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Motion of a sphere through a polymer solution
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We present analytical solutions of the hydrodynamic resistance force a spherical particle experiences when
it moves through a polymer solution containing nonadsorbing chains. Polymer depletion results in a reduced
polymer concentration and fluid viscosity near the particle surface. The nonuniform physical properties in the
fluid phase affect the transport behavior of a translating and rotating sphere as compared with the case of
uniform properties. Based on Stokes’ stream function theory, we develop a simplified two-layer approximation
by using a step function to represent the viscosity profile. The presence of the polymer solution is formulated
in terms of correction functions to the translational and rotational friction of a sphere in a pure solvent. The
results are in fair agreement with systematic measurements of the friction of a colloidal sphere when it moves
through a polymer solution [Koenderink ez al., Phys. Rev. E 69, 021804 (2004)]. The analysis also predicts an
apparent slip length in terms of the viscosity ratio and thickness of the depletion layer.
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I. INTRODUCTION

In many biological processes proteins move through me-
dia consisting of concentrated biopolymer (including for in-
stance DNA and/or polysaccharide) solutions [1]. Studying
the effect of the presence of nonadsorbing polymers on pro-
tein transport therefore helps to better understand biological
systems. In colloid physics, the diffusion [2-8] and sedimen-
tation [9,10] behaviors of colloids through a solution con-
taining nonadsorbing polymer chains are of fundamental in-
terest, but the complex physics involved are not yet fully
understood [11]. Analyzing the flow of a colloid through a
complex medium is essential for interpreting the so-called
microrheological measurements using optical techniques;
see, for instance, [12—14] and the extensive review by Waigh
[15]. Over several decades the diffusion of colloidal particles
through polymer solutions were studied experimentally by
various groups [2-7,16,17]. The translational self-diffusion
coefficient of dilute colloidal suspensions in a polymer solu-
tion was measured by dynamic light scattering (quasielastic
light scattering spectroscopy). In the situation when polymer
chains in solution hardly scatter light as compared to the
colloidal particles, the fluctuations in the scattered intensity
are dominated by particle motions. A resulting correlation
function decays as a function of time, from which one can
deduce a translational diffusion coefficient [18]. In a depo-
larized mode one can also analyze the rotational diffusion
behavior of the colloid [17,18]. Phillies and co-workers (see,
for instance, [2,3]) have studied the translational self-
diffusion of well-defined colloidal spheres through polymer
solutions, showing that interpretation of the measured fric-
tion coefficient of the particles is fairly complicated. For a
spherical particle that moves through a medium containing
small solvent molecules, the friction coefficient is propor-
tional to the solvent viscosity. If the solvent is replaced by a
polymer solution one may naively expect that the friction
coefficient is proportional to the viscosity of polymer solu-
tion. However, measurements (see, for instance, [7]) indicate
that this is only true if the chains are very small compared to
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the size of the particle. For polymer chains that have a size of
the order of the particle radius the apparent or effective vis-
cosity a sphere experiences lies somewhere between the vis-
cosities of solvent and polymer solution. A similar finding
was also reported for the rotational diffusion of colloidal
particles [17]. Recently, translational diffusion of dilute
spheres through a suspension of rods was studied both theo-
retically and experimentally [19,20]. For small spheres com-
pared to the rods the friction that is experienced is deter-
mined by the solvent viscosity, whereas the friction clearly
increases as the spheres are relatively larger.

Several attempts were made to theoretical understanding
of the observed effects of an effective viscosity of a diffusing
sphere [6,21-23]. Cukier [21] derived scaling relations for
the translational diffusion of a spherical particle through a
semidilute polymer solution, while Ngai and Phillies [22]
proposed a coupling model for the polymer dynamics that
explains the deviation of the effective viscosity from the bulk
viscosity. Donath et al. [6] assumed that the no-slip boundary
condition is invalid for the case when polymer depletion
layer surrounds the moving particle. They modified the
boundary condition and predict that the frictional force is
reduced by a factor of 2/3 compared to the case with a
perfect no-slip condition. In the so-called protein limit,
where the size of the particle is much smaller than the char-
acteristic length scale of polymers in solution, the transport
properties of protein in semidilute polymer solutions were
estimated in terms of a retardation factor [23]. Only a few
theoretical studies address the rotational diffusion [17,24]
with polymer depletion effect, and the influence of a viscos-
ity gradient on the friction a sphere experiences due to the
polymer depletion was not yet considered.

