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Seven model polydimethylsiloxane �PDMS� networks were obtained by hydrosilation of a difunctional
vinyl-terminated PDMS prepolymer with a SiH-containing cross-linker. Viscoelastic experiments, completed
by size exclusion chromatography and static light scattering experiments, were performed in order to study the
influence of molecular parameters on the dynamic properties around the sol-gel threshold. The dynamic critical
parameter u was determined from experiments close to and above the sol-gel threshold. Our results show that
the growth mechanism of PDMS clusters and the viscoelastic behavior are a function of the ratio N /Ne, where
N and Ne are, respectively, the numbers of Kuhn monomers between branch points and between entanglements.
For N /Ne�1, the growth mechanism of clusters is the critical percolation and u=0.69, and for N /Ne�1, the
growth mechanim of clusters is the diffusion-limited cluster aggregation and u=0.76.
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I. INTRODUCTION

The static properties of polymer networks around the sol-
gel transition obey power laws where the critical exponent
values are characteristic of the mechanism of connectivity
�1–3�. A universality class is defined by a group of critical
exponents, independent of the chemical structure, calculated
in the framework of a theory of gelation. There are two main
universality classes for the sol-gel transition. The first one,
called the critical percolation class, describes the gelation of
colloids, the polymerization of small multifunctional mono-
mers, and the cross-linking of longer chains in solution
�4–7�. The second one, called the mean field class, modeled
by the Flory-Stockmayer theory �8–10�, describes the vulca-
nization and cross-linking of long polymer chains �1,2,11�.
The crossover between the two classes is given by the Gin-
zburg argument, which considers that the mean field theory
describes well the molecular structure only if fluctuations of
the order parameter in a correlation volume are negligible.
Conversely, if fluctuations predominate, the molecular struc-
ture is completely described by the critical percolation
theory. The literature shows that the experimental static
properties of a majority of percolating systems depend on the
experimental conditions like the solvent concentration
�12,13� and are in agreement with either the critical percola-
tion theory or the mean field theory �1,14�. On the other
hand, the dynamic properties and particularly the viscoelastic
properties of branched polymers around the gel point are not
well understood. Experimental results show that the dynamic
exponent u that characterizes the frequency dependence of
the complex shear modulus seems to be nonuniversal and
dependent on the chemical structure of the branched poly-
mers. Most authors tried to link the viscoelastic properties,
particularly the u values, to universality classes. However,
we have to consider that the experimental critical viscoelas-
tic properties are limited in frequency and the u values are
characteristic of the dynamic of finite clusters or part of in-

finite clusters. Endeed, even if the final connectivity mecha-
nism at the gel point should occur by critical percolation, one
can observe different viscoelastic behaviors characterizing
the dynamic of clusters or parts of clusters, which grew by
mechanisms different from critical percolation. Recently,
Rottereau et al. �15,16� showed that a finite or infinite cluster
could be characterized by different fractal dimensions at dif-
ferent spatial scales, which should correspond to different u
measured in different frequency ranges. It is clear that tran-
sitions in dynamic behavior of clusters associated with the
transitions of growth mechanisms depend on the structural
parameters of precursors and gelation conditions. Lusignan
et al. �17� show that the dynamic exponent of random
branched polyesters is a function of the ratio N /Ne, where N
and Ne are, respectively, the numbers of Kuhn monomers
between the branch points and between entanglements. For
N /Ne�2, u is universal and is forcast by the Rouse fractal
model �u=0.67�; the static properties are characteristic of the
critical percolation class. For N /Ne�2, u is nonuniversal
and is a decreasing function of the number of entanglements
between branch points. In this case, the molecular structure
of the network is predicted by the mean field theory.

We will present in this paper the viscoelastic properties
around the gel point of two polydimethylsiloxane �PDMS�
networks. These results complete those of a structural series
of PDMS previously published in Refs �18,19�. Based on
static light scattering and size exclusion chromatography ex-
periments, we will show how the set of data yields a unified
understanding of the static and dynamic properties of PDMS
networks around the sol-gel transition. The paper is orga-
nized as follows: in Sec. III, we recall the background theory
used to analyze the molecular structure and the viscoelastic
properties of our PDMS networks. In Sec. III, we describe
the chemical structure of our prepolymers and cross-linkers,
the reaction conditions, and the experimental procedure of
the molecular analysis and viscoelastic measurements. In
Sec. IV, we present and discuss the experimental results. Sec-
tion V is our conclusion.*Electronic address: philippe.tordjeman@univ-montp2.fr

