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Understanding the chemistry and physics of polyelectrolyte systems challenges scientists from a wide
spectrum of research areas, ranging from colloidal science to biology. However, despite significant progress in
the past decades, the calculation of large open polyelectrolyte systems on a detailed level remains computa-
tionally expensive, due to the highly polymeric nature of the macromolecules and/or long-range character of
the intermonomer interactions. To cope with these difficulties, field-theoretic methodologies based on the
mean-field approximation have emerged recently and have proven to provide useful results in the regime of
high polyelectrolyte concentration. In this paper we present applications of a low-cost field-theoretic calcula-
tion approach based on the method of Gaussian equivalent representation, which has recently been proven
useful for delivering accurate results in case of polymer solutions beyond the mean field level of approxima-
tion. Here we demonstrate its effectiveness on the example of a Gaussian effective potential, mimicking the
effective interactions between weakly charged polyelectrolyte coils, and a screened Coulomb model, describing
the effective intermonomer interactions of Debye-Hückel chains. Moreover, we show that the approach opens
perspectives to extend the range of applicability of the grand canonical ensemble to dense liquid and solid
phases of more sophisticated polyelectrolyte models. Finally, we demonstrate that our approach is also much
more reliable for determining the phase boundaries of these models than conventional mean field and grand
canonical Monte Carlo approaches.
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I. INTRODUCTION

Polyelectrolyte �PE� materials are macromolecular sys-
tems that are well known to play a vital role in nature and
technology �1�. They are typically composed of long poly-
meric chains, possessing a multitude of ionizable groups
along their backbone that are capable of dissociating in a
polar solvent by producing charged species �2�. Among the
most prominent examples are the nucleic acids DNA and
RNA, which are highly charged biopolyelectrolytes control-
ling the development and functioning of living cells. How-
ever, despite of their importance, systems of PE’s remain
among the least understood polymeric systems �3�. This re-
lates to the fact that their chemistry and physics is influenced
by many controlling parameters, such as molecular weight,
salt concentration, pH of the solution, etc. Another important
characteristic of PE systems is the coexistence of long-range
Coulomb and short-range excluded volume interactions. The
presence of long-range interactions generally renders their
simulation particularly difficult, because of the need for com-
putationally expensive techniques, like the Ewald summation
�4�. Moreover, the often highly polymeric nature of PE sys-
tems introduces additional complexity by severely slowing
down their equilibration �5�. Finally, additional difficulties
can occur in the computation of open systems of PE’s at

lower temperatures in the range of physical interest, because
grand canonical algorithms are known to become increas-
ingly inefficient with growing interaction strength between
the interacting monomers �6,7�. Since most PE systems, like,
e.g., living cells, are open systems where matter and heat
exchange between the system and its surroundings does oc-
cur, this represents a major drawback on the route towards
understanding and predicting their physical properties and
behavior.

Most currently available theoretical approaches for treat-
ing PE materials are based on particle-based computer simu-
lation methods, like, e.g., molecular dynamics �MD� �8� or
Monte Carlo �MC� methods �9�. However, their inherent spa-
tial and temporal limitations prohibit their application to
large PE systems characterized by slow equilibration times
�5,10�, like, e.g., biopolyelectrolytes �11� or block-
polyelectrolyte solutions �12�. To cope with these problems,
promising alternative techniques to particle-based methods
have emerged recently based on a field-theoretic formalism
�5,7,13,14�. Field theories for polymers generally make use
of the mean-field �MF� approximation �14�, which consists in
replacing the many-body interaction term in the action by a
term where all bodies of the system interact with an average
effective field. This reduces any multibody problem into an
effective one-body problem and implies that the partition
function integral of the model is dominated by a single field
configuration. A major benefit of solving problems within the
MF approximation is that the estimates provides some useful*Electronic address: stephan.baeurle@chemie.uni-regensburg.de
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insights into the properties and behavior of the system at
relatively low computational cost. Originally introduced by
Edwards �15� and by Helfand and Tagami �16�, MF theories
for polymers, also commonly referred to as self-consistent-
field theories �SCFT�, have been proven useful for estimating
structures and thermodynamic properties of a wide variety of
polymer systems, including polymer alloys, strongly segre-
gated block copolymers of high molecular weight, molten
polymer brushes, etc. �5�. Their applications to PE systems
have, however, only been rare �3,17–19�. This is due to the
fact that the SCFT formalism is only accurate for highly
concentrated PE solutions, where local field fluctuations are
averaged out, due to the effective screening of the electro-
static interactions surrounding the monomers �5�. The SCFT
provides inaccurate or even qualitatively incorrect results for
PE solutions in the regime of low to moderate PE concentra-
tions �5�. Unfortunately, these concentration regimes are
highly relevant to biological and industrial applications. In
such cases more sophisticated techniques beyond the MF
level of approximation are required. One possible solution to
the problem is to calculate higher-order corrections to the
0th-order MF approximation. Tsonchev et al. developed a
MF strategy including leading �one-loop� order fluctuation
corrections, to gain new insights into the physics of confined
PE solutions �20�. However, in situations where the MF ap-
proximation is bad many computationally demanding higher-
order corrections to the integral are necessary to get the de-
sired accuracy. Another possibility is to use Monte Carlo
�MC� algorithms and to sample the full partition function
integral in field-theoretic formulation. However, in a recent
work one of the authors �Baeurle� demonstrated that MC
sampling in conjunction with the original field-theoretic rep-
resentation is impracticable due to the so-called numerical
sign problem �21�. The difficulty is related to the complex
and oscillatory nature of the Boltzmann factor, which causes
a bad statistical convergence of the functional integral aver-
ages of the desired thermodynamic and structural quantities.
In such cases special analytical and numerical techniques are
necessary to accelerate their statistical convergence
�7,21–23�. To make the methodology amenable for compu-
tation, Baeurle proposed the contour-shifting technique rely-
ing on Cauchy’s integral theorem, which was previously suc-
cessfully employed by Baer et al. in field-theoretic electronic
structure calculations �24�. Baeurle further demonstrated
that, employing this technique in conjunction with the
method of Gaussian equivalent representation �GER� of Efi-
mov and Ganbold �25�, provides a significant acceleration of
the statistical convergence of the functional integral averages
in the MC sampling procedure �21�. Other promising beyond
MF techniques have been developed recently, but they either
still lack the proof of correct statistical convergence �26� or
still need to prove their effectiveness in cases where multiple
MF solutions are important �27�.

