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The application of a sufficiently strong strain perpendicular to the pitch axis of a monodomain cholesteric
elastomer unwinds the cholesteric helix. Previous theoretical analyses of this transition ignored the effects of
Frank elasticity which we include here. We find that the strain needed to unwind the helix is reduced because
of the Frank penalty and the cholesteric state becomes metastable above the transition. We consider in detail a
previously proposed mechanism by which the topologically stable helical texture is removed in the metastable
state: namely, by the nucleation of twist disclination loops in the plane perpendicular to the pitch axis. We
present an approximate calculation of the barrier energy for this nucleation process which neglects possible
spatial variation of the strain fields in the elastomer, as well as a more accurate calculation based on a
finite-element modeling of the elastomer.
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I. INTRODUCTION

Cholesteric liquid crystals are composed of chiral mol-
ecules that favor a helical twist in their equilibrium state.
Because the helical pitch is typically comparable to the
wavelength of visible light, cholesterics are useful as optical
devices—e.g., as displays �1� or in mirrorless lasing �2�.
Cholesteric elastomers have recently attracted theoretical and
experimental interest for their novel optical and mechanical
properties. Cholesteric elastomers consist of either intrinsi-
cally chiral polymers cross-linked to form a gel �3� or nem-
atic polymers cross-linked in the presence of a chiral solvent
which when removed leaves an imprinted helical texture in
the gel �4�. As in the case of conventional cholesteric liquids,
the helical pitch in the elastomers is comparable to the wave-
length of visible light; as a result, cholesteric elastomers pos-
sess a photonic band gap, which may be mechanically tuned
to useful advantage in waveguiding and lasing applications
�5�.

The behavior of a cholesteric elastomer under mechanical
strain has been studied both experimentally �5� and theoreti-
cally �6,7�. This problem bears some similarity to that of a
cholesteric liquid in a magnetic or electric field �8–10�. If a
magnetic field is applied to a cholesteric liquid perpendicular
to the cholesteric pitch axis, then as the field is increased, the
pitch increases and twist walls begin to appear with a spac-
ing equal to the pitch. The pitch �and thus the separation of
the twist walls� diverges at a critical value of the magnetic
field. However, in the case of a cholesteric elastomer, while
twist walls also appear if a strain is applied perpendicular to
the pitch axis, the helical texture imprinted at the time of
cross-linking in an elastomer �6,11� prevents long-

wavelength distortions that would increase the pitch. Instead,
the material shrinks along the pitch axis, thereby reducing
the pitch. If the Frank energy associated with gradients of the
director field is ignored, then the cholesteric twist is elimi-
nated at a critical value of the strain by abrupt reversals of
the twist walls which are of zero width at the critical strain
�6,7�. It was argued in Refs. �6,7� that the Frank energy can
be ignored because in a typical cholesteric elastomer the
length scale at which the Frank energy is comparable to the
elastic energy is very small compared to the pitch. Thus,
except for values of the strain very close to the critical value
needed to unwind the helix, it is reasonable to ignore Frank
elasticity. However, if the shear modulus of the elastomer is
reduced or if the distribution of nematic polymer chains is
made more isotropic, then Frank elasticity can have signifi-
cant effects. In any case, independent of material parameters
the Frank energy will become infinite as the width of the
twist walls approaches zero at the transition to the state with
zero net twist. Thus, to fully understand the nature of the
transition from the helical to the unwound �i.e., nematic�
state, the effects of Frank elasticity must be considered. In
this paper we study theoretically the effect of Frank elasticity
on this transition by minimizing the energy of a cholesteric
elastomer including the Frank energy. Inclusion of the Frank
energy leads not surprisingly to twist walls of finite width at
the transition �and thus a lower value of the critical strain�.
Furthermore, Frank elasticity leads to the metastability of the
helical state above the transition, raising the question of how
the topologically stable helical twist is removed. We explore
this question by considering the mechanism proposed in
Refs. �6,7�: namely, the nucleation of twist disclination loops
in the planes of the twist walls. A similar mechanism was
analyzed by Friedel and de Gennes �10� in the case of a
cholesteric liquid in a magnetic field. If the initial field
strength is large enough so that the material is in the nematic
state �i.e., the helix is unwound�, then as the field is reduced
to a value less than critical field, the nematic state becomes
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metastable and the equilibrium cholesteric phase is nucleated
by the creation of a twist disclination loop. Friedel and de
Gennes carried out an approximate analytic calculation of
the critical radius and activation energy of such a loop. We
consider a similar approximate calculation here. The main
drawback to this approximate calculation is that we assume
that the strain field in the elastomer is spatially uniform. We
improve upon this calculation by carrying out a finite-
element method �FEM� analysis which allows us to mini-
mize the elastomer energy with respect to variations in both
the director field and the rubber elastic degrees of freedom.