PHYSICAL REVIEW E 75, 011802 �2007�

1539-3755/2007/75�1�/011802�10� ©2007 The American Physical Society011802-1

http://dx.doi.org/10.1103/PhysRevE.75.011802


II. BACKGROUND THEORY

The scaling relations of both mean-field �vulcanization�
and critical percolation classes present the same form, but
differ in their exponent values �7�. Near the gelation thresh-
old, polymer clusters are fractal with a mass scaling as a
power of their radius R: M �RDf, where Df is the fractal
dimension of the clusters. The number of clusters of N Kuhn
segments, n�N�, also obeys a scaling relation

n�N� � N−�f� N

N*� , �1�

where f�N /N*� is the cutoff function that cuts off the power
law at a characteristic large number of Kuhn segments, N*.
The number of Kuhn segments, N, is given by the relation

N =
n0

m0

M

C�

, �2�

where n0 is the number of main chain bonds per monomer,
m0 the monomer molar mass, C� the Flory characteristic
ratio, and M the molecular weight of the polymer.

In the three-dimensional critical percolation, the theoreti-
cal fractal dimension is Df =2.52 and the overlap function is
��N��1. This function is equal to the total hard sphere vol-
ume fraction occupied by chains of size N and sections of
larger chains of size N �20,21�. In this case, the excluded
volume interaction is partially screened and the relation be-
tween Df and the space dimension d is given by the hyper-
scaling law

Df�� − 1� = d .

On the other hand, in the three-dimensional mean-field
theory Df =4 and ��N��1; then, the excluded volume inter-
action is totally screened �7�.

For the chemical gelation of polymers, the degree of con-
nectivity of clusters is a function of the extent of reaction. If
p is the fraction of reacted bonds and pc its value at the gel
point, the relative distance to the threshold is

� = � p − pc

pc
� .

As the reaction proceeds, the polymers reach the gel point.
Around the threshold, the static properties are quite well pre-
dicted by the critical percolation theory. Far below the
threshold, the structural properties are modeled by the mean
field theory. The relative distance to the threshold, �G, which
defines the crossover between the two theories is given by
the Ginzburg criterion. �G corresponds to the � value at
which the largest polymers start overlapping significantly. de
Gennes �22� showed that �G scales as �G�N−1/3.

During the sol-gel transition, the viscoelastic properties of
the material are function of �: for p� pc, the polymer is a
viscoelastic liquid characterized by a zero-frequency viscos-
ity 	, which diverges as one approaches the threshold: 	
��−s. On the contrary, for p� pc, the polymer is a viscoelas-
tic solid with a zero-frequency elastic modulus G, which
increases above the gel point: G��t.

The zero-frequency properties are related to the low-
frequency dependence of the complex modulus G*�
�:

	 = lim

→0

G*�
�
i


and

G = lim

→0

G*�
� .

At the sol-gel transition, the complex modulus follows a
power law G��G��
u �23–25�. The relation between the
dynamic exponent u and the zero-frequency exponents s and
t is obtained from the scaling law

u =
t

s + t
. �3�

Near the threshold, the dynamic behavior is governed by

*, the frequency characteristic of the relaxation of the larg-
est cluster N*; then, the complex modulus can be expressed
by the general equation �24,26,27�

G* = G0�t f�i
/
*� ,

with 
*=
0�s+t and f�i
 /
*��
u. This relation is valid only
below the characteristic cutoff frequency 
0. One can note
that G� and G� are independent of � for 
0�
�
*, which
is an important consequence of the self-similarity of the vis-
coelastic behavior. The storage and the loss modulus can be
expressed by considering that the dynamics of a nonen-
tangled fractal polymer melt can be represented by a Rouse
bead-spring model. We assume that fractal polymers submit
to a self-similar Brownian motion for which the diffusion
coefficient scales as D�R−�, where R is the radius of the
fractal polymer and � is an exponent linked to the fractal
dimension of the macromolecules. Following the Rouse ap-
proach, the stress is the sum of displacement contributions of
all the springs and can be expressed as a simple function of
the normal mode Xp: �=	p�p

c
XpXp�, where �p
c is a constant

proportional to the temperature. Xp is obtained from the
Langevin equation for which the Brownian force is entropic.
According to the Rouse approach, Xp takes an exponential
form, Xp=Xp

0 exp�−t /�p�. The relaxation time �p of the eigen-
modes can be calculated independently by considering the
Brownian motion of a single fractal cluster for which its
Brownian relaxation time is given by the classical expression
�R� R2