The goal of our current paper is to present a new low-cost
approximation method based on the method of GER of Efi-
mov and Ganbold �25�, which has recently been proven use-
ful in case of polymer solution models �28�, and investigate
its usefulness for calculating prototypical open PE systems
beyond the MF level of approximation. Since the origin of
the fluctuation problem in field theories is known to be re-

lated to the strength of the effective interactions between the
interacting entities �5,7�, we test the effectiveness of our
method on the example of a Gaussian effective potential,
mimicking the effective interactions between weakly charged
polyelectrolyte coils, and on a screened Coulomb model, de-
scribing the intermonomer interactions of Debye-Hückel
chains. We investigate its ability with regard to the MF ap-
proach as well as grand canonical Monte Carlo �GCMC�
method of Norman et al. �29� in providing accurate thermo-
dynamic information.

Our paper is organized in the following way. In Sec. II A
we review the basic derivation of the GER of the grand ca-
nonical partition function integral and provide its 0th-order
approximation as well as the related grand canonical free
energy. In Sec. II B we review the MF approximation proce-
dure and derive the corresponding MF representation �MFR�
of the partition function integral. Then, in Sec. IV we show
applications of these methods to the models, previously in-
troduced in Sec. III, and demonstrate that the 0th-order GER
approximation procedure is an effective low-cost approxima-
tion strategy for computations within the grand canonical
ensemble. Finally, we end our paper with conclusions and a
brief outlook.

II. METHODS

A. Gaussian equivalent representation
and its 0th-order approximation

The key idea of the GER approach comes from quantum
theory and is based on the observation that the main contri-
butions to the partition function integral are provided by low-
order tadpole-type Feynman diagrams, which account for
contributions due to particle self-interaction. They can effec-
tively be taken into account by rewriting the interaction func-
tional in normal ordered form with respect to a new Gaussian
measure and by requiring that the resulting action does not
contain any linear and quadratic terms in the field variables.
The GER approach was originally devised by Efimov and
Ganbold for the analytical calculation of functional integrals
over the Gaussian measure �25� and has successfully been
applied in several areas of quantum physics �30�. In a sub-
sequent work Efimov and Nogovitsin utilized this strategy
for the calculation of partition function integrals and distri-
bution functions of various classical many-particle systems,
belonging to the canonical and grand canonical ensemble
�31�. Here, we use the method to reformulate the original
field-theoretic representation of the grand canonical partition
function integral in its corresponding GER and to extract its
0th-order approximation. To begin, let us consider the grand
canonical partition function in particle representation,

��z,V,�� = �
N=0

�
zN

N!
�

V

dr1 ¯ �
V

drN exp�− ��
i�j

��ri − r j�� ,

�1�

for a system of volume V, kept fixed at an inverse tempera-
ture � and activity z= �2�m / ��h2��3/2e��, in which the pair
potential ��ri−r j� describes the two-body interactions be-
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tween the particles. This expression can easily be rewritten in
the basic field-theoretic representation �31,32�

��z,V,�� =� d���	�exp�z�
V

dr:ei	�	�r�:��
=� 
	

	det �
e−S�	�, �2�

where the action

S�	� =
1

2
�	�−1	� − z�

V

dr:ei	�	�r�:�, �3�

while the Gaussian measure is defined in a standard way as
�31�

d���	� =

	

	det �
exp�−

1

2
�	�−1	�� ,

� d���	� = 1,

1
	det �

=
V→R3

exp�−
V

2
� dp

�2��3 ln ��p�� ,

1

V2 � dr���r,r���−1�r�,r�� = 
�r − r�� , �4�

with the short-hand notation �	�−1	�
=1/V2
Vdr
Vdr�	�r��−1�r−r��	�r��. The Fourier trans-

form of the pair potential is given by �̃�p�=
dr��r�exp�
−ipr�=��p�V with ��r�=
dp / �2��3�̃�p�exp�ipr�. For sim-
plicity, we have assumed in the previous formulas that the

Fourier transform of the potential is positive, i.e., �̃�p��0.
It is, however, worth mentioning that the formalism can eas-
ily be extended to potentials with additional negative Fourier

coefficients �̃�p��0 by introducing a supplementary field
variable �22�. Moreover, in Eq. �2� we have introduced the
conception of normal product according to the given Gauss-
ian measure d���	�, namely,

:ei	�	�r�:� = ei	�	�r�e��/2���0�,

	�r�	�r�� = :	�r�	�r��:� + ��r − r�� , �5�

which means in other words,

� d���	�:ei	�	�r�:� = 1. �6�

The key idea of the GER approach is that the main contri-
bution to the functional integral in Eq. �2�, provided by low-
order tadpole-type Feynman diagrams, should be concen-
trated in a new quadratic Gaussian measure d�D�	�. This is
achieved by displacing the field variable using Cauchy’s in-
tegral theorem,

	�r� → 	�r� + i
cGER�r�

	�
, �7�

where cGER�r� represents the shifting function, and by rewrit-
ing the resulting contour-shifted representation with respect
to the new potential D�r ,r��. As a consequence, the func-
tional integral in Eq. �2� adopts the following form:

��z,V,�� =� d�D�	�e−S��	�, �8�

with

S��	� = − ln	det D

det �
−

1

2�
�cGER�−1cGER�

+
1

2
�	��−1 − D−1�	� +

i
	�

�	�−1cGER�

− zA�
V

dre−cGER�r�ei	�	�r�e��/2�D�0�, �9�

where A=exp� �
2 ���0�−D�0���. Here, the new Gaussian mea-

sure is defined as

d�D�	� =

	

	det D
exp�−

1

2
�	D−1	�� ,

� d�D�	� = 1,

1

V2�
V

dr�D−1�r,r��D�r� − r�� = 
�r − r�� ,

D�r − r�� =� d�D�	�	�r�	�r�� ,

1
	det D

=
V→R3

exp�−
V

2
� dp

�2��3 ln D�p�� . �10�

Now, to concentrate the main contribution to the functional
integral in Eq. �8� in the new quadratic Gaussian measure
d�D�	�, we take into account that the linear and quadratic
terms in the field variable 	�r� should vanish in the action
S��	�, given in Eq. �9�. As a result, we obtain two equations,
defining the GER potential D�r−r�� and contour-shifted pa-
rameter cGER�r� �31,33�,

zA�
V

dre−cGER�r�	�r� −
1

�
�	�−1c� = 0,

:��zA�
V

dre−cGER�r�	2�r� + �	��−1 − D−1�	��:D = 0.

�11�

These equations can be reformulated as
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cGER�r� = �zA�
V

dr���r − r��e−cGER�r��,

D�r,r�� = ��r − r�� − �zA�
V

dr���r − r��e−cGER�r��D�r�,r�� ,

�12�

and solved self-consistently for the shifted-contour param-
eter cGER�r� and the potential D�r ,r��. For homogeneous so-
lutions and in the limit V→R3 both functions become trans-
lation invariant, i.e.,

c�r� = c = const, D�r,r�� = D�r − r�� . �13�

Consequently, the first expression in Eq. �12� takes the form

cGER −
�

2
���0� − D�0�� − ln���̃�p = 0�z

cGER � = 0, �14�

while the second expression gives

D̃�p� = �̃�p = 0�
v�p�

1 + cv�p�
, �15�

with v�p�=�̃�p� /�̃�p=0�. These formulas determine the
shifted-contour parameter c=c�z ,�� as a function of z, �, as
well as the GER potential D�r−r��. As a result, we obtain
the GER of the grand canonical partition function

��z,V,�� = e−��GER
0 � d�D�	�eW�	�, �16�

where

W�	� =
cGER

��̃�p = 0�
�

V

dre2
i	�	�r� �17�

and

e2
i	�	�r� = ei	�	�r�+��/2�D�0� − 1 − i	�	�r� +

�

2
�	2�r� − D�0�� .