This paper is organized as follows. In the next section we
review the theoretical analysis of the unwinding transition in
the absence of Frank elasticity, discussed in Refs. �6,7�. In
Sec. III we consider the effect of Frank elasticity on the
transition, followed in Sec. IV by an analysis of the nucle-
ation of twist disclination loops which eliminate the choles-
teric twist. Concluding remarks are offered in Sec. V.

II. UNWINDING OF THE CHOLESTERIC HELIX
IN THE ABSENCE OF FRANK ELASTICITY

The microscopic statistical-mechanical theory of nematic
rubber elasticity is a generalization of the classical rubber
free energy density to the case of nematics �cholesterics are
locally nematic� �12�,

f rubber =
1

2
�Tr����0 · ���

T · ���
−1 · ��� � , �1�

where � is the rubber shear modulus and �= is the gradient of
the strain field:

�ij = �ij + � jui, i, j = x,y,z , �2�

where u is the displacement vector. The shape tensor �
=0 cor-

responding to the director field n0 before the mechanical de-
formation is applied is given by

���0 = ����� + ��� − ���n0n0, �3�

which describes the anisotropic Gaussian distribution of
nematic chains that make up the elastomeric network. The
inverse shape tensor �

=

−1 in the presence of the applied strain
when the director field is given by n is given by

���
−1 =

1

��

��� + � 1

��

−
1

��

�nn . �4�

The deformation tensor �= is subject to the incompressibility
condition det��= �=1.

Throughout this paper we consider the response of a cho-
lesteric elastomer to a uniform strain � applied perpendicular
to the pitch axis of the cholesteric. Assuming that the pitch
axis is along the z direction, the director field in the absence
of strain is given by

n0 = �cos �0,sin �0,0� , �5�

where �0=�z / p and p is the pitch.
After the deformation is applied, even in the presence of

nucleated disclination loops, we continue to assume that the

director lies in the plane perpendicular to the pitch axis and
can be written as

n�r� = „cos ���0�,sin ���0�,0… , �6�

where we have expressed the director angle � as a function
of the unperturbed angle �0.

Figure 1 shows schematically how the elastomer responds
to small applied strains. Note that the directors at �0=0,�
and �0=� /2 do not change under strain. This situation holds
as long as the imprinting of the cholesteric state before cross-
linking dominates over the effects of Frank elasticity �11�,
which we assume will be the case here.

As discussed in Ref. �6�, elastic compatibility and sym-
metry require that a uniform strain applied along the x direc-
tion to an elastomer that is uniform in the x-y plane leads to
the following strain tensor:

��� = �� 0 0

0 �yy 0

0 0 �zz
	 . �7�

Note that this form assumes the elastomer is uniform in the
x-y plane and need not be true if there is nonuniformity such
as will arise when we consider nucleating disclination loops
in Sec. IV. The determination of the critical value of strain,
�c, required to unwind the helix when Frank elasticity effects
are neglected was carried out in Refs. �6,7�. Using Eqs. �4�
and �5� the rubber energy density, Eq. �1�, can be written as

f rubber =
1

2
�
��2 + �yy

2 � +
r − 1

r
��2�rc2s0

2� + �yy
2 �rc2s0

2 − s2c0
2�

− 2��yy�r − 1�s0c0sc�� , �8�

where c0, s0, c, and s are shorthand for cos �0, sin �0, cos �,
and sin �, respectively, and the chain anisotropy r��� /��.
Minimizing Eq. �8� with respect to ��z� yields the algebraic
equation

FIG. 1. Nail-head schematic of one pitch length of a cholesteric
elastomer �a� with no applied strain—i.e., �=1 �an undeformed
helix�—and �b� in the presence of a uniform strain, ��1.
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tan 2� =
2��yy�r − 1�sin 2�0

�r − 1���2 + �yy
2 �cos 2�0 + �r + 1���2 − �yy

2 �
.