D , where R is the radius of the cluster and D its diffu-
sion coefficient. One can express the relaxation time of the
mode p as a function of �R: �p� p−1/u�R, with 1
 p
m, m
being the longest relaxation mode depending on the molecu-
lar weight of the polymer. Following Martin et al. �28,29�,
the exponent u can be determined from the cluster diffusion
coefficient D�R−� by considering that the shortest relax-
ation time should be independent of the cluster size and of
the mode m: �m�m−1/u�R�m0. In this model, m scales as
m�RDf, where Df is the fractal dimension of the polymer.
Finally, we can write
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�p = � p

m
�−�2+��/Df

�0 = � p

m
�−1/u

�0, �4�

where �0 is the relaxation time of the fastest mode that cor-
responds to the relaxation time of the smallest fractal cluster
��0�1/
0�. The � exponent depends on the molecular
weight distribution of the polymer: �=Df for monodisperse
fractal polymers and �=

Df

d �2+Df�−2 for polydisperse fractal
polymers �30,31�.

The viscoelastic behavior of a branched polymer can be
modelized by assuming that all the springs have a same elas-
tic modulus Gc. Then, the storage and loss moduli can be
expressed by

G��
� = G��
�0�u u�

2 sin�u�

2
� , �5�

G��
� = G��
�0�u u�

2 cos�u�

2
� , �6�

where G�=mGc for a monodisperse fractal polymer and
G�=mGcA��� for a polydisperse fractal polymer. A��� is an
unknown function, which is indicative of the molecular
weight distribution. The expression of the loss angle, �

=arctan� G�
G�

�= u�
2 , is in agreement with experimental results.

Chambon and Winter �32� have observed that G��
�
�G��
� for u=0.5 and G��G� when u�0.5, in agreement
with the previous relations �5� and �6�. To summarize, the
fractal Rouse model enables one to determine the relation
between the frequency exponent u and the fractal dimension
Df: for monodisperse fractal polymers, u is given by

u =
Df

Df + 2
, �7�

where Df is the fractal dimension of the polymer with fully
screened hydrodynamic interactions. For polydisperse fractal
polymers, u is given by

u =
d

Df + 2
, �8�

where d is the space dimension �30,31,33�.

III. EXPERIMENT

A. Chemical synthesis

The PDMS networks of cross-linked polymers used in
this study are obtained by reaction between a vinyl-
terminated linear polydimethylsiloxane prepolymer and a
cross-linker containing SiH functions. The cross-linker is ei-
ther a tetrakis�dimethylsiloxy�silane �TDS�, a copolymer
poly�dimethylsiloxane-co-methylhydrogenosiloxane�, or a
octakis�dimethylsilyloxy�silsesquioxane �ODS�. These re-
agents were obtained from Gelest and were used as received.
The chemical structure and the functionality of the prepoly-
mers and cross-linkers were determined by 29Si and 1H
NMR in CDCl3 with a Brucker Avance DPX 200 spectrom-
eter. For 29Si NMR spectra, Cr�Acac�3 was added as a relax-
ation reagent and gated decoupling, with a 45° flip angle and
a 5-s recycle delay, was used as described by Williams et al.
�34� for obtaining quantitative data. Seven PDMS networks
were prepared from different starting products; we had at our
disposal two vinyl-terminated PDMS prepolymers and six
SiH cross-linkers of different functionalities and molecular
weights. The first vinyl-terminated PDMS called prepolymer
A has the following structure:

CH2 v CH u Si�CH3�2 u O u �Si�CH3�2O�n u Si�CH3�2CH v CH2,

with n=114±10.
The second vinyl-terminated PDMS called prepolymer B has the same chemical structure as prepolymer A but with

n=200±20.
Cross-linker 1 �TDS� is a four-functional silane cross-linker with the following structure:

�HSi�CH3�2O�4Si.

Cross-linker 2 is a SiH-containing random copolymer with a mean functionality of 5:

�CH3�3Si u O u �Si�HCH3� u O�x u �Si�CH3�2 u O�y u Si�CH3�3

with x=5±1 and y=24±3.
Cross-linkers 3, 4, and 5 have the same chemical structure

as cross-linker 2 but with a functionality of 11 with x
=11±1 and y=24±3 for cross-linker 3, a functionality of 7

with x=7±1 and y=100±10 for cross-linker 4, and a func-
tionality of 8 with x=8±1 and y=8±1 for cross-linker 5.

The cross-linker 6 �ODS� is an eight-functional cross-
linker with the following structure:
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Selected characteristics of the reagents are summarized in
Table I

The cross-linking was performed in bulk by hydrosilation
with a platinum catalyst �solution of platinum in divinyltet-
ramethyldisiloxane� �35,36�:

wSi u CH v CH2 + HSi w

→
Pt

w Si u CH2 u CH2 u Si w .

