initial conditions, the traveling wave solutions
are also observed in the lattice of size N=50 for a range of
coupling strength. In Figs. 3�a�–3�d� we present the local and
global dynamics of the coupled pathways showing traveling
waves for N=50, �=0.6. The three-dimensional space-time

plot in Fig. 3�a� shows the traveling wave in z in the lattice.
The two-dimensional spatiotemporal evolution of the travel-
ing wave is shown in Fig. 3�b� that shows the phase distri-
bution in the lattice. The peak of the wave travels through the
circular lattice with almost uniform velocity. However,
the temporal dynamics of the individual cells �Fig. 3�c�� is
entirely different from the original attractor �Fig. 1�c��, and
the multiple time-scale structure of the original attractor is
absent in the new attractor which consists of the small
oscillations only �Fig. 3�d��.

Bifurcation diagram, shown in Fig. 4, plots the long term
dynamics of �zmax� in the 25th cell for 5000 time points, for
different coupling strength. This plot gives an idea about the
modulation of the local dynamics due to coupling. The initial
conditions have been kept constant for the entire range of
coupling strength. It can be seen from the figure that even
though for most cases the local dynamics is chaotic, there is
an interval of �, starting from 0.7 to 0.79, where the chaos is

TABLE II. Dynamics of the coupled system �N=50� with re-
spect to coupling strength ���, for 50 different initial conditions.
The digits indicate the number of initial conditions that go to a
particular dynamical state. Notations: IPS+CH is intermittent phase
synchronization in the global dynamics while the local dynamics is
chaotic; PS+ P4 is phase synchronization in the global dynamics
while the local dynamics is period 4; TW is the traveling wave
regime.

� IPS+CH PS+ P4 TW

0.1 50 0 0

0.2 49 1 0

0.3 49 0 1

0.4 47 0 1

0.5 48 0 1

0.6 47 0 3

0.7 0 50 0

0.8 8 42 0

0.9 48 2 0

FIG. 3. �Color online� Traveling wave for
N=50, �=0.6. �a� 3D space-time-concentration
plot, and �b� 2D space-time plot, of z in the cells.
�c� �y-z� phase portrait, and �d� power spectrum,
of the 25th cell.

FIG. 4. Plot of zmax of the 25th cell in the lattice �N=50�
showing variation of long-term local dynamics with increasing �.
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suppressed and the local dynamics is periodic. But as seen in
Tables I and II, and Fig. 4, this feature of suppression of
chaos is not sustained for higher � and N. Thus, the phenom-
enon of synchronization in this system does not follow the
usual behavior of coupled systems.

C. Quantitative study of synchronization

Synchronization is a prerequisite for coordinated collec-
tive behavior of cells, and we have shown that the coupled
cell system shows different spatiotemporal dynamics with
changing system size and the extent of coupling between
them. To quantify the level of synchronization in the cells for
the above cases we first calculate the average synchroniza-
tion error �E� �41�. This parameter represents the extent of
synchronization and its stability by calculating the temporal
evolution of the spatial average of errors, i.e., the difference
between the similar variables at different positions. In a
coupled system, the temporal behavior of the global synchro-
nized state will be similar to the local signals zi�t�, and in the
unsynchronized situation the individual signals being differ-
ent from each other, their sum will be averaged out to an
approximately constant value at all times.

Further, to characterize quantitatively the transition to
synchronization, it is convenient to define a quantity with a
value that changes abruptly at the transition point to the syn-
chronized state, namely a synchronization order parameter
�R�. Recently an easy-to-calculate quantity �42� has been
used to study synchronization in biological systems, such as,
synchronization of oscillations in cell populations. Following
Refs. �42�, we use the ratio of the standard deviation of the
time series of the average signal to the standard deviation of
the individual zi, as the synchronization order parameter, R.
This quantity behaves as a good indicator of synchronization
as it takes values close to 0 in the unsynchronized region,
and close to 1 in the synchronized region, and shows a sud-
den change between these two limiting values when a phase
transition to synchronization occurs. So, in effect, it serves as
a good “order parameter” to capture the synchronization
transition as it bears the signature of the transition to the
synchronized state very clearly.

1. Average synchronization error

The error function E �41� is defined as

E�t� = �1/N��
i=1

N

��zi�t� − zN/2�t��2� , �4�

where the sum of squared differences are taken over a large
time interval �104 time units here� after discarding transients,
for calculating the average E�t��	E
�. When all cells in the
lattice have completely synchronized dynamics, the spatial
average of errors in the cells, 	E
�0. The plot for the syn-
chronization error E is shown in Fig. 5 for different coupling
strengths and cell populations. It is clear from the plot that
only small lattices show synchronization for a large range of
coupling strengths, and there is no complete synchronization
in the lattice for higher N for any �. This is not the usual case
with other systems as they tend to get synchronized for

increased coupling and remain in synchronized state for
higher couplings.