�9�

The transverse strain �yy in Eq. �9� is determined by mini-
mizing the rubber energy density integrated over one pitch
length with respect to �yy:

�

��yy
�

0

�

d�0f rubber� = 0. �10�

Initially, as � increases from unity, � is approximately equal
to �0. As the strain is increased, ���0=0� remains equal to
zero because the director is already aligned with the stretch
direction at this location. At �0=� /2 the director angle �
continues to equal � /2; it would require a breaking of sym-
metry for the director to move from this direction. However,
once the strain exceeds the critical value for unwinding, this
direction of alignment at �0=� /2 will become unstable. For
�0=� /2, Eq. �9� has solutions �=0 and �=� /2, corre-
sponding to the unwound and twisted states, respectively.
The denominator in Eq. �9� vanishes when

cos 2�0 = − 1 +
2

r − 1
� r�yy

2 − �2

�2 + �yy
2 � , �11�

and Eq. �9� is then satisfied by �=� /4. As long as �
�r�yy

2 −�2�0 the director angle � is approximately equal to
�0, leaving the pitch unchanged aside from the affine con-
traction 1/��yy. However, as �→0+, the value of �0 satisfy-
ing Eq. �11� approaches � /2, indicating a twist wall with
infinite d� /d�0 at �0=� /2—i.e., a twist wall of infinitesi-
mal width �see Fig. 2�.

For �	0, � never attains the value � /4; i.e., the twist
wall is removed. Therefore, �=0 defines the critical strain �c,
beyond which the twisted phase is no longer stable; when
�	0, Eq. �9� yields ���0=� /2�=0. The critical strain �c is
given approximately by r2/7 �6�. For r=1.9, e.g., �c�1.23.

III. UNWINDING IN THE PRESENCE
OF FRANK ELASTICITY

The principal effect of including Frank elastic energy in
determining the unwinding of a cholesteric elastomer is that
the twist walls will now have a finite width, with a thickness
approximately given by the length scale 
= �1/ �r−1���K /�
�6,7�, which is the length scale at which the contributions of
the Frank and rubber energies to the total energy are compa-
rable. In addition, Frank elasticity decreases the value of the
critical strain �c, since if we imagine that the cholesteric state
was imprinted by a chiral solvent removed after cross-
linking, then the Frank energy penalty favors unwinding the
cholesteric. Furthermore, as we shall demonstrate explicitly,
Frank elasticity leads to the metastability of the twisted
phase for ���c and the phase with zero net twist for �
��c; thus, in the present context “critical” strain will refer to
the value of the strain where the free energies of the twisted
and unwound states are equal.

The total elastomer energy now consists of the rubber
energy density, Eq. �8�, and the Frank energy density fK �in
the one elastic constant approximation�:

fK =
1

2
K����2. �12�

Minimizing the sum of these two energies with respect to
��z� leads to the equation


2d2�

dz2 = g1��0�sin 2� − g2��0�cos 2� , �13�

where

g1��0� =
1

4
��2 + �yy

2 �cos 2�0 +
1

4
� r + 1

r − 1
���2 − �yy

2 �

�14�

and

g2��0� =
1

2
��yy sin 2�0. �15�

The boundary conditions accompanying Eq. �13� are ���0

=0�=0 while ���0=� /2�=� /2 and 0 in the twisted and
unwound phases, respectively. As in the previous section, the
total energy of one pitch length of the cholesteric must also
be minimized with respect to �yy:

�

��yy
�

0

�

d�0�f rubber + fK�� = 0. �16�

We solved Eqs. �13� and �16� simultaneously using the
shooting method �13�, choosing K=10−11 J /m, �
=105 J /m3, r=1.9, and p=300 nm �14�. The results are
shown in Fig. 3 where the energies �integrated over half a
pitch length which is sufficient by symmetry� of the twisted
and unwound states as functions of the applied strain are
shown.

The energies of the twisted and unwound states are equal
when �c�1.16, compared to the critical value �c�1.23
found in Refs. �6,7� when the Frank energy is neglected �see

FIG. 2. The director angle � as function of the helical phase �0

for increasing values of the strain �=1 �open circle�, 1.15 �triangle�,
1.19 �open square�, 1.25 �solid square�, and 1.5 �solid circle�. The
latter two values of strain exceed the critical strain �c, beyond
which the twisted phase is unstable.