�18�

The function �GER
0 defines the grand canonical free energy in

the 0th-order GER �GER0� approximation and is given by

�GER
0 = −

V

2�
� dp

�2��3�ln
D̃�p�

�̃�p�
−

D̃�p�

�̃�p�
+ 1�

−
V�2cGER + cGER2�

2�2�̃�p = 0�
. �19�

The corresponding thermodynamic and structural quantities
can now easily be derived by using the standard thermody-
namic relations in conjunction with the GER0 approximation
of the partition function integral,

�GER
0 = exp�− ��GER

0 � , �20�

which will in the following be referred to as the free-energy
route �F route�, or using the standard thermodynamic expres-

sions defined via the radial distribution function, which will
be called the g�r� route. For more details we refer to Appen-
dix A. We point out that the function �GER

0 explicitly de-
pends on the parameters � and cGER, while only implicitly on
the activity z. The activity enters through the shifting func-
tion cGER=cGER�z ,�� defined via Eq. �14�. Moreover, we
point out that in the GER the effective coupling constant is
connected with � and the characteristics of the potential
��r�, as we can easily deduce from Eq. �17�. Finally, it is
worth mentioning that the GER of the partition function in
Eq. �16� is physically fully equivalent to the field-theoretic
representation given in Eq. �2�, while possessing better ap-
proximation characteristics.

B. Mean-field representation and its 0th-order approximation

The goal of the MF contour-shifting procedure is to dis-
tort the original integration path of the partition function in-
tegral in such way that one captures MF configurations,
which provide relevant contributions to the overall integral
entity for the external conditions under consideration. For
example, the homogeneous MF solution characterizes the
liquid phase of the model system under consideration, while
other MF solutions characterize other thermodynamic phases
�22�. Similarly as in case of the method of GER in Sec. II A,
a representation of the partition function shifted through the
relevant MF configuration can be derived and one obtains the
corresponding mean-field representation MFR. In essence,
the technique consists in reformulating the partition function
integral in Eq. �2� by performing a suitable contour shift into
the complex plane using Cauchy’s integral theorem,

	�r� → 	�r� + i
cMF�r�

	�
, �21�

where cMF�r� represents the shifting function. As a result,
one obtains the contour-shifted formulation of the grand ca-
nonical partition function ��z ,V ,��=
d���	� exp �−S�	
+ icMF/	���=
d���	� exp �−S�	��, which is again physi-
cally fully equivalent to the basic field-theoretic representa-
tion defined in Eq. �2�. For example, the shift through the
homogeneous MF configuration is obtained by applying the
stationary condition



S�	�

	



	�r�=	MF�r�

= 0, �22�

where 	MF�r�= icMF�r� /	� represents the MF solution, and
assuming a homogeneous solution,

	MF�r� = 	MF�p = 0� = i
cMF�p = 0�

	�
. �23�

As a result, we get the following equation:

cMF = �ze��/2���0��̃�p = 0�e−cMF
. �24�

The 0th-order approximation of the MFR is the standard MF
approximation of the grand canonical partition function,
which takes the form
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�MF
0 �z,V,�� = e−S�cMF�. �25�

Analogously as in the case of the GER0 approach, the cor-
responding structural and thermodynamic quantities can now
easily be derived by using the standard thermodynamic ex-
pressions in conjunction with the MF approximation of the
partition function integral given in Eq. �25� or the free en-
ergy defined via �MF

0 =exp�−��MF
0 �, where �MF

0 denotes the
0th-order MF approximation of the grand canonical free en-
ergy �F route�. Alternatively, one can also use the standard
thermodynamic relations defined via the radial distribution
function �g�r� route�. For more details, we refer to Appendix
B. In recent investigations �21,23� Baeurle showed that, ap-
proaching the phase transitions of the system, other configu-
rations than the MF configuration of the respective phase
may become important and that, as a consequence, a MF
shift is not necessarily the most optimal shift with respect to
statistical convergence in the MC sampling procedure. More-
over, he demonstrated that the method of GER does take this
fact into account and provides an improved shift, leading to a
significant acceleration of the statistical convergence in the
low temperature and/or large system size regime �21�.

III. MODELS

A useful theoretical approach that greatly facilitates the
computation of polymers and complex fluids is the concept
of effective interactions between suitably chosen degrees of
freedom in the system under study �2,7,34�. In particular, the
concept was recently found to be very useful in the calcula-
tion of structure and thermodynamics of a wide variety of
soft matter systems �35�. For instance, Louis et al. �34� have
shown that it provides accurate structural and thermody-
namic information of polymer solutions under good solvent
conditions. To this end, they demonstrated that self-avoiding
walk polymer chains immersed in a good solvent form
highly penetrable coils and that the effective pair interactions
between their center of mass can well be represented by a
repulsive Gaussian potential of the form �36�

��r� = ��0�exp�− �r/R�2� , �26�

where r= �r� is the distance between the interacting coils,
while ��0� and R are the energy scale and width of the
Gaussian, respectively. In their investigations they demon-
strated that this model accurately reproduces the structural
and thermodynamic properties of such systems over the en-
tire concentration range. In a recent work, Konieczky et al.
could further show that it also reproduces the characteristic
thermodynamic features of solutions of weakly charged PE
chains, forming highly penetrable coils as in case of polymer
solutions, and, thus, constitutes a useful potential model to
mimic their effective interactions �2�. By direct comparison
of computer simulation results and heat capacity measure-
ments, Baeurle and Kroener have lately shown that the
Gaussian effective potential also reproduces the characteris-
tic thermodynamic features of micellar aggregates of ionic
surfactants �10�. These findings have recently found addi-
tional support through several theoretical and experimental
investigations on similar systems �37�. In the following we

investigate the effectiveness of the GER0 approximation in
providing accurate thermodynamic information for PE solu-
tions, described through this example model. Note that in all
our calculations, presented in the following, we employed
the system of reduced units �r.u.� that is natural for the model
�21�.

In the subsequent part of this work we apply the GER0
approximation to the screened Coulomb model, describing
the effective interactions between Debye-Hückel chains �38�.
We performed our investigations on this intermonomer inter-
action model, because the origin of the fluctuation problem
in field theories is well known to be related to the strength of
the effective interactions between the interacting monomers
�5,7�. Since the pioneering theory of Derjaguin, Landau, Ver-
wey, and Overbeek �DLVO� �7,39�, it is well established that
the effective interactions between monomers of PE’s can
well be described by a Debye-Hückel �DH� or Yukawa po-
tential of the following form �38�:

��r� = �0�a

r
�exp�− 
r� , �27�

where r is the distance between the monomer centers and a
is a typical intermonomer distance. The prefactor �0 is pro-
portional to the effective charges of the interacting mono-
mers, while the DH screening parameter 
 governs the range
of interactions and is a function of the density of the screen-
ing ions as well as the dielectric properties of the solution
�38�. In this context, it is also worth mentioning that the DH
or Yukawa potential has also been used to model the inter-
actions of a multitude of other physical systems, ranging
from elementary particle physics to colloidal suspensions
�38,40,41�. Note that, since the potential is singular at the
origin, we regularize it by the replacement ��r�→��r+��
and assume that � is a vanishingly small parameter. More-
over, in all our calculations, presented in the follow-
ing, we employ the system of reduced units that is nat-
ural for the model, i.e., a, ���→0+ � /kB, ���→0+ �, and
���→0+ � /a3 are adopted as units of length, temperature,
energy, and pressure, respectively.

IV. RESULTS AND DISCUSSION

We start our investigations by computing important ther-
modynamic quantities for the Gaussian PE model using our
low-cost approximation methods introduced previously. We
compare the delivered results to nonapproximated ones gen-
erated with the grand canonical Monte Carlo GCMC tech-
nique of Norman et al. �29�. The GCMC technique relies on
the conventional Metropolis MC algorithm �4�, to perform
the particle displacements. To simulate the particle exchange
between the physical system and the particle bath, it incor-
porates a supplementary particle creation and destruction
step into the algorithm. In Fig. 1 we show the results ob-
tained for the average PE coil density and corresponding
relative error using the GER0, MF as well as GCMC method
as a function of the activity-related parameter B=ln�zV� at a
temperature of T*=0.05. We observe that the MF results de-
viate much more significantly from the GCMC results with

GRAND CANONICAL INVESTIGATIONS OF… PHYSICAL REVIEW E 75, 011804 �2007�

011804-5



decreasing B parameter than the GER0 results. At the small-
est B parameter under consideration, the relative error in the
average density obtained with the MF approximation is more
than 2 times as large as the error obtained with the GER0
approximation and the discrepancy increases steadily. Next,
in Fig. 2 we plot the negative of the grand canonical free
energy and the corresponding relative error as a function of
the B parameter for the same model, using a volume of V*

=864 and the same temperature as previously. Note that we
plotted the negative of the free energy for a better visualiza-
tion on a logarithmic scale. Again, we observe that the GER0
results are significantly more accurate with decreasing B pa-
rameter than the MF results. From the graph visualizing the
corresponding relative error, we can deduce that the benefit
in accuracy of the GER0 method increases steeply with de-
creasing B parameter compared to the MF method. At the
smallest B parameter under consideration, the relative error

of the MF approximation is about 5 times larger than the
error obtained with the GER0 approximation. This is due to
the fact that the GER0 approximation method introduces a
tremendous amount of correlation into the calculation in con-
trast to the MF approach �28,42�, which does not take into
account any correlation at all. The slight deviations of the
GER0 results from the GCMC results at small B parameter
are caused by the neglection of the higher-order corrections
to the free energy given by W�	� in Eq. �17�, which become
increasingly important with decreasing B parameter and,
thus, need to be taken into account to achieve a higher accu-
racy in the approximation. These higher-order corrections
can, e.g., be computed using the GER formalism in conjunc-
tion with the Metropolis MC algorithm, as demonstrated by
Baeurle et al. in the references �21,32�. Next, we calculate
the thermodynamic properties for the DH intermonomer in-
teraction model, selecting the following potential parameters

FIG. 1. �Color online� Average
PE coil density and corresponding
relative error as a function of the
�-related parameter B for the
Gaussian PE model. All error bars
of the GCMC results are smaller
than symbol size.