The reacted components of the seven PDMS networks,
called polymers 1, 2, 3, 4, 5, 6, and 7, are presented in Table
I. For all samples, 0.5 �l of catalyst was introduced in 6 g of
a blend of prepolymers and cross-linkers. In all cases, the
concentration of the vinyl functions originating from the
catalyst was negligible �at least 140 times lower than the
concentration of vinyl originating from the prepolymers�.
The composition of the starting mixture is defined by the
stoichiometric ratio r equal to the ratio of the concentration
of initial silane functions to the one of initial vinyl functions:

r =
�SiH�0

�C2H3�0
=

mSiHfSiHMvinyl

mvinylfvinylMSiH
. �9�

Here SiH and vinyl subscripts refer, respectively, to the SiH-
containing cross-linkers and the vinyl prepolymer. f , m, and
M are the functionality, the weight, and the number average
molecular weight of the reagents. f and M were derived from
NMR data; m was measured using a high-sensitivity balance
�10−4 g�.

Several samples were prepared for different r ratios less
than 1 in order to determine the critical stoichiometric ratio

rc corresponding to the sol-gel transition. The experimental
procedure consists in a first step to blend the prepolymer and
the cross-linker for a given ratio r. Then, the catalyst is
added under stirring and the cross-linking reaction begins.
Prior to viscoelastic measurements, the samples are soni-
cated to eliminate bubbles.

B. Rheology

The viscoelastic measurements were performed at a tem-
perature of 21±0.5 °C using Rheometrics ARES and RFS III
rheometers with parallel-disk geometry. These rheometers
have transducers of 2000 g cm and 100 g cm allowing mea-
surements of moduli above about 1 Pa and 0.1 Pa, respec-
tively. Measurements were conducted in two stages. In the
first stage, the evolution of G� and G� during the cross-
linking reaction was measured at 10 rad/s for various r val-
ues. After 48 h at room temperature, the reaction is usually
completed �G� and G� constant in time�, which is confirmed
by the disappearance of the resonance corresponding to SiH
hydrogen atoms in the 1H NMR spectra of the samples. In
the second stage, after completion of the cross-linking, the
dynamic properties of the samples were measured. The fre-
quency domain investigated is 10−3–102 rad/s. The critical
stoichiometric ratio rc, corresponding to the gelation thresh-
old, is the value for which both G� and G� obey the power
law 
u. Each dynamic curve was analyzed as a function of
the relative distance from the threshold �19,27�:

� =
r − rc

rc
. �10�

Above the gel point, the zero-frequency modulus G and
the crossover frequency value 
*, defined as the frequency
where G��
*�=G��
*�, are obtained.

The curves G�
*u allow one to verify the u values mea-
sured at rc.

TABLE I. Starting products of the seven model PDMS networks called polymers 1–7, characterized by the number average molecular
weight Mn �g/mol�, the functionality f , and the density � of prepolymers and cross-linkers. Mn and f are determined by NMR, except for
cross-linkers 1 and 6 �calculated from the chemical formula�.

Cross-linker 1 Cross-linker 2 Cross-linker 3 Cross-linker 4 Cross-linker 5 Cross-linker 6

Mn=328.73 Mn=2250±250 Mn=2600±300 Mn=6500±600 Mn=1300±150 Mn=1018

f =4 f =5±1 f =11±1 f =7±1 f =8±1 f =8

Reactants �=0.886 �=0.970 �=0.980 �=0.970 �=0.970 �=0.970

Prepolymer A

Mn=8600±700 Polymer 1 Polymer 2 Polymer 3 Polymer 4 Polymer 5 Polymer 6

f =2

�=0.970

Prepolymer B

Mn=15000±1400 Polymer 7

f =2

�=0.970
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C. Size exclusion chromatography

In order to characterize the molecular weight distribution
of polymers around rc and to measure the polydispersity ex-
ponent �, we used a classical analytical SEC apparatus with
eluant THF. Two PL-gel columns �Polymer laboratories, type
E and mixed B� were used in series. We removed the filter
and the precolumn that usually protect the columns against
pollution to decrease shear induced degradation of large mo-
lecular weight branched macromolecules. This method is dis-
cussed in the literature �37,38�. The chromatograms, shown
in the figures below, were obtained using a concentration of
1 mg/cm3 and a flow rate of 0.5 ml/min for polymers syn-
thesized just below rc. At 0.5 ml/min, some degradation still
occurs, but only for very large macromolecules beyond the
resolution of the columns. The concentration of PDMS was
monitored by a differential refractometer �R410 from
Millipore-Waters� and was given in PS equivalent molecular
weight �dn /dC=0.19 ml/g�. The relation between the con-
centration C and the molecular weight M for a polymer
around the sol-gel transition is �39�

C � M2−�f� M

M*� , �11�

for M0
M 
M* where M0 and M* are, respectively, the low
and high cutoff molecular weights. For ��2, the maximum
concentration does not depend on M* and corresponds to the
value of M0. The experimental molecular distribution can be
fitted by the following analytical expression �39�:

C = Cmax� M

M0
�2−�

exp�−
M

M*��

, �12�

where M*, M0, and Cmax are obtained from the chromato-
grams. The fits between experiments and Eq. �12� show that
the more suitable value for � is 3.