UNWINDING OF A STRAINED CHOLESTERIC ELASTOMER… PHYSICAL REVIEW E 75, 011701 �2007�

011701-3



Sec. II�. It has been shown in Ref. �15� that in the absence of
Frank elasticity a local minimum of the free energy, stable
against small fluctuations, is achieved when sin 2� and
sin 2�0 have the same sign. It is clear from Fig. 2 that both
the twisted and unwound states satisfy this condition, simply
by virtue of their geometry. Introducing a finite Frank elastic
constant only further stabilizes the twisted state, and thus the
condition of local stability should continue to be satisfied. As
we see from Fig. 3 the twisted state in the presence of Frank
elasticity has greater free energy than the unwound state for
values of strain above the critical value �c�1.16, and it will
be metastable against small fluctuations in the director angle.
In the next section we consider the decay of this metastable
state via the nucleation of a disclination loop.

Figure 4 shows the dependence of �yy on � for the twisted
and unwound phases.

Figure 5 shows the director solution � for the twisted and
unwound states at a strain slightly greater than the critical
strain value of 1.16. Noting that the phase difference corre-
sponding to the length scale 
, �0��
 / p, is of order 0.1
with our choice of material parameters, we estimate the
width of the twist wall to be approximately 4
. Given that
the Frank energy causes the twist walls to have finite width
at the transition to the unwound nematic state, it is necessary
to ask how the twist stored in the helix is eliminated above
the critical strain.

IV. TWIST LOOP NUCLEATION

At strains exceeding the critical value of 1.16 found in the
previous section, the twisted state becomes metastable rela-
tive to the equilibrium unwound state. As in Refs. �6,7� we
consider the possibility that the decay of the twisted state and
ensuing growth of the equilibrium unwound state occur via
the homogeneous nucleation of twist disclination loops in the
planes corresponding to the helical phase �0= �2n+1�� /2,
n=0, ±1, ±2, . . ., since this is where the Frank energy den-
sity is largest. Figure 6 illustrates how the appearance and
growth of a disclination loop in one of these planes leads to
the removal of the helical twist.

A. Estimate of energy barrier for nucleation
of disclination loop

We first present an order-of-magnitude estimate of the en-
ergy cost of nucleating a circular disclination loop of radius
R in one pitch length of a cholesteric elastomer subject to an

FIG. 3. Free energy F= �

p��0
�/2d�0�f rubber+ fK� vs � for K /�

=10−16 m2 and r=1.9.

FIG. 4. �yy��� for the unwound and twisted states.

FIG. 5. The director solution ���0� for �=1.2 in the twisted and
unwound states. Note that at this strain value the twisted state is
metastable.

FIG. 6. Schematic of the removal of twist in a cholesteric elas-
tomer subject to strain � along the x axis via nucleation of a discli-
nation loop: �a� undeformed helix at zero strain, �b� deformed helix
in a strained elastomer with pinning at �0=� /2, and �c� removal of
twist via the nucleation of a disclination loop on the plane corre-
sponding to �0=� /2. Note that the director fields in �b� and �c�
differ substantially only over a small distance along the pitch axis of
order 
, above and below the disclination loop.
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applied strain slightly above the critical value for the un-
winding transition. We assume that the strain field through-
out the elastomer is given by the solution for the metastable
twisted state �the upper curve on the right-hand side of Fig.
4�. In Sec. IV B we relax this assumption and carry out a
FEM calculation of the nucleation barrier.

We use the approach of Ref. �10� where the nucleation
energy for a disclination loop in a twisted nematic was esti-
mated �also see Refs. �14,16��. The nucleation energy of a
disclination loop in one pitch length is the difference in the
total energy �Frank plus rubber elasticity� of the states with
and without the loop:

E = �1

2
K

p

d3x���d�2 + 
p

d3xf rubber��d��
− �1

2
K

p

d3x���t�2 + 
p

d3xf rubber��t�� , �17�

where the integrals are over one pitch length �indicated by
the p on the integral sign�, and �d and �t are the director
phases in the presence and absence of the disclination loop,
respectively. Recall that in the absence of the loop the elas-
tomer is in the metastable twisted state, hence the “t” sub-
script on �.