From a phenomenological point of view, it is reasonable
to assume that the measured effective viscosity should lie in
between the corresponding solvent and polymer solution vis-
cosities. Due to a loss of configurational entropy near the
wall, the polymer segment density of the nonadsorbing poly-
mer chains gradually increases from a vanishing value at the
particle surface to the bulk value located far away from the
particle, resulting in an effective depletion layer [25-30]
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which excludes the centers of mass of the polymer chains.
Within this depletion layer, the viscosity is expected to fol-
low the polymer density distribution [31] and gradually in-
creases from the solvent viscosity at the solid surface to the
bulk viscosity in the polymer solution. Therefore, when a
particle diffuses, the hydrodynamic resistance force lies in
between the limiting cases characterized by the viscosities of
solvent and polymer solution. Tuinier and Taniguchi [31]
derived an expression for the velocity profiles of a nonad-
sorbing polymer solution near a flat wall when a low shear
rate is applied and the characteristic time scale of the fluid
flow is much slower than the polymer relaxation time. They
suggested the polymer segment density profile is related to
viscosity gradients, leading to a quantitative explanation of
apparent slip effects. In general, a nonuniform viscosity gen-
erates slip effects [32-34], which can be detected using sev-
eral experimental methods [35], and this slip behavior is ex-
pected to appear when a particle moves through a polymer
solution.

In this paper we present analytical expressions for the
polymer depletion effect on diffusion in terms of the resis-
tance force acting on a translating or a rotating spherical
particle. Using a simplified two-layer approximation we de-
rive expressions for the effective viscosity or effective fric-
tion coefficient in translational and rotational motions corre-
sponding to the Stokes and Stokes-Einstein-Debye theories,
respectively. Note that the idea of using different viscosities
can be traced back to Boussinesq’s works, collected in [36].
Comparing with experimental results we found that the ef-
fective viscosity can be prescribed by our closed-form ex-
pressions for both translational and rotational cases. Next,
the polymer depletion effect and the Stokes theory are briefly
reviewed, followed by our derivation of correction functions
based on the two-layer approximation.

II. THEORY

In Sec. IT A, we review the equilibrium density and the
corresponding viscosity profiles resulting from polymer
depletion around a spherical particle. Stokes’s stream func-
tion theory is summarized in Sec. II B using dimensionless
quantities. The simplified two-layer approximation is pre-
sented in Sec. II C. The final result is formulated in terms of
an analytical correction function to Stokes’ law. The apparent
slip length is also analytically quantified. To make the pre-
sentation clear, unnecessary symbols for the dimensionless
parameters are removed to simplify the notation.

A. Polymer density and viscosity profile near
a nonadsorbing surface

The viscosity profile, determined by the polymer segment
density, is the physical origin of the apparent slip affecting
the transport phenomena of a spherical particle that moves
through a polymer solution (see Fig. 1). Near a nonadsorbing
planar surface, the local polymer concentration ¢ is a func-
tion of the distance z away from the wall position. c—0 as
z—0, and ¢ approaches the bulk value ¢, as z— . As a first
approximation [26,27] one might simplify the density profile
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FIG. 1. Schematic of a sphere in a polymer solution containing
nonadsorbing chains, and the normalized density profile.

in the region near the flat wall using a unit step function,

@ 0 for 0=z=/6,,
pe)= 1 for z>9,,

(1)

where p(z)=c(z)/c, is the normalized segment density and
o,, is the depletion thickness at the wall. In reality the density
profile varies gradually in the region near a flat wall. An
accurate density profile

p(z) = tanh*(z/3,) (2)

was first derived by de Gennes [29] for a semidilute polymer
solution near a planar wall as a mean-field approximation. In
that case 9, equals the mean-field correlation length. In a
dilute polymer solution, §,, is very close to the polymer’s
radius of gyration R, [30,37]. Equation (2) holds, however,
quite generally [31] for ideal chains [30,38], chains in the
excluded volume limit [39], and mean-field chains for arbi-
trary concentration [37]. The depletion thickness &, is re-
lated to the negative adsorbed amount of polymer chains I'
by 6,=I"/c, [37] and follows the definition of the zeroth
moment of the excess [1-p(z)] [37,38]

0, = f [1-p(z)]dz, (3)
0

which is consistent with the formulation in Eq. (2). Similarly,
the density profile around a spherical particle can be simpli-
fied by the Asakura-Oosawa-Vrij formulation [25-27]

0 for I<r<1+56,
pl(r) = (4)

1 for r>1+6,

where &, is the depletion thickness around a sphere, p(r)
=c(r)/c, is the normalized local density, and r is the radial
distance away from the center point of the spherical particle.
For relatively large spheres in a dilute polymer solution, &
=R,. Note that all distance-related parameters including r, z,
o,, and &, are scaled by the particle radius a as the charac-
teristic length here and in the following sections except those
expressions specifically notified for demonstrating the re-
sults. The viscosity profile relates to the density profile [31]
as 7(r)=n[1+[ 7lc,p(r) +ky([ 7lc,p(r))>+- - -] where 7(r) is

011803-2



MOTION OF A SPHERE THROUGH A POLYMER SOLUTION

the local viscosity of the polymer solution, 7, is the solvent
viscosity, [ 7] is the intrinsic viscosity, and kj is the Huggins
coefficient. The profile is identical to the Huggins equation
for p=1. Here we apply a step function for the viscosity
corresponding to Eq. (4), i.e.,

for 1sr=<1+36,

7(r) = { ’73 5)

n, for r>1+6,.