D. Static light scattering

In order to measure the swollen fractal dimension Df
s of

polymers around the gel point, static light scattering mea-
surements were made at 23 °C using an ALV-5000 multibit
and multi-� correlator with a Spectra Physics argon ion laser
operating with vertically polarized light �wave length �
=532 nm�. They were done over a range of scattering angles
10° 
�
140°. The corresponding range of the scattering
wave vectors, q= �4�ns /��sin�� /2�, with ns the solvent re-
fractive index, is between 2�10−3 and 4�10−2 nm−1.
Samples were synthesized just below rc and then diluted
2000 times in toluene. The scattering intensity per unit vol-
ume I�q� was normalized by the intensity scattered by tolu-
ene at 90°. The effective fractal dimension Df

ef f is measured

from the log-log plot of I�q�: I�q��qDf
ef f

. Df
ef f depends on

Df
s and on the molecular distribution if 2���3: Df

ef f

= �3−��Df
s. On the other hand, Df

ef f =Df
s if �
2 or ��3

�40,41�. The previous relations show that the � exponent has
to be measured for each system before scattering light ex-
periments.

IV. RESULTS AND DISCUSSION

The viscoelastic properties at the sol-gel threshold for
polymers 1, 2, 3, 4, and 7 are presented in Refs. �18,19�. The
critical stoichiometric ratio for polymer 1 is rc1=0.44±0.01.
The slope of the curves G��
� and G��
� and the frequency-

independent value of the phase angle ��=arctan� G�
G�

�=
u1�

2
�

give the critical exponent u1=0.69±0.01. Similar results
were obtained for polymers 2, 3, 4, and 7: we found rc2
=0.26±0.01, rc3=0.23±0.01, rc4=0.30±0.01, and rc7
=0.29±0.01 and u2=0.76±0.01, u3=0.75±0.03, u4
=0.77±0.01, and u7=0.76±0.01.

In the case of the new polymer 5, we were not able to
measure the viscoelastic behavior at the sol-gel threshold.
Due to the very high functionality of the cross-linkers
�f =8�, a very small variation of the r value induces a large
change in the viscoelastic behavior. Actually, our experimen-
tal precision on r is not high enough to prepare a sample with
r exactly equal to rc. Nevertheless, rc were estimated from
the rheological curves for which tan��� is nearly constant for
the largest frequency domain: rc5=0.25±0.01. The u expo-
nent was obtained from the asymptotic value of tan��� at
high frequency; the resulting exponent is u5=0.76±0.03
�Fig. 1�.

The critical ratio of polymer 6 is rc6=0.21±0.01. Its criti-
cal viscoelastic behavior is shown in Fig. 2 and is character-
ized by u6=0.77±0.01.

FIG. 1. Frequency dependence of tan��� of five polymer-5 gels,
all synthesized at r�rc=0.25±0.01. The line corresponds to the
mean value of tan��� leading to u5=0.76±0.03.

FIG. 2. Power law viscoelastic behavior and tan��� of polymer 6
at the gelation threshold. The slope of the log-log curves of the
frequency dependence of G� and G� is u6=0.76±0.01.
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From the rheological curves above the gel point, one can
build the master curves G*�
� /G*�
*� versus 
 /
* above
the critical transition of polymers 5 and 6. 
* is defined as
the frequency at which G�=G�. The master curve is obtained
through eight decades for polymer 5 and six decades for
polymer 6, from the viscoelastic curves corresponding to dif-
ferent relative distances to the threshold �Figs. 3 and 4, re-
spectively�. Getting such different master curves for poly-
mers 5 and 6 establishes that the dynamic properties of both
polymers are governed by the molecular structure of the pre-
polymers and cross-linkers, the self-similarity of the struc-
ture of the incipient gel, and the self-similarity of the mass
distribution of clusters.

Moreover, from the rheological curves above the gel
point, one can plot G�
*u for seven polymers �Fig. 5�. Fig-
ure 5 allows us to obtain the same u values as found previ-
ously, independently of the rc values but with a lower accu-
racy. All the rc values have been confirmed by dissolution
experiments in THF.