The difference in the Frank energies appearing in Eq. �17�
was evaluated approximately in Refs. �10,14,16� for the case
of a loop in a twisted nematic, with the result

1

2
K

p

d3x���d�2 −
1

2
K

p

d3x���t�2

�
�2

2
KR ln� 


a
� − ���3/p�

d�t

d�0
�

�/2
KR2, �18�

where we have replaced the twist q in Refs. �10,14,16� by
�
p

d�t

d�0
evaluated in the plane of the loop corresponding to the

phase �0=� /2. The core size of the loop is denoted by a.
The first term on the right-hand side of Eq. �18� corresponds
to the elastic energy of the loop, and the second term is the
interaction between the loop and the twist d�t /d�0. This
approximate evaluation of the Frank energy difference be-
tween the two states assumes that �d differs substantially
from the phase �t only within a distance 
 above and below
the plane of the disclination loop �corresponding to a helical
phase difference of �0=�
 / p� and within a radial distance
�=R+
 �see Fig. 6�.

The difference of the rubber energies appearing in Eq.
�17�, which is nonzero only within a volume 2�R2
 centered
on the disclination loop, is readily evaluated using Eq. �8�
within our assumption of ignoring differences in �yy between
the phases and recalling that the disclination loop is located
in the plane specified by �0=� /2. We find

f rubber��d = 0� − f rubber��t = �/2� = � r − 1

r
��

2
�r�yy

2 − �2� .

�19�

Therefore,

E �
�2

2
KR ln�
/a� − R2��K��2.75

�2

p
�K

�
− �r�yy

2 − �2��
+ Ecore, �20�

where we have also included a core energy Ecore
=2��KR �where � is a numerical factor of order one� and
evaluated �

d�t

d�0
��/2 using the data in Fig. 5 with the numerical

result 2.75� / p.
The nucleation energy increases linearly with R for small

R, reaching a maximum for R=Rc, where

Rc =

�2

2
K ln�
/a� + 2��K

2��K��2.75
�2

p
�K

�
− �r�yy

2 − �2�� , �21�

and the corresponding nucleation energy �i.e., the nucleation
barrier height� is given by

Ec = ��K��2.75
�2

p
�K

�
− �r�yy

2 − �2��Rc
2. �22�

Assuming the material parameters given in Sec. III, as well
as choosing a�0.01p and setting �=1.2 �with the corre-
sponding value of �yy given by the upper curve in Fig. 4�, we
find

Rc � 0.1p � 30 nm �23�

and

Ec � 105 K � 10−6 J, �24�

using values for p and K as in the previous section. Note that
the energy scale of Ec is of order Kp�105 K with our
choice of material parameters. Recall that our calculation of
Ec neglects any possible spatial variation in the strain field
�ij, assuming that the strain is given throughout the material
by the mean-field solution of Sec. III for the metastable twist
phase. In the next section we carry out a more accurate cal-
culation of the nucleation energy allowing for the proper
minimization of the energy with respect to the elastic degrees
of freedom.

B. Finite-element calculation of the nucleation energy

We improve upon the estimate obtained for the nucleation
energy in the previous section by using the finite-element
method for elastic solids to minimize the total elastomer en-
ergy as a function of the displacement field u and the director
field �, subject to appropriate boundary conditions. By mini-
mizing the energy with respect to the displacement field
rather than the strain field �ij, we automatically satisfy the
conditions of elastic compatibility �17�.

We minimize the energy in a rectangular parallelepiped
bounded in the z direction by two planes containing discli-
nation loops. The x and y dimensions of the parallelepiped
are 2L, such that L /R�1. With a strain � imposed perpen-
dicular to the z axis, symmetry implies that only one quad-
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rant of the parallelepiped need be considered—e.g., the re-
gion specified by x�0, y�0, as shown in Fig. 7.

The finite-element mesh shown in Fig. 7 was chosen to be
coarse in the z direction to allow for manageable computa-
tion time while allowing a reasonably fine mesh in the x-y
plane. The smallest mesh spacing in the z direction was cho-
sen near the two disclination loops which are located on the
bottom and top faces. Specifically, we set this mesh spacing
to be 0.02p, which is less than 
�0.05p, in order to capture
the expected rapid variation of � in these regions. The core
size a of the disclination loops was chosen to be a=0.2
.

The boundary conditions on the displacement field u are
as follows �refer to Fig. 7�: on face �1�, x=L, ux= ��−1�L; on
face �2�, y=0, uy =0; on face �3�, x=0, ux=0; on the bottom
and top faces, ui�x ,y ,z= p /2�=ui�x ,y ,3p /2�, i=x ,y, while
uz�x ,y ,z= p /2�=uz�x ,y ,3p /2�+const. No constraints were
specified on face �4� in order not to bias the solution in any
particular way. The boundary conditions on the director
angle � are on the bottom face, inside the disclination loop

�=� and outside �=� /2; on the top face, inside the loop
�=� and outside �=3� /2. Finally, the position of the origin
is fixed to suppress translation of the elastomer as a whole.