We thus assume the polymer relaxation time is short to such
a degree that the polymer solution including depletion layer
surrounding the sphere does not deform while the sphere is
moving. Ignoring these relaxation effects means that the time
relaxations of the chains are much faster than the relaxation
time scale of the sphere.

B. Stokes’ law and non-Stokes-Einsteinian behavior

In a homogeneous medium, the velocity and pressure
fields satisfy the following momentum and continuity equa-
tions based on Stokes’ approximation [40-42],

Vp=V%, V .v=0. (6)

The system is nondimensionalized by scaling the length, ve-
locity vector v, and pressure p by the particle radius a, the
magnitude of the translational velocity U=Ueé_, and the shear
stress nU/a, respectively, where 7 is the constant dynamic
viscosity. For translational motion the momentum equation is
simplified by using the Stokes stream function (r, 6) [43] in
terms of spherical polar coordinates where € denotes the po-
lar coordinate and the system is symmetric in the azimuthal
direction. The stream function ¢A(r,6), scaled by Ud?, is
related to the velocity field v=v,e.+v€, by v,
=—(r*sin 0)7'9y/ 30 and v,=(r sin 6)' 9/ Ir. Mediated by
the vorticity equation, the momentum equation can be sim-
plified to a separable fourth-order differential equation for .
Complemented by the vanishing far-field and no-slip bound-
ary conditions, the stream function and the corresponding
velocity and pressure fields can be found. Note that the nor-
mal stress o,, vanishes at the particle surface. The total drag
force F is calculated by the rate of viscous dissipation over
the entire flow induced by the particle translation, or by the
area integration of the pressure and shear stress over the
particle surface. The dimensionless result of Stokes’ law
states F=—67€_, where the total drag force F is scaled by
naU, and the negative sign shows that the force is opposite
to the moving direction of the particle.

For a rotational motion in a quiescent fluid, the shear flow
is driven by a rotating sphere with angular velocity 2=() &_,
where €, indicates the rotating axis. The velocity at the sur-
face of the sphere is Q Xr(a,0,¢), where r(r,0,¢) is the
position vector in spherical polar coordinates. The system
parameters are independent of ¢, implying that the shear-
induced velocity field can be found by using a trial solution
v=(0,0,v,)=(Q Xr)W(r) with vanishing velocity compo-
nents in both r and 6 directions. The trial solution satisfies
the continuity equation, and according to the Stokes equation
in r and @ directions, the pressure field is a constant. Apply-
ing v=v,€, where v,=CQ sin(f)w(r), the momentum equa-
tion can be simplified to
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v
[VZV]QD:VZU"D—%‘:%:O. (7)
We further nondimensionalize the system by the following
scales: Length ~a, velocity v~ Qa, stress tensor 7~ 7(),
and the torque acting on the sphere T~ 7Qa’. The induced
velocity field can be solved by substituting the dimensionless
trial solution v,=sin(#)w(r) into Eq. (7) and applying the
vanishing and no-slip boundary conditions. The final result
for the shear-induced torque on the sphere is given by

T=f r X (7-n)dA =-38mé,, (8)
a0

where n is the surface normal and the negative sign shows
that the resistance is opposite to the rotational direction.

In terms of the friction coefficient, F=—fU and T
=—f"Q). Thus, in a complex fluid, Stokes’ calculation gives
fap=6m74a and fly=8mnla’, where .= 17, in the case of
a sphere translating or rotating in a pure solvent with viscos-
ity 7,, and one may ad hoc postpone 7.4= 17, in the case of
a polymer solution with viscosity 7,. Dynamic light scatter-
ing measurements of the diffusion behaviors of colloidal
spheres in a polymer solution yield translational and rota-
tional diffusion coefficients D' and D', respectively. In a di-
lute or semidilute system, the thermal energy kzT and appar-
ent friction a sphere experiences are connected to the
effective diffusivities through the Einstein relation DL
=kgT/ fig for translation motion and Dy =kpT/fL; for rota-
tional motion. Therefore, the corresponding Stokes-Einstein
and Stokes-Einstein-Debye relations are written as

677772ffa’

_ kT
87777:,ffa3.