2. Synchronization order parameter

The synchronization order parameter R is defined to char-
acterize quantitatively the transition to synchronization by
comparing the average of the local signal to the global
behavior. It is explicitly defined to be

	M2
 − 	M
2

�	zi
2
 − 	zi
2�

, �5�

where the symbols 	 
 and � � represent the temporal and
spatial averaging, respectively. M is the spatial average of z
over N cells at every time. This quantity has limiting values
of 0 and 1. In the synchronized regime, the average state will
be similar to the individual states zi. So, R�1 in the syn-
chronized case. In the unsynchronized regime, the individual
states will be out-of-step with respect to each other, and their
sum will be averaged out to an approximately constant value
at all times �exactly constant in the limit of an inifinite num-
ber of completely uncorrelated cells�. So R�0 for the
unsynchronized case.

Figure 6 shows the role of N and � in setting up spa-
tiotemporal order in the coupled cell lattices. Figure 6�a�
plots the synchronization order parameter �R� for increasing
coupling strength ��� for a lattice of size N=50. The plot
shows two interesting points. First, even though no complete
synchronization �R=1� is observed for N=50 at any coupling
strength, it shows a maximum R�0.95 in the interval 0.66
���0.82, where the lattice shows phase synchronization
with phase slip. Second, in general, the lattice shows fairly
high order �R�0.7� for a large range of � indicating partial
synchronization in IPS. Thus, in absence of complete syn-
chronization also the coupled pathways show a high degree
of order. It may be noted that, in contrast to expectation, here
synchronization is not retained at higher �.

Figure 6�b� shows the variation of R with the cell popu-
lation size N in the lattice for 10�N�100, for �=0.72. The

FIG. 5. Average synchronization error �	E
� for different N and
�.
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coupled cell system shows complete synchrony �R=1� in the
range 10�N�25, and a local maximum of R�0.95 for
48�N�53, where the lattice is in the phase synchronized
state. There is a general trend of decreasing R as N increases
indicating intermittent phase synchronization �IPS�. We have
checked larger lattices �N� over a longer time interval and
they continue to show intermittency.

D. Suppression of chaos and spatial pattern formation

We have shown that the inherent chaotic dynamics of the
individual cells can be suppressed for a small range of meta-
bolic coupling between the neighboring cells. In this state,
both the local and global dynamics of the lattice exhibits
higher periodic oscillations. Thus, the array of coupled cells
forms a spatially and temporally ordered state. In this
section, we discuss the spatiotemporal pattern formation in
the coupled lattice when chaos is suppressed.

1. Spatial pattern formation

Figures 7�a� and 7�b� compare the long-term spatial dis-
tribution of the maxima �zmax� of all cells for the uncoupled,
and coupled ��=0.72� cells in a lattice of N=50 for 4000
time units. It shows the inherent chaotic dynamics of each
uncoupled cell, as the peak values are distributed in an ir-
regular manner in Fig. 7�a�. A similar plot in Fig. 7�b� for the
coupled cells shows regular standing wavelike spatial pattern

in the lattice which is a horizontal “8” structure closed with
two boundary points. The pattern in the periodic lattice re-
mains constant, except for a phase shift, for any other initial
condition. A closer look shows that each cell’s local dynam-
ics corresponds to a period 4 �P4� oscillation albeit with
different amplitudes. This is shown in Fig. 7�c� by the return
maps of two representative cells belonging to two different
parts of the wave pattern—the boundary cell �19th cell� and
a cell with maximum zmax �32nd cell�. The boundary cells
show P4 dynamics but with minimum separation of ampli-
tude, whereas the 32nd cell shows P4 dynamics with large
deviation in the maxima. All other cells have P4 dynamics
with comparatively smaller deviations among the four peaks.
To show that the spatial wave, once set up, repeats about
every 365 time units, snapshots of the lattice were plotted
every 365 time units in Fig. 7�d�. This spatial pattern is in-
dicative of standing wave where concentrations of z in some
cells in space vary much more widely compared to others.
Such patterns have been shown to occur in other model sys-
tems �41�, and have been implicated in pattern formation in
biological tissues �43�.