The resistance of the elastomer to compression is imposed
numerically by including a term fB in the total energy density
proportional to a bulk modulus B:

fB =
1

2
B�det��� − 1�2, �25�

with B��. We have not imposed strict incompressibility in
our calculation for two reasons. First, a finite but large bulk
modulus corresponds better to real materials than strict in-
compressibility. Second, implementing Lagrange multipliers
to impose incompressibility in an FEM scheme is highly
nontrivial and substantially increases computational cost, be-
yond our present capabilities. However, we have computed
the determinant of the strain tensor to check the incompress-
ibility of the system which we find is enforced extremely
well when B /�=105 �see Table I�.

We minimized the total energy using the material param-
eters �=1.2, K /�=10−16 m2, r=1.9, and B /�=105. Figure 8
shows the solution for the director field �.

From Fig. 8 we estimate that the twist wall is approxi-
mately �0.25p�5
, in agreement with our earlier estimate
from Fig. 5 which was based on minimizing the total energy
for the same applied strain but in the absence of disclination
loops. We have verified that the size of the twist wall is
insensitive to the mesh size in the z direction; using 16 ele-
ments in the z direction gave a similar estimate for the twist
wall width. To calculate the loop nucleation energy E from
our FEM solution we once again used Eq. �17�, excluding
the core region from the integration and inserting the ap-
proximate value for the core energy, Ec=2�KR, used in Sec.
IV A. The nucleation energy as a function of the loop radius
is shown in Fig. 9 for two different values of the bulk modu-
lus B.

FIG. 7. �Color online� Mesh used for FEM solution in the quad-
rant x�0, y�0 of the rectangular parallelepiped bounded in the z
direction by two planes each containing a nucleated disclination
loop.

TABLE I. Mean values �based on spatial averaging over the entire FEM mesh with �=1.2, B /�=105� of

the diagonal strain components �̄ii and the product of these components for several values of the disclination
loop radius R. The standard deviations in the data reflect the spatial variation of the strain over the mesh. The
off-diagonal components of the strain are of the order of 10−2–10−3, and thus the product of the three
diagonal components is a good approximation to the determinant of the strain tensor which is unity in the
incompressible limit.

R / p �̄xx �̄yy �̄zz �̄xx�̄yy�̄zz

0.2 1.2004±0.004 0.8801±0.004 0.9464±0.001 0.9998±0.006

0.4 1.2008±0.004 0.8796±0.004 0.9466±0.001 0.9998±0.006

0.6 1.2008±0.003 0.8794±0.002 0.9468±0.001 0.9998±0.004

0.8 1.2006±0.006 0.8792±0.006 0.9472±0.004 0.9998±0.009

1.0 1.2008±0.005 0.8787±0.005 0.9476±0.003 0.9999±0.008

1.2 1.2009±0.005 0.8782±0.005 0.9482±0.003 1.0000±0.008

1.4 1.2009±0.004 0.8777±0.005 0.9488±0.003 1.0001±0.007

1.6 1.2008±0.004 0.8772±0.005 0.9495±0.003 1.0001±0.007

1.8 1.2006±0.004 0.8766±0.005 0.9503±0.004 1.0001±0.008

2.0 1.2002±0.004 0.8760±0.004 0.9512±0.003 1.0001±0.006
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The order of magnitude of both Rc and Enuc agrees very
well with our earlier estimates, Eqs. �21� and �22�, which
neglected spatial variations in the strain field and assumed
that the strain throughout the elastomer was given by the
solution for the metastable twisted state. This agreement is
not surprising if one examines the spatial variation of the
transverse strain in our FEM solution—e.g., as illustrated in
Fig. 10 for R=2p. Note from the legend in the figure that the
spatial variation in the strain across the mesh is less than 1%.
Similarly, in Table I we display the values of �̄yy, the spatial
average of �yy over the mesh and the accompanying standard
deviations for a range of values of R. The standard deviations
provide a measure of the spatial variation of the strain over
the mesh, and we note that they are as in Fig. 10 less than
1% of the mean for all values of R listed.