Measurements have shown that 7., depends on the ratio of a
to & where £ is the typical length scale in the polymer solu-
tion [2-7,16]. The case 7.4=17, seems to hold in the limit
a<<0(¢). In dilute polymer solutions the length scale would
be the polymer’s radius of gyration and, in concentrated
polymer solution, it equals the correlation length which de-
creases as the polymer concentration increases above the coil
overlap concentration. However, the finding of Eq. (9) from
experimental data is in contrast to the result proposed by
Donath et al. [6] who stated the friction coefficient for trans-
lational motion is 4w 7,a for the case of small a. In their
analysis, the friction coefficient 4777],,51, which corresponds
to the full slip limit, is not justified because the no-slip
boundary condition is still valid for the solvent molecules. In
the opposite limit a > O(&) experimental results indicate that
Mest— 7p- Thus in the transition regime with a~O(§) one
needs to evaluate D.y; and Dl by establishing an effective
Viscosity 7.s, which lies in between the limiting values; that
is, 7, < 9egr<< 77,. The corresponding diffusive behavior is of-
ten termed non-Stokes-Einsteinian.

-
eff

Dteff= )

C. Two-layer approximation

Following Stokes’ stream function theory, we derive here
the analytical expressions of the correction functions g’ and
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FIG. 2. Creeping flow induced by the translational (left) and
rotational (right) motion of a sphere in a solution with polymer
depletion effect. The sketch illustrates the streamlines, induced
flow, coordinate system, and the physical domains for the two-layer
approximation.

g", defined by 7.4=7,g" and 7.,=n,g’, for translational and
rotational motions, respectively (Fig. 2).

1. Translational motion

The simplified viscosity profile is described as a step
function corresponding to the polymer segment density pro-
file given in Eq. (4). The fluid dynamics in the depleted inner
and unaffected outer layers can be written as

Vi =v>0  V.v0=0 for 1<r<1+35,

(10a)

AVpO =V vV .y =0 for 1+8<r<os,

(10b)

where J; is the dimensionless thickness of the depletion layer
around the sphere, and A=,/ 7, is the relative viscosity be-
tween the inner and outer layers. Note that 7, and 7, are
fixed viscosities corresponding to the densities p=0 and p
=1; thus 7,<7, and A<1. The governing equations are
nondimensionalized by scaling the length, velocity vector v,

the stress tensor 7;;, and thus the pressure field p through

length ~a, v~U, ;andp~ nUla, (11)

where 7,;=—p&;;+0;; is the total stress tensor, J;; is the Kro-
necker delta and 0' is the viscous stress tensor Applying
Stokes stream functlon to the system leads to

EYP=0 for 1<r<1+34, (12a)
E4l/l(0)=o for 1+, <r<w, (12b)
where
F osinfgg( 1 9\
E4E _2 Sll’l2 (13)
or r (70 sin 636

The inner-layer stream function ¢/?/(r, §) and the outer-layer
stream function ¢/°)(r,6) are related to the corresponding
velocity fields by

o_ =L w1
U, =75 , Ug =7
r-sin 0 960 rsin 6 or

, (14a)
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oo —L W g 1 W

14b
T2 sm6 a6’ Yo rsin 6 Jr (14b)

Substituting trial solutions, ¢ (r, 8)=sin*()f?(r) and
P (r, 6)=sin?(6)f(r), into Eqgs. (12a) and (12b), the result-
ing equations for the unknown functions £ and £{°) can be
written as

40" g g0
2 + 5

FOE) _ ——=O for 1sr<1+6,
(15a)
o _ Y 8 8
flow) _ > + il =0 for 1+4,<r<om,
(15b)
of which the general solutions are
i) 4 2 D
f) =Art + B+ Cr+ —, (16a)
r
0) 4 2 H
O =EFf + FP+Gr+ —, (16b)
r

respectively. The system is complemented by the following
boundary conditions:

vi”),vg’)HO as r— o, (17a)
d=¢'9 at r=1+4, (17b)

-p 4 0'(1) =—pl4 cr(”) at r=1+46, (17¢)
V=09 at r=1+9, (17d)
=0 at r=1+4, (17e)
v(ri)=c0s 6 at r=1, (171f)
vg)z—sinﬁ at r=1. (17g)

The fluid dynamics in the inner and outer layers are coupled
through boundary conditions at r=1+&,. The seven bound-
ary conditions are sufficient to determine the eight coeffi-
cients A~ H. The vanishing velocity boundary condition in
the far field, Eq. (17a), requires E=0 and F=0. Equations
(17b) and (17¢) impose the continuity of the shear and total
normal stress fields across the outer boundary of the deple-
tion layer or the inner boundary of the bulk polymer solution.
Equations (17d) and (17e) match the velocity field and en-
sure inner and outer stream functions are continuous across
the boundary at r=1+&,. Equations (17f) and (17g) are no-
slip conditions. In terms of spherical coordinates, Eq. (17b)
can be expressed as

a (v 1" a (v 1
Nr—|—]+- r—|— | +— . (18)
or\ r r d0 or\ r r d60

Applying Stokes’ stream functions to Eq. (18) generates

011803-4



MOTION OF A SPHERE THROUGH A POLYMER SOLUTION

o 2f00 of0 o 219 2f@
)x(f(’) _f(_+iz) flo) _f<_+ f(z . (19)
r r r r
which gives the algebraic relation
N1+ 8)°A+\D-H=0. (20)