FIG. 2. �Color online� Grand
canonical free energy and corre-
sponding relative error as a func-
tion of the �-related parameter B
for the Gaussian PE model. All er-
ror bars of the GCMC results are
smaller than symbol size.
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�0
*=1, 
*=1 and using the same calculation methods as for

the Gaussian PE model. In Fig. 3 we visualize the results
obtained for the average monomer density as a function of
the B parameter at a temperature of T*=1, using the GER0
and MF approximation methods as well as the GCMC
method of Norman et al. We observe that the MF results
deviate increasingly with decreasing B parameter with re-
spect to the GCMC results, while the GER0 results agree
well over the whole parameter range. In contrast to the
Gaussian PE model, the relative error in the average density
of the MF approximation reaches a plateau in the lower
B-parameter range. The maximum discrepancy between the
relative errors of the MF and GER0 approximation methods
in the small B-parameter range amounts to 65%. Next, in
Fig. 4 we plot the corresponding grand canonical free energy
using a volume of V*=8000 as a function of the B parameter.
Again, we observe that the MF results deviate increasingly

with decreasing B parameter with regard to the GCMC re-
sults, while the GER0 results coincide well with the GCMC
results over the whole parameter range. Similarly as in case
of the average density, the maximum discrepancy between
the relative errors of the MF and GER0 approximation meth-
ods in the small B-parameter range amounts to 65%. Further-
more, it is worth noting that the GER0 curves of the average
density and free energy show minor deviations in the inter-
mediate B-parameter range with a maximum deviation at
B=10. This demonstrates that the accuracy of the GER0 ap-
proximation correlates with the strength of the effective in-
teractions, which is the largest in the intermediate
B-parameter range �7�. This can easily be explained by the
fact that for small B parameters the density of the monomers
is low and the interactions between the monomers are only
small, while for large B parameters the concentration of the
monomers is so large that tremendous screening of the inter-

FIG. 3. �Color online� Average
monomer density and correspond-
ing relative error as a function of
the �-related parameter B for the
DH intermonomer interaction
model. All error bars of the
GCMC results are smaller than
symbol size.

FIG. 4. �Color online� Grand
canonical free energy and corre-
sponding relative error as a func-
tion of the �-related parameter B
for the DH intermonomer interac-
tion model. All error bars of the
GCMC results are smaller than
symbol size.
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actions does occur, which leads to a reduced correlation in
the high concentration limit. In this context, it is also worth
pointing out that the MF results do not show this behavior,
because the MF approximation does not take into account
any correlation at all. Next, in Figs. 5 and 6 we visualize
the average density and the corresponding grand canonical
free energy for the same model at a constant B parameter of
B=4.0 and a volume of V*=8000 as a function of tempera-
ture, computed with the same calculation methods as previ-
ously. We calculated the GER0 results for the free energy
using the GER0 approximation expressions, derived via the
F route or g�r� route in Appendix A. In addition, we show
the location of the liquid-solid phase transition, which only
depends on the temperature, determined by Robbins et al.
�41� using microcanonical molecular dynamics �MD� and
lattice dynamics �LD� calculations. In this context, it is worth
noting that the phase diagram of the repulsive DH potential
is characterized by a liquid-solid and solid-solid phase tran-
sitions, which take place among the three stable phases of the