2. Phase relationship of the cells

The phase synchronization with suppression of chaos and
the spatial pattern shown by the coupled cells has important
and distinct features. First, the inherent chaotic dynamics in
each cell is suppressed to a lower periodic state �P4� having
four local maxima of different amplitudes, which, when ar-
ranged in the descending order of heights, are ordered as
�1,4,2,3�. Second, there is phase entrainment with a phase
slip among the cells that lead to the spatial pattern �Fig.
7�b��, and a unique global temporal pattern of “two high
peaks followed by two smaller peaks” in the maxima of z �as
seen in Fig. 2�g��. To show the distribution of phases that

FIG. 6. Synchronization order parameter �R� with increasing �a�
� for N=50, and �b� N for �=0.72

FIG. 7. Profile of the peaks of �a� uncoupled cells, �b� coupled
cells showing spatial pattern; �c� return maps of a boundary cell
�19th cell�, and a cell at the highly variable part of the wave �32nd
cell�, and, �d� snapshots of the cell profiles at intervals of 365 time
units. N=50, �=0.72.
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underlies the spatiotemporal pattern in the lattice, we plot the
time series of three cells from the lattice in Fig. 8. They are
perfectly synchronized. As also seen in Fig. 7�c�, the peaks
of the oscillations of the boundary cell �19th in solid line� are
very similar. The temporal behavior of z in two cells �6th and
32nd cells� belonging to the opposite phases of the spatial
wave are shown by dashed and dotted lines. It can be seen
that the two cells are phase synchronized, but the amplitude
maxima are temporally arranged as �1,4,2,3� and �3,1,4,2�
leading to a phase lag by one-fourth of the period of the P4
cycle due to the fixed phase slip. All cells on the two sides of
the boundaries show the same phase slip. This leads to the
shift of the highest peak of all the 50 cells such that the
overlapped time series consists of “two high peaks followed
by two smaller peaks” �as in Fig. 2�g��. This phase-
synchronization-with-phase-slip behavior underlies the
spatiotemporal pattern in the lattice of coupled cells.

E. Consequences of random coupling among cells

Until now we have investigated the spatiotemporal dy-
namics of the ring of coupled cells, where the cells interact
through diffusion of z only with their nearest neighbors. To
introduce a small degree of randomness in spatial coupling,
here we study the spatiotemporal dynamics of the same ring
of cells with varying degrees of coupling connections re-
wired randomly in space. In our study, at every update we
replace a fraction p of nearest neighbor links by connections
to two other randomly chosen cells. The case of p=0 corre-
sponds to the usual nearest neighbor interaction as in Eq. �3�,
while p=1 corresponds to completely random coupling
�15,44,45�, and is much like small world networks at low p.
Note though, that unlike most studies in literature, here we
dynamically rewire the coupling connections, namely the
connections change with time, modeling a scenario where
the cells have few transient random couplings. The idea here
is to consider the effect of varying degrees of such coupling
on the synchronization of the pathways, and determine the
dynamical properties that are significantly affected by this
transient randomness. To show that random rewiring has a

pronounced and robust effect on synchronization of cellular
dynamics, we present numerical results that have been ob-
tained by sampling a large set of initial conditions, and with
ring sizes ranging from 25 to 500 cells. Figure 9 displays the
typical state of the evolution of the ring of size 100 for p
=0, p=0.025, and p=0.05. Figures 10 and 11 display the
synchronization error �E in Eq. �4�� and the synchronization
order parameter �R in Eq. �5��, averaged over many time
steps and different initial conditions, for different coupling
strengths and system sizes. The figures clearly show that
higher coupling strengths ��� yield synchronization for
smaller values of p, i.e., the transition to the synchronized
state occurs for smaller degree of randomness when cells are
coupled strongly. Interestingly, the transition to the synchro-
nized state occurs at almost the same value of p for the large
range of N studied. Thus, it is clear that even the smallest
amount of random connections leads to complete synchroni-
zation in the coupled cell system. It is also evident from
these figures that the transition to synchronization occurs at p
tending to zero �45�, namely the smallest degree of random-
ness in coupling connections yields synchronization.

The basic temporal characteristics of the randomly re-
wired cells are found to be the same as that of the regularly
connected cells. This is evident from the similarity of the
three power spectra shown in Fig. 12, for �a� p=0 �blue�, �b�
p=0.1 �red�, and p=0.7 �green�. The only difference is that
spatially the cells are synchronized completely for the higher

FIG. 8. Superposition of the time series showing the T /4 phase
slip. A boundary cell �19th� in solid line, and two cells at opposite
phases of the spatial wave �6th and 32nd� in dashed and dotted line,
respectively. N=50, �=0.72.