Using Stokes’ stream functions and integrating the momen-
tum equations Eqs. (10a) and (10b), the pressure fields p"
and p can be formulated in terms of the undetermined
coefficients as

; 2 cos 0
P11+ 68,,60)=—20(1 + 5,)cos A — 0+ 55)2c (21)
and
—2cos 0
©(1+8,0)=——— 22
p ( 8§ ) )\(1 + 5S)2 ( )

provided the reference pressure is set to zero at infinity. Thus
Eq. (17¢) reduces to

1+6.)? 2
( S)G_

201+ 8)°A+(1+8)*C+2D- XH:O.

(23)

Boundary conditions, Egs. (17d)-(17g) yield the following
relations:

(1+8)°A+(1+68)°B+(1+68)’)C+D-(1+6)°G-H=0,

(24)

4(1+ 8)°A+2(1+68)°B+(1+6)’C-D
- (1+8)’G+H=0, (25)
A+B+C+D=-1/2, (26)
4A+2B+C-D=-1, (27)

respectively. Solving the algebraic system formed by Egs.
(20) and (23), and Egs. (24)—(27) leads to the exact solution:

A= %(1 N+ 8)[1-(1+6)%)1,

- ‘71[_ 33+20(1 =N (1 + 8)°

+5(1=N)(1+68,)° +4(1 = \)?VII,

=50+ )@ 4301+ 87~ 20 -,
= %(1 +8)[2+3N)(1+6,)°—2(1 =N,

G =M1+ )@+ N1 +8)7 =201 - N,
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H= %)\(1 +68)[-3(1-NM(1+8)

+5(1+6)-2(1-N))I, (28)
where

I=22+3N)(1+68)°=33+2M)(1 =N (1 +8,)°
+10(1=N)(1+68)°=9(1 =N)(1+6,) +4(1 = \)?

for OssA=<1. Note that this result may be extended to
the case of polymer adsorption for parameters A =1 with
properly defined adsorbed layer thickness. In summary, the
stream functions solved for the two-layer approximation are
JO=(Ar*+Br2+Cr+D/r)sin® @ and ' =(Gr+H/r)sin® 0
where the constants A~ H are functions of A and &,, given
by Eq. (28). Thus the velocity, pressure, normal, and shear
stress fields can be established accordingly. The total drag
force is determined by integrating the surface traction. Fol-
lowing the stress field obtained, the modified Stokes law can
be expressed as F=—67g’ €., where F is scaled by 7,aU and
the correction function for the translation motion g’ is

g'(\,8,) = %[2(2 +3N)(1+8,)0—4(1=N)(1+6)].

(29)

The denominator 1T is defined in Eq. (28). This result repre-
sents the effective viscosity or an equivalent friction constant
in a closed form, incorporating the polymer depletion effect
for the translational motion. A few limiting cases thus can be
recognized: (a) When A=1, g'=1, the resistance follows
Stokes’ law with an effective viscosity that equals the solvent
viscosity; (b) for a very thick depletion layer, §,> O(1), the
sixth-order terms dominate, and thus g'—1; (c) for a very
thin depletion layer with ;<A =<1,

1 (1=-N
A A2

3(1 -
)\3

t

5.+ N 5. (30)

We thus recover the well-known limiting behaviors encoun-
tered experimentally [7], that is, if the depletion layer is very
large compared to the sphere radius, we have g'—1 or
Tetr— 7, as described in case (b). In the case of a small
depletion layer compared to the sphere radius, g’ is corrected
from the viscosity of the polymer solution by small terms
resolved in Eq. (30). Thus for a very thin depletion layer,
when 7,— 7, or A —1, g'~ A1 is a good approximation for
the effective viscosity, which is equal to the viscosity of the
polymer solution in the outer layer. Qualitatively, these re-
sults are comparable to the theoretical prediction for transla-
tional motion of spheres through networks of hard rods
[19,20], using a different approach where direct and hydro-
dynamic interactions between the sphere and the rods are
explicitly accounted for.

2. Rotational motion

Following Eq. (7) the governing system for the rotational
motion can be written as
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@

2..(i)

Vvq, r_Slr‘l‘Dz(fO) 0 forl<r=<1+4,, (31la)
(0)

V29 - —*”— 0 forl+d8,<r<ow. (31b)

¢ P2sin®(6)
The characteristic scales are defined by
7~ 710, T~ 504.
(32)
Substituting trial ~solutions (')(r 6)=sin()w(r) and
")(r 6)=sin()w'’)(r) into Egs. (31a) and (31b), the result-

ing equations for the unknown functions w') and w' be-
come

length ~a, v~ Qa’,

2 2

w4 =y’ Swil=0 forl<r<1+5, (33a)
r r
v 2 2 '
w4 S0 —2w<") =0 forl+6,<r<w.
r r
(33b)