potential, i.e., the liquid, body-centered-cubic �BCC� and
face-centered-cubic �FCC� phases �41�. Moreover, a vapor-
liquid phase transition has recently been discovered by Dijk-
stra and van Roij for this model in a certain range of poten-
tial parameters �0 and 
 �43�. However, it has also been
demonstrated in their investigation that for the values of po-
tential parameters, considered in our work, only a fluid phase
does exist. From both figures, we deduce that the curves of
the average density and grand canonical free energy, com-
puted with the GER0 method, coincide well with the GCMC
simulation data for temperatures T*�0.4. At smaller tem-
peratures, the GER0 curves deviate increasingly, until they
undergo a severe jump of several orders of magnitude at
T*�0.15. We note that the temperature of the jump almost
coincides with the temperature of the liquid-solid phase tran-
sition at T*�0.08, determined through MD and LD calcula-
tions. From the graphs, we further infer that at this tempera-
ture a discontinuity in the first-order derivatives of the
average density and grand canonical free energy with respect
to temperature does appear, which is typical for a first-order
phase transition. Since, as previously discussed, this model
for the potential parameters under consideration does not
possess a vapor-liquid transition, we conclude that the GER0
curves at this temperature reproduce the characteristic fea-
tures of the liquid-BCC phase transition of the model. In
contrast to that, the curve of the average density, calculated
with the MF approximation, grows only smoothly and devi-
ates increasingly with decreasing temperature from the
GCMC curve, until it reaches a plateau in the low tempera-
ture regime. The MF free energy curve instead shows a mini-
mum and increases slightly with decreasing temperature.
Only a small discontinuity in the first-order derivative of the
average density and grand canonical free energy with respect
to temperature can be deduced from the graphs at a tempera-
ture of T*�0.8. This value deviates by an order of magni-
tude from the temperature of the liquid-solid transition at
T*�0.08, obtained from the MD and LD calculations. Fur-
thermore, we note that the curves of the average density and
grand canonical free energy, computed with the GCMC ap-
proach, do not exhibit any characteristics of the liquid-solid
transition over the entire temperature range. We explain this
with the fact that at lower temperatures the kinetic energy of
the particles is reduced and, thus, the probability that a cavity
is created or destroyed due to fluctuations becomes smaller.
Therefore, it becomes more unlikely that a particle can suc-
cessfully be added to or eliminated from the system, as we
can easily deduce from the creation and destruction prob-
abilities visualized in Fig. 7, and, as a consequence, the
GCMC algorithm fails to provide useful results. Our conclu-
sions concord well with the observations made by Orkoulas
and Panagiotopoulos �6�, who found in case of ionic systems
that grand canonical algorithms become increasingly unreli-
able with decreasing temperature. To overcome these diffi-
culties, special strategies have been conceived to extend the
applicability of the GCMC technique to a wider range of
parameters, like, e.g., the cavity-biased method of Mezei
�44�. New developments essentially based on this approach
have recently provided some improved sampling efficiency
�45�. However, there is an obvious inherent limitation of the
particle-based approaches in their extensibility to the low

FIG. 5. �Color online� Average monomer density as a function
of the temperature for the DH intermonomer interaction model. All
error bars of the GCMC results are smaller than symbol size.

FIG. 6. �Color online� Grand canonical free energy as a function
of the temperature for the DH intermonomer interaction model. All
error bars of the GCMC results are smaller than symbol size.
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temperature and/or high density regime, due to their under-
lying particle exchange algorithm. Other methods make use
of extended sampling schemes, in which particles are gradu-
ally inserted into the physical system, such as, e.g., the grand
canonical molecular dynamics method of Cagin and Pettitt
�46� or the method of Attard �47�. However, these methods
are unphysical in nature, because they do not sample the true
grand canonical distribution function. As a consequence, the
convergence to the correct thermodynamic averages can
never be guaranteed, and these methods have been found to
provide wrong results in several important cases �48�. In con-
clusion, we see that the GER0 approximation method is a
much more reliable method to determine the phase bound-
aries of the DH model than the MF, GCMC as well as the
other grand canonical approaches described previously. Fi-
nally, it is also worth pointing out that the computational
costs of the GER0 approach are comparable to the ones of
the MF approach, but they are much lower than the costs of
the standard GCMC approach. The benefit with respect to the
GCMC approach becomes the more crucial the higher the
degree of sophistication of the polymer model, i.e., the more
molecular details are incorporated into the calculation.

V. CONCLUSIONS AND OUTLOOK

In summary, we have demonstrated in this paper on the
example of an effective potential model, mimicking the ef-
fective interactions between weakly charged polyelectrolyte
coils, and a screened Coulomb model, describing the effec-
tive intermonomer interactions of Debye-Hückel chains, that
the GER0 approach is an efficient low-cost approximation
method for functional integrals beyond the MF level of ap-
proximation. In particular, we have shown that it provides a
far more accurate 0th-order approximation of the grand ca-
nonical free energy and related thermodynamic quantities,
than the traditional MF approximation over the whole range
of chemical potentials, while only requiring a negligible
amount of additional computational costs. Moreover, we
have demonstrated on the example of the screened Coulomb

model that the GER0 approach is also much more reliable
compared to the standard MF and grand canonical Monte
Carlo approaches, to determine the phase boundaries of po-
tential models with hard-core repulsion. In conclusion, we
believe that the GER0 approach can become an appealing
alternative to the MF approach in cases, where correlations
between the interacting entities are important and where the
latter approach fails to provide useful results. Moreover, we
believe that our approach opens new perspectives to extend
the range of applicability of the grand canonical ensemble to
dense liquid and solid phases of complex polymeric materi-
als, like, e.g., biomaterials �11� and foods �49�. Our future
work will therefore concentrate on the development and ap-
plication of the GER methodology to more sophisticated
polymer models.
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APPENDIX A: GER0 APPROXIMATIONS
OF THERMODYNAMIC PROPERTIES