We also note from Table I that �̄yy decreases monotoni-
cally with increasing R—i.e., an increase in the fraction of

the elastomer volume corresponding to the unwound state
which has a smaller value of �yy �see Fig. 4�. This trend is
consistent with our results from Sec. III, specifically Fig. 4,
which shows that �yy is smaller in the unwound state. Thus,
starting with no disclination loop in the metastable twisted
state above the critical strain, we would expect that the av-
erage value of �yy would decrease as the loop begins to grow
and a progressively larger fraction of the elastomer is occu-
pied by the equilibrium unwound state.

We note from Fig. 10 that even at the edges of the paral-
lelepiped �yy is less than its value 0.8805 in the twisted state
in the absence of a disclination loop �see Fig. 4�. Thus, the

fact that �̄yy decreases with increasing R does not seem to be
due solely to the contribution of the unwound portion of the
elastomer within the loop, but instead indicates a nearly spa-
tially uniform �yy that decreases with R.

We have checked the accuracy of our FEM solution by
minimizing the energy in the metastable helical state in the
absence of a disclination loop using the same meshes as in
Table I and obtain excellent agreement with our results from
Sec. III. The standard deviations in �ii in the absence of the
disclination loop do not differ substantially from those in
Table I, suggesting that spatial variations in �ii are likely a
result of the large but finite value of B /� rather than a real
difference between the presence or absence of the loop. The
standard deviations tend to increase with decreasing
B /�—they are about a factor of 2 larger for B /�=104 than
for B /�=105.

We have also measured the shear strains �ij, i� j, and
found them to be very small, of the order of 10−2–10−3, and
decreasing in value with increasing B /�. There is no readily
discernible difference between their values in the uniform
twisted state and the state with nucleated disclination loops.
Recall that in an incompressible elastomer assumed to be
uniform in the x-y plane �i.e., in the absence of a disclination
loop� elastic compatibility requires that the shear strains van-
ish �6� �see Eq. �7��. The small values of the off-diagonal
strains also indicate that the product of the three diagonal
components shown in Table I is a good approximation to the
determinant of the strain tensor. As shown in the table we
have found this product to be very close to unity, thus indi-
cating that our system is nearly incompressible when B /�
=105.

V. CONCLUSIONS

We have explored theoretically the effect of a mechanical
strain applied to a cholesteric elastomer perpendicular to the
pitch axis, focusing primarily on the transition from the cho-
lesteric �twisted� phase to the nematic �unwound� phase. We
have extended the analysis of previous researchers �6,7� by
including Frank elasticity. Because the Frank energy penal-
izes director deformations about uniform alignment, there is
a reduction in the magnitude of the strain needed to unwind
the helix. Additionally, the penalty for a nonuniform director
field causes the twist walls in the strained cholesteric elas-
tomer to be of finite width at the unwinding transition, unlike
the case where Frank elasticity is neglected and the transition
occurs when the twist walls have zero width. Frank elasticity

FIG. 8. �Color online� The director angle � /� for �=1.2, L / p
=5, R / p=0.6, 
 / p=0.037, and B /�=105. The main portion of the
figure shows the variation of � near the upper disclination. The
inset shows the entire x�0,y�0 quadrant of the strained
elastomer.

FIG. 9. E vs R / p for �=1.2 and L / p=5. ��� B /�=105. ���
B /�=104.
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also leads to the metastability of the twisted state above the
transition, prompting the question of the nature of the
mechanism that transforms the twisted state to the unwound
one. To address this question we have adopted the proposal
put forth in Refs. �6,7� that the transition is driven by the
nucleation of twist disclination loops in the planes of the
twist walls. We have explored the consequences of this idea
in two ways. First, following the work of Friedel and de
Gennes �10� who considered a similar question in the case of
cholesteric liquids in the presence of electric or magnetic
fields, we analytically, though approximately, evaluated the
energy cost of the disclination loops and thus determined the
critical radius and nucleation energy barrier. The main draw-
back to this approximate calculation is that we assume that
the elastic strain field in the elastomer is uniform which can-

not be absolutely correct if a disclination loop is present. We
addressed this issue by carrying out a finite-element method
evaluation of the disclination loop energy which allowed us
to properly minimize the energy of the elastomer with re-
spect to both director and elastic degrees of freedom. This
calculation produces results for the nucleation barrier and
critical loop radius in very good agreement with the approxi-
mate calculation and shows explicitly that the strain field is
very nearly uniform in the elastomer.
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