The correspondmg general solutions of Egs. (33a) and (33b)
are w=M/r?+Nr and w9 =1/ +Jr, respectively. The sys-
tem is subjected to four boundary conditions:

vE;’)—>0 as r— o, (34a)
vg) =sinf atr=1, (34b)
vg) = vEp”) at r=1+4,, (34¢)
o)=0\ atr=1+4,. (34d)

Solving for the constants M, N, I, and J using Egs.
(34a)—(34d) leads to the velocity and stress fields. The torque
acting on the sphere is evaluated by the area integration
[0 sin(&)r(erA at r=1. Finally, we obtain the solution for
the torque T=-87g" €, in terms of the correction function

(1+4)

N, 6) = —
A TP

(35)

A few limiting cases for g" can also be recognized: (a) A
=1, g"=1, the effective viscosity equals the solvent viscosity;
(b) for a thick depletion layer, 5,5 O(1), we have g"— 1; (¢)
for a very thin depletion layer with §,<<A=<1,

1 3(1=-\ 9 — 12\ +3\2
Ny e
A A A

Similar to the translational case, if the depletion layer is very
large compared to the sphere radius, we have g"— 1 or 7.
— 7, as described in case (b). In the case of a small depletion
layer compared to the sphere radius, g, is corrected from the
viscosity of the polymer solution by small terms including
8, as resolved in Eq. (36). Note that for cases with a thin
depletion layer, the asymptote Eq. (36) is valid only if \ is
not too small. However, Eq. (35) holds for 0<A=<1 al-
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FIG. 3. Schematic of tangential velocity field induced by a mov-
ing boundary and the apparent slip that represents the polymer
depletion effect. Linear extrapolation of the velocity profile of the
outer layer gives the slip length b.

though #7,=0 or f’=0 is beyond the scope of a practical
system.

3. Apparent slip effect

An alternative way to characterize the effect of polymer
depletion on sphere motion is by introducing an equivalent
slip effect at the solid-liquid interface. The Navier boundary
condition assumes that the slippery fluid element immedi-
ately in contact with the solid surface is resisted by the tan-
gential traction f,, which is proportional to the slip (tangen-
tial) velocity v, [40,44]. The proportional constant is defined
as the friction coefficient 8 by letting

fi=Puy. (37)

If the fluid flow with velocity field v is driven by the moving
boundary with wall velocity v,,, the kinematic boundary con-
ditions that incorporate the slip effect can be formulated by

(v-v,) -n=0, (38a)

(v-v,) -t=v,, (38b)
where the surface normal n and surface tangent t represent
the local coordinates along the solid boundary (Fig. 3). The
slip velocity v, only appears along the tangential direction t.
Resolving a particle-induced flow including slip effect re-
quires the vanishing far-field condition and the kinematic
boundary conditions, Eq. (38a), and the combination of Egs.
(37) and (38Db),

By+sin ) =0, atr=1. (39)

The following stream function can be derived

[ seor].
W= spear ages [T @O

and, consequently, the velocity, pressure, normal, and shear
stress fields can be found. The total force acting on a slippery
sphere was first derived by Basset [45], expressed as
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B+2,

6 , 41
el (@)

Fs]ip ==
where the total drag force Fg;, is scaled by 7,aU using a
uniform viscosity of the polymer solution 7,, and the friction
coefficient B is scaled by 7,/a. When the no-slip condition
applies, B— and Eq. (41) reproduces Stokes’ law; when
the perfect slip applies, 8— 0 and the total resistance is re-
duced by a factor of 2/3 [41]. Similarly, the modified bound-
ary condition for a rotating sphere with slippery surface sat-
isfies

Bl,-sinf)=0,, atr=1. (42)

®
We thus obtain

_sinﬁi __3sin6i
Vo= T2 (/.—3+3)’ Tre=T 3 <B+3)’ “3)

and the torque acting on the sphere is

Tslip == 877( )éz, (44)

B
B+3
where T, is scaled by 7],79613~ When the no-slip condition
applies, B— and Eq. (44) reproduces Stokes’ law; when
the perfect slip applies, 5— 0, and the total resistance van-
ishes for the rotating sphere. It is also convenient to define
the slip boundary condition in terms of an apparent slip
length b from linear extrapolation of the velocity profile [31].
In dimensionless form, b=1/4, and b is scaled by the radius
a of the sphere. Finally, the two-layer approximation can be
formulated in terms of the apparent slip effect for both trans-
lational and rotational motions based on the correction fac-
tors. Comparing the correction factors gives (8+2)/(8'+3)
=\g’ where B'=1/b". Thus for the cases with thin polymer
depletion layer, the apparent slip length for the translational
motion is approximated by

_ (1—)\)5_3(1—)\)52

b' ‘ . 45
S Nl (45)
Similarly, B/(8'+3)=\g", where #'=1/b", and
1-N) . 2(1-\
pr 205 2020 o)

N N
estimates the apparent slip length for the rotation motion.
Both b" and b", having consistent magnitude to the first-order
approximation, are functions of A and &;. The no-slip condi-
tion corresponds to A=1, and the slip length increases as A\
reduces. A perfect slip condition is achieved as A < §,<<1, in
which b, b"— and B, f"—0. As a final test for our exact
solution, by letting §,=1073 and A\=1073, b’ and b" approach
100, 8" and " approach 0.01, Tg;, vanishes, and Ag'—2/3.
This limit is consistent with the perfect slip condition given
by Eq. (41) for the translational motion.