The GER0 approximations of simple thermodynamic
quantities and fluctuations can be derived in two ways, i.e.,
via the free energy route �F route� and the radial distribution
function route �g�r� route�. In the F route the standard ther-
modynamic expressions �50� are employed in conjunction
with the GER0 approximation of the grand canonical free
energy in Eq. �19� or equivalently the grand canonical parti-
tion function in Eq. �20�. For example, in case of the average
particle number we start from the following expression:

�N� =
z

��z,V,��� ���z,V,��
�z

� . �A1�

Inserting the GER0 approximation of the partition function,
given in Eq. �20�, into Eq. �A1�, we get

�N� =
VcGER

��̃�p = 0�
, �A2�

where in case of the Gaussian model the Fourier transform of
the potential is given by

�̃�p� = ��0��3/2R3 exp�−
1

4
R2�p�2� , �A3�

while for the DH potential the Fourier transform is

�̃�p� =
4��0

�p�2 + 
2 . �A4�

The GER0 approximation of the average pressure in the F
route can be obtained using the standard thermodynamic for-
mula

FIG. 7. �Color online� Creation and destruction probabilities,
obtained from the GCMC approach, as a function of temperature
for the DH intermonomer interaction model.
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�P� = −
�

V
=

1

�V
ln ��z,V,�� �A5�

and, thus, we get

�P� = −
�GER

0

V
, �A6�

where �GER
0 is given by Eq. �19�. Next, we describe how to

determine thermodynamic properties within the 0th-order
GER approximation using the route via the radial distribu-
tion function. To derive the GER0 approximation of the cor-

relation functions, we define the following generating func-
tional by adding a source term to the original field-theoretic
representation of the grand canonical partition function given
in Eq. �2� �31�:

I�z,V,�;�� =� d���	�exp�z�
V

dr�1 + ��r��:ei	�	�r�:�� ,

�A7�

where ��r� represents an external source field. With this
functional, we can derive the nth-order correlation function
using

g�n��r1, . . . ,rn� =
1

I�z,V,��

 
nI�z,V,�;��


��r1� ¯ 
��rn�



�=0
=

zn

I�z,V,�� � d���	�:ei	��	�r1�+¯+	�rn��:exp�z�
V

dr:ei	�	�r�:�� . �A8�

The pair correlation function is then given by

g�2��r1 − r2� =
z2

I�z,V,�� � d���	�:ei	��	�r1�+	�r2��:exp�z�
V

dr:ei	�	�r�:�� . �A9�

Analogously as in case of the derivation of the partition
function integral in Sec. II A, the pair correlation function
can be rewritten with respect to the new Gaussian measure

g�2��r1 − r2� =� d�D�	�:ei	�	�r1�:D:ei	�	�r2�:DeW�	�,

�A10�

with W�	� defined as in Eq. �17�. We can now easily derive
the 0th-order GER approximation of the distribution function
by setting W�	�=0, which provides the radial pair distribu-
tion function �32�

g�r� = e−�D�r�, �A11�

where D�r� is defined by Eq. �15� and cGER by Eq. �14�. The
thermodynamic properties can now easily be obtained by
using the standard thermodynamic expressions, formulated
in terms of the radial pair distribution function, and inserting
the GER0 approximation of the radial pair distribution func-
tion given previously. For example, for the average pressure
we use

�P� =
���
�
�1 −

2

3
����

0

�

g�r�
d��r�

dr
r3dr� , �A12�

with g�r� given by Eq. �A11�. It is worth considering in this
context that, in contrast to the route via the free energy, de-
termining properties via the radial distribution function per-
mits to take into account second-order terms in the field 	
with respect to the new Gaussian measure. As a conse-

quence, a higher accuracy in the thermodynamic quantities is
expected in the latter case and, therefore, we used for the
GER0 calculations the g�r� route throughout the paper, un-
less explicitly specified otherwise.

APPENDIX B: MEAN-FIELD APPROXIMATIONS
OF THERMODYNAMIC PROPERTIES

Analogously as in the GER0 case discussed in the preced-
ing section, the MF approximations of simple thermody-
namic quantities and fluctuations can easily be derived using
the standard thermodynamic expressions in conjunction with
the MF approximation of the grand canonical partition func-
tion, given in Eq. �25� or its corresponding free energy. This
procedure is called the free-energy route �F route� of the MF
approximation. For example, in the case of the average par-
ticle number we insert the MF approximation of the partition
function, given in Eq. �25�, into Eq. �A1� and get

�N� = zVe��/2���0�e−cMF
. �B1�

The MF approximation of the average pressure in the F route
can be obtained using the standard thermodynamic formula,
given in Eq. �A5�. As a result, we obtain the following ex-
pression for the average pressure:

�P� =
�N�2�̃�p = 0�

2V
+

�N�
V�

. �B2�

Finally, we note that we obtain similar thermodynamic ex-
pressions within the MF approximation using the g�r� route.
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