FIG. 9. �Color online� Space-time plots of the long-term evolu-
tion of z in coupled cells for rewiring fraction, �a� p=0, �b�
p=0.025, and �c� p=0.05, for N=100, �=0.7.

FIG. 10. The average synchronization error �	E
� for different
coupling strengths, with increasing rewiring fraction, p. N=50.
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p values. It may be mentioned however that, for quenched or
static rewiring �i.e., setting a few random connections at start
and not changing them from time to time�, does not achieve
this effect. This points to the fact that temporally transient
coupling between the cells have a more pronounced effect on
their mutual synchronization, than spatially fixed connec-
tions, indicating that transient connections between cells in a
population induce coherence among the cells very efficiently.

IV. DISCUSSION

Cell-to-cell communication is a crucial prerequisite for
the development and maintenance of structure and function
of multicellular organisms. To date, diverse mechanisms of
intercellular exchange of information have been documented,
and variation in strength of communication has been impli-
cated to changes in dynamical states leading to disease �46�.
Biochemical pathways with activator-inhibitor reactions un-
derlie many cellular functions and end products of such path-
ways metabolically couple cells in populations and tissues
for inducing collective behavior. We have investigated the
collective behavior of a one dimensional ring of cells, diffu-
sively coupled to their nearest neighbors through the end
product of a intracellular activator-inhibitor biochemical
pathway. The individual cells, which are chaotic when un-
coupled, are found to show multiple modes of synchronized
spatiotemporal dynamics—chaos suppression, phase syn-
chronization, traveling wave, and intermittent synchroniza-
tion, for ranges of coupling strength. The suppression of
chaos, phase synchronization and the standing wavelike spa-
tial pattern in this system is characterized both qualitatively
and quantitatively. Unlike other systems, here synchroniza-
tion does not persist for higher coupling after establishment.

Phase synchronization observed in our model has certain
important and distinct features. Most of the earlier investiga-
tions �17� were concentrated on synchronization of either
chaotic or limit cycle oscillators. Here, the phase entrainment
is observed in a collection of oscillators whose intrinsic dy-
namics is a lower subharmonic state �period 4�. Along with
suppression of chaos to P4 oscillations, regular spatial pat-
terns like standing waves with T /4 phase slips are also ob-
served with clusters of cells in the lattice having phase syn-
chronized dynamics but with different amplitudes. Even
when the pathways in individual cells continue to exhibit
chaotic dynamics, traveling waves are observed in the lattice.
Traveling waves have long been shown to underlie pattern
formation in tissues �47�.

Quantitative analysis, using the order parameter, reveals a
very interesting result. The extent of synchrony within the
spatially distributed cells is not always proportional to the
strength of interaction between the cells. It usually peaks at
an intermediate range of coupling. Most studies of synchro-
nization assume that a high value of synchronization index
indicates a strong interaction between the component cells.
Our simulations suggest that this assumption holds only for
weak coupling in case of nearest neighbor interactions.

Last, we demonstrate that a small degree of randomness
in the spatial coupling can lead to complete synchronization
in regimes of coupling strengths which yield only intermit-
tent synchronization for strictly nearest neighbor coupling.
The robust synchronization induced by random coupling
may have significant ramifications. It has immediate rel-
evance to the important problem of synchronizing extended
complex systems. Biological systems, especially cells in
populations or tissues experience both internal and external
noise in their natural milieu �48�, and yet they show coherent
activity under different conditions. Our results show that
even a very small number of transient spatially random con-
nections among the cells can lead to coherence, which

FIG. 11. The synchronization order parameter �R� with increas-
ing rewiring fraction p. Top panel: For coupling strengths �a�
�=0.7 and �b� �=0.1, for N=50. Bottom panel: For lattice sizes. �a�
N=25 and �b� N=100, for �=0.7.

FIG. 12. �Color online� Power spectra of lattices �N=100 and
�=0.7� with rewiring fraction �a� p=0 �blue�, �b� p=0.1 �red�, and
�c� p=0.7 �green�.
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strictly nearest-neighbor coupling cannot provide. Thus, ob-
taining synchronization by introducing some random spatial
connections, even while maintaining predominantly regular
nearest neighbor contacts, suggests a natural regularizing
mechanism in biological systems even in the presence of a
large variation in coupling strength and lattice size. Such
scenario are now being found in experimental situations

where cells can make transient random contacts with each
other in an ensemble �16�. Our theoretical study is successful
in providing clues that increase the general understanding of
how nature engineers collective robustness in the face of
local complexity.

One of the authors �S.R.� acknowledges support by the
Department of Science and Technology, India.
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