III. RESULTS AND DISCUSSION

In this section we illustrate the theoretical results for the
modified transport properties of a sphere through a polymer

PHYSICAL REVIEW E 75, 011803 (2007)

FIG. 4. Velocity vectors, streamlines, and contours for the total
normal stress field based on the two-layer model for a sphere trans-
lating to the right. The stress field is normalized by 7,U/a. Param-
eters applied: &,=1 for all; A=0.5 (top); A=0.1 (middle); A=0.01
(bottom).

solution. The flow patterns driven by the particle’s transla-
tional motion are illustrated in Fig. 4. When the viscosity
ratio \ is sufficiently small and the depletion thickness is of
the order of the particle radius, the circulation induced by the
strong total normal stress can be clearly seen. The front and
aft symmetric pattern indicates the reversibility of Stokes’
flow.

Figure 5 shows the correction function g’, formulated by
Eq. (29), versus the specific viscosity 7y, of the bulk polymer
solution. The specific viscosity, defined by #,=(7,
—n,)/ 7,=N"'=1, characterizes the increase of viscosity by
increasing the polymer concentration. The inverse of the cor-
rection function 1/g’, ranging from 0 to 1, is equivalent to
DL/ DL, 1/ 1, or fil fog, in which the effective transport
properties are compared with their corresponding values in
solvent. The solid lines represent results for §,=0,0.2,0.5, to
d,=1. When & vanishes, 1/g" attains \ or 7,/ 7,; thus 7.4
=17),. The deviation from the base line case (J,=0) increases
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FIG. 5. The modified Stokes law, represented by the inverse of
the correction function 1/g" versus the specific viscosity 7, for a
sphere in polymer solutions during long-time translational motion.
The results shown are for various depletion thickness &;. The
dashed line refers to the asymptote given by Eq. (30) for §,=0.2.

as o, increases. The reduction of friction as & increases
is also reflected on the apparent slip length b, approximated
by Eq. (45). In the extreme case of the so-called “protein
limit,” &, approaches infinity and g’ is unity for any specific
viscosity.

Figure 6 shows the correction function g" predicted by Eq.
(35) for the friction of a rotating sphere in a polymer solution
versus the specific viscosity for various &, values. Compar-
ing Figs. 5 and 6 for a given specific viscosity demonstrates
a rotating sphere is more sensitive to the polymer depletion
effect, estimated by the deviations from the baseline case
with 6,=0. This behavior can be explained by the stronger
first-order effect on the correction function formulated in Eq.
(36) comparing to Eq. (30). In translational motion, the ve-
locity field has a decaying rate proportional to 1/r, whereas
it decays as 1/ % for the rotational case; thus it is reasonable
to speculate that when a sphere rotates it only drives a thin
layer of fluid immediately adjacent to the boundary in con-
trast to the translational case, which has a longer-range ef-
fect. Also in the rotational case the energy dissipates in a
relatively small volume so that the transport behavior is only

1.0

0.8

0.6

g
oal O\ -7

0.2

1g'=2

00 1 1
10° 107 10° 10’ 10°

n sp

FIG. 6. The modified Stokes law, represented by the inverse of
the correction function 1/g" versus the specific viscosity 7y, for a
sphere in polymer solutions during long-time rotational motion with
various depletion thickness &;. The dashed line refers to the asymp-
tote given by Eq. (36) for §,=0.2. Dash-dotted lines are the results
of Koenderink and co-workers [17].
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sensitive to the physical properties of the fluid element near
the surface. The dash-dotted lines in Fig. 6 correspond to the
theoretical prediction of Koenderink et al. [17]:

(1+96)°

(1+6) -1’ “47)