From the best fit of the experimental curves with relations
�5� and �6�, we obtain values of �0 between 1.3�10−7 and
4.7�10−8 s for all polymers. That means these u values
were determined in a range of frequencies where 
� �
0
�1/�0, where 
0 is the internal cutoff frequency. The fractal
dimension Df can be calculated from Eq. �8�. The fractal
dimension obtained for polymers 1–7 varies between 1.90
and 2.35 whereas the percolation theory predicts a fractal
dimension of Df =2.5, independently of the structure.

Table II reports the experimental values of rc, u, and Df.
As expected, an increase of the functionality of the cross-

linker involves a decrease of the critical stoichiometric ratio.
The discrepancy in the rc values can be explained by the fact
that a small variation of the molecular weight or functional-
ity induces a significant change of the rc value. Moreover,
the theoretical rc value can be calculated more precisely us-
ing the weight functionality of the reagents. Unfortunately,
the NMR measurements used in this study give only the
number functionality of reagents.

Comparison of the critical exponent u and Df shows that
for polymer 1, they are significantly different from those
obtained for the other polymers.

In the literature, we found only one study by Adam et al.
�42� which can be really compared to our seven PDMS poly-
mers. In their work, the PDMS networks were synthesized
from the TDS cross-linker and a divinyl PDMS prepolymer
with Mn=4900 g/mol. The functionality and the molecular
weight of the TDS were measured by gas chromatography/
mass spectroscopy analysis: f =3.87 and Mn=342 g/mol.
One can note that the functionality and the molecular weight
of our TDS measured by NMR are slightly different and
closer to those calculated from the chemical structure
�f =4 and Mn=328.73 g/mol�. The rc and u values charac-
teristic of the PDMS network of Adam et al. �42� are
0.335±0.010 and 0.690±0.005, respectively.

The comparison of u and Df first between polymers 2 and
7, and then between polymer 1 and the one of Adam et al.
�42�, shows that the molecular weight of the vinyl prepoly-

FIG. 3. Master curve of polymer 5 for r�rc.

FIG. 4. Master curve of polymer 6 for r�rc.

FIG. 5. Representation of the zero-frequency moduli G1, G2

�50, G3�600, G4�103, G7�107 �data from Ref. �18� and G5

�104, G6�2�106 versus 
*. From the scaling relation G�
*u,
we found the same values as in Table II, but with a lower accuracy
�±0.03�.

TABLE II. Critical values of polymers 1, 2, 3, 4, 5, 6, and 7. Df

is derived using Eq. �8�.

Critical values rc u Df

Polymer 1 0.44±0.01 0.69±0.01 2.35±0.06

Polymer 2 0.26±0.01 0.76±0.01 1.95±0.05

Polymer 3 0.23±0.01 0.75±0.03 2.00±0.16

Polymer 4 0.30±0.01 0.77±0.01 1.90±0.05

Polymer 5 0.25±0.01 0.78±0.03 1.85±0.15

Polymer 6 0.21±0.01 0.77±0.01 1.90±0.05

Polymer 7 0.29±0.01 0.76±0.01 1.95±0.05
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mer does not change the fractal dimension and the rheologi-
cal behavior at the sol-gel transition.

Comparison between polymers 5 and 6 shows that the
structure of the cross-linker, linear or cubic, does not affect
the critical viscoelastic properties; this result confirms that
the relaxation times of the clusters measured in the experi-
mental window are significantly larger than �0. Then, the
structural differences between polymers seem to arise mainly
from the functionality f and the average molecular weight
Mn of the cross-linker. According to this idea, the curves
displayed in Figs. 6 and 7 show that both u and Df present a
crossover with the ratio f /Mn. The ratio f /Mn could be un-
derstood as a branching rate that governs the local fractal
structure of polymers. One can analyze this result by consid-
ering that Df of polymer 1 is close to 2.5 and Df of polymers
2–7 ranges between 1.9 and 2 �Fig. 7�. Hence, polymer 1
could arise from a critical percolation process and polymers
2–7 from a diffusion-limited cluster aggregation �DLCA�
process �or other aggregation mechanisms for which Df
�1.9, like reaction-limited cluster aggregation �RLCA��. In
this case, Df is universal and is characteristic of the aggre-
gation process, which is controlled by the structural param-
eters of the cross-linkers. Then, the u values measured in the
frequency window depend on the structural effects on the
aggregation mechanisms of the reagents. As shown by nu-
merical simulations �15,16�, as the gelation proceeds at con-
stant r, the large clusters can be characterized by several
fractal dimensions at different scales. This structural varia-

tion results from crossovers in growth mechanism during
gelation. We want to point out again that the u values mea-
sured in our experimental window are characteristic of the
gel structure for a scale where the corresponding relaxation
mechanisms can be observed. Thus, the DLCA is the main
growth mechanism for large clusters of polymers 2–7 until
the last growth stage for which the connectivity at the end of
the gel growth occurs by critical percolation. On the other
hand, the cluster growth mechanism of polymer 1 seems to
be the critical percolation, whatever the size of the clusters
is.