8'(6) =
which appears to be the limiting case of our result, Eq. (35),
with N\ —0. Equation (47) holds for the cases with large
polymer concentrations (17,> 7,) or for the short-time rota-
tional motion such that the polymer segments may be treated
as a fixed network instead of a movable suspension.
Experimentally, the translational friction 677.g'a of di-
luted colloidal spheres can be measured by dynamic light
scattering or direct monitoring of the sedimentation velocity
of diluted settling colloidal spheres. The rotational friction
8mn,g’a® can be measured using depolarized dynamic light
scattering or phosphorescence spectroscopy [46]. We com-
pare our results with the experimental work of Koenderink
and co-workers [17] who conducted a systematic study of the
sedimentation, short-time translational, and short-time rota-
tional diffusion on transparent colloidal fluorocarbon spheres
through a polymer solution containing the polysaccharide
xanthan. These data include the polymer concentration effect
for both translational and rotational motions using a well-
characterized sample. From phase transition studies, it has
also been demonstrated that xanthan does not adsorb onto the
colloidal spheres [47]. The approximated radius of gyration
of the xanthan is 264 nm, being a relatively stiff polysaccha-
ride with a persistence length of 120 nm. The standard ex-
pressions for a semiflexible chain thus effectively consists of
about eight segments. For such semiflexible chains the effec-
tive depletion layers in dilute polymer solutions can be esti-
mated [48] and for xanthan mixed with 93 nm spheres it
follows that the depletion thickness of a dilute solution &y is
approximately 123 nm. The concentration dependence of the
depletion thickness can be described by

57 =084+&7 (48)

due to Fleer et al. [37], where the correlation length £ de-
creases with the polymer concentration ¢ [17,49], given by

E=R,(clc") . (49)

The overlap concentration of polymers ¢* was estimated to
be 0.008 wt. %.

In Fig. 7, we compare the theoretical predictions (solid
lines) with the experimental results of Koenderink and co-
workers [17]. The concentration dependent specific viscosity
of xanthan solution at low shear condition can be described
by the Martin equation [50],

Np=N"=1=c[ngle*7], (50)

where [ 7] is the intrinsic viscosity, 6.25 m?®/kg, for the xan-
than solution and the Huggins coefficient k is 0.46 [17]. In
Fig. 7, the asterisks are experimental data for N versus xan-
than concentration ¢ and the dash-dotted line is the best fit
using Eq. (50). Once the concentration is determined, Nps N\,
and &, can be obtained by Egs. (48)—(50). The translational
result g’ predicts a reasonable trend for the measured sedi-
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FIG. 7. Theoretical predictions (solid curves) of effective long-
time rotational (g") and translational (g') motions of a colloidal
sphere with radius 93 nm versus xanthan concentration c. Data
points are experimental results measured by Koenderink and co-
workers [17]. The translational motion was measured by the sedi-
mentation (open diamonds) and the rotational motion was measured
by the depolarized dynamic light scattering method (closed dia-
monds). Asterisks represent the measured viscosity 7,/ 7, for the
xanthan solution versus the polymer concentration. Dash-dotted line
is the best fit of the data points using Eq. (50).

mentation data. However, the model overpredicts g, mean-
ing the sedimenting sphere experiences a smaller effective
viscosity. The deviation may be caused by the simplified
two-layer approximation that underpredicts the thickness of
the depletion layer, or, by a more complicated scenario in-
volving distortion of the polymer depletion layer due to the
convective effect. Note that Koenderink et al. [17] also mea-
sured short-time translational motion using dynamic light
scattering method, showing that the short-time behavior
yields a much smaller g’ than the sedimentation data and our
prediction for the long-time translational motion. On a short-
time scale the sphere mainly moves through the surrounding
depletion layer during its translational motion, whereas the
long-time diffusion behavior we calculated is based on the
total hydrodynamics resistance for the sphere to translate
through the polymer solution. For translation motion, the

PHYSICAL REVIEW E 75, 011803 (2007)

fluid element at a longer distance away from the sphere can
still sense the viscous force induced by the moving sphere,
thus from either energy or momentum conservation point of
view, a higher drag force is expected for the long-time case;
see recent first principle simulation results by Kriiger [51].
The predicted g" for the rotational self-diffusion is in excel-
lent agreement with the measured data. Although our calcu-
lation is valid for the long-time rotational motion, experi-
mental results show that the correction for both long-time
and short-time rotational diffusions are similar, so that the
model can be used for both conditions. The long-time rota-
tional motion has a velocity decaying rate proportional to
1/r?, meaning the sphere mainly moves around the depletion
layer and is dynamically similar to the short-time rotational
motion.

V. CONCLUSIONS

We present analytical results for the long-time friction
experienced by a sphere that moves through a solution con-
taining nonadsorbing chains by solving creeping flow equa-
tions. The hydrodynamics problem with variable viscosity
was simplified by considering a symmetric depletion layer
around the sphere where the viscosity is that of the solvent.
Outside the depletion layer the viscosity equals the polymer
solution viscosity. The non-Stokes-EFinsteinian transport
properties were analytically quantified and compared with
the experimental data. We found that the rotational diffusion
is not sensitive to the time scale, whereas translational diffu-
sion is. For a system with a thin polymer depletion layer, the
slip boundary condition can be used to characterize the trans-
port behavior corresponding to the depletion effect.
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