We wanted to check the difference between the Df value
of polymer 1 and the one of polymers 2–7. It is well known
that it is impossible to measure Df of the incipient gels in
bulk. However, we are able to measure the swollen fractal
dimension Df

s for two characteristic polymers and verify if
the Df values are coherent with those of Df

s. The two poly-
mers chosen are polymers 1 and 2, for which u and Df were
obtained with good accuracy.

The molecular weight distributions of polymers 1 and 2
for r�rc were measured by size exclusion chromatography
�SEC�. The chromatograms are presented in Figs. 8 and 9.
One can note that polymer 2 is characterized by a molecular

FIG. 6. Critical exponent u of polymers 1–7 and polymer of Ref
�42� versus the ratio �f /Mn�, characteristic of cross-linkers.

FIG. 7. Fractal dimension Df of polymers 1–7 and polymer of
Ref. �42� versus the ratio �f /Mn�, characteristic of cross-linkers.

FIG. 8. Molecular weight distribution for polymer 1 around
rc1�0.44, given in PS equivalent molecular weight. The theoritical
curve �solid line� is ploted for �1�2.3 and M01�23500 g/mol. An
exponential function is used as a cutoff function with �=3
�Eq. �12��.

FIG. 9. Molecular weight distribution for polymer 2 around rc

�0.26, given in PS equivalent molecular weight. The theoritical
curve �solid line� is ploted for �2�3 and M02�20000 g/mol. An
exponential function is used as a cutoff function with �=3
�Eq. �12��.
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weight distribution more narrow than the one of the polymer
1. The two chromatograms are present for the high-
molecular-weight small humps due to an effect of complete
elution of the largest aggregates. We do not have an expla-
nation for these humps. Such a feature was also observed in
other systems and could be an artifact of the method
�43–45�. The molecular weight corresponding to the maxi-
mum of concentration is M0; it is the molecular weight of the
smallest fractal cluster that has a relaxation time �0 �internal
cutoff�. M0 is on the same order for both polymers
�M0�20 000 g/mol in equivalent polystyrene molecular
weight�. � was obtained from the two chromatograms using
relation �12�. We found �1�2.3, in agreement with the criti-
cal percolation theory for polymer 1 and �2�3 for polymer
2, which confirms that the growth mechanism for this poly-
mer differs from the critical percolation theory. One can note
that the fit for polymer 2 is not as good as expected essen-
tially because of parasitic humps at high molecular weight.
The molecular weight distribution of polymer 2 is symmetri-
cal and does not follow the power law of relation �1�. Such
symmetrical distributions are also observed in the DLCA
model �and was also obtained for polymer 6�. The Df

ef f val-
ues were obtained from scattering light experiments �Figs. 10
and 11� and are around 1.5 for the two polymers. By consid-
ering the � values, Df

s were calculated for each polymer:
Df1

s =1.95 and Df2
s =1.5 for polymers 1 and 2, respectively.

Comparison of Df
s and Df in Table III shows that Df

s �Df for
both polymers, as expected. Moreover, the swollen or bulk
fractal dimension of polymer 1 is higher than the one of
polymer 2. These results are coherent together and confirm
indirectly that Df could be extracted from viscoelastic mea-
surements using the model presented in Sec. II. Hence, the
molecular structure of polymer 1 differs considerably from
the one of polymer 2, generalizing, from the one of polymers
2–7. The Df value of polymer 1 is around 2.35. The differ-
ence with the theoretical value 2.52 could be due to the fact
that the hydrodynamic interactions may be not fully screened
for polymer 1 �synthesized with the lowest molecular weight
crosslinker�.

The u exponent and the corresponding Df were measured
at r�rc for the seven polymers. In all cases Df �4, meaning
that the growth mechanisms are different from the mean field
mechanism, although �G of polymers 2–7 are lower than �G
of polymer 1 and the accuracy of the relative distance to the
threshold that results from the accuracy of our balance for
the experiments at r�rc is lower than �G for the seven poly-
mers. Thus, our experimental protocol allows one to study
the static and dynamic properties of gels around the thresh-
old in the critical region.

Recently, Lusignan et al. �17� found, by studying a series
of randomly branched polyesters, that relation �3� was valid
in the mean field theory framework and then was universal.
Moreover, they found that the crossover in the growth
mechanisms between the critical percolation and the mean
field theory occurs at N�2Ne. In the mean field region, u is
nonuniversal and is affected by the entanglements. Following
this approach, we point out in Fig. 12 that the crossover
previously observed for our series of polymers occurs at N
�Ne �Ne=44� �17,46�. N was calculated from Eq. �2� with
n0=2, m0=74, and C�=6 �47�. We find from our experimen-
tal results that for N�Ne, the molecular structure of the
PDMS networks around the gel point is modeled by the criti-
cal percolation theory and Df and u are universal �2.35 and
0.69, respectively�. For 1
N /Ne
2, the growth mechanism
is DLCA like and Df and u are also universal �1.9 and 0.76,
respectively�. In this case, there is on average one entangle-
ment per chain. One can think that this low number of en-
tanglements first favors the cluster formation, following by a
cluster aggregation. For N�2Ne, as shown by Lusignan et
al. �17�, the vulcanization governs the growth of the incipient
gel: Df =4 is universal and u is a decreasing function of
N /Ne. The crossover between critical percolation and DLCA
in Fig. 6 seems to depend on different molecular parameters
but one can demonstrate that �f /Mn�−1 scales as N
�� f

Mn
�−1�Nm0C� /n0−Mvinyl�, and the results are consistent.

It is important to confront these results with the literature
for PDMS networks. Scanlan and Winter �13� pointed out for

FIG. 10. Scattering wave vector dependence of the normalized
intensity of polymer 1 around rc1=0.44 and diluted 2000 times in
toluene. The slope of the solid line gives the effective fractal di-
mension Df1

ef f �1.5.

FIG. 11. Scattering wave vector dependence of the normalized
intensity of polymer 2 around rc2=0.26 and diluted 2000 times in
toluene. The slope of the solid line gives the effective fractal di-
mension Df2

ef f �1.5.

TABLE III. Fractal dimensions in bulk Df, swollen fractal di-
mensions in dilute solution Df

s, and polydispersity exponents � for
polymers 1 and 2.

Df Df
s �

Polymer 1 2.35 2.14 2.3

Polymer 2 1.95 1.5 3
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PDMS gels synthesized from similar divinyl prepolymers
and a 4-SiH cross-linker that u is a decreasing function of the
stoichiometric ratio r and belongs to a range between 0.19
and 0.92 with an accuracy between 0.01 and 0.03 �Fig. 13�.
For r� �rc, hydrosilation reactions first lead to a formation
of linear polymers entangled. Thus, the decrease of u with r,
as the decrease of u with N /Ne, seems to be due to the
complex effects of entanglements as proposed by Lusignan
et al. �17�.

V. CONCLUSION

We studied the viscoelastic properties of a structural se-
ries of seven PDMS networks around the gel point. We mea-
sured the critical exponent u for all polymers at the critical
soichiometric ratio rc and at r�rc from the G�
* � curves.
On the basis of the Rouse model applied to fractal polymers,
we calculated Df for each polymer. The results show that
polymer 1 is characterized by a value of Df close to the
theoretical one of critical percolation �Df �2.35�. On the
other hand, polymers 2–7 present a same Df characteristic of
DLCA �Df �1.90�. We verified for polymers 1 and 2 that the
Df values obtained from viscoelastic measurements are co-

herent with the Df
s values measured by static scattering light

experiments. The analysis of these latter experiments is
based on previous measurements of the polydispersity expo-
nent �. SEC experiments confirm that the molecular distribu-
tions of polymers 1 and 2 are significantly different, corre-
sponding to two different gelation mechanisms. The
experimental � value of polymer 1 is close to 2.2, character-
istic value of the critical percolation.

Our experiments point out the existence of a crossover
between two universality classes: critical percolation N /Ne
�1 and DLCA for N /Ne�1. The critical percolation is ob-
served for N�Ne when the DLCA is observed for N�Ne.
Then, the percolation mechanism of PDMS gels in bulk con-
ditions is determined by molecular parameter N /Ne. Taking
the results of Lusignan et al. �17� and of Scanlan and Winter
�13� into account, we are allowed to consider that the varia-
tion of u for a large range of N /Ne is characterized by two
crossovers: for N /Ne�1, polymer gelation is governed by
critical percolation and u and Df are universal; for 1
�N /Ne�2, gelation is governed by DLCA and u and Df are
also universal; for N /Ne�2, gelation is governed by mean
field theory, Df is universal, and u is nonuniversal and seems
to be controlled by the entanglement effects.
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