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Equilibrium polymerization and gas-liquid critical behavior in the Stockmayer fluid
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We develop a simple theory explaining the dependence of the gas-liquid critical point in the Stockmayer
fluid on dipole strength. The theory is based on the Flory-Huggins lattice description for polymer systems in
conjunction with a transfer matrix model for isolated chains of reversibly assembled dipolar particles. We find
that the shift of the critical point as a function of dipole strength, which originally was found in computer
simulation, strongly resembles the critical point shift as a function of chain length in ordinary linear polymer
systems. In particular, the decrease of the critical density with increasing dipole strength is a consequence of
the existence of reversible chains near criticality. In addition we report simulation results for gas-liquid critical
points well above the limiting dipole strength found previously.
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I. INTRODUCTION

The addition of dipolar interaction to short-range poten-
tials used to describe simple liquids leads to new complex
phase behavior depending on the dipole strength and other
variable details of the microscopic models. Most theoretical
and simulation work has focused on gas-liquid coexistence
and on the Curie-Weiss-like isotropic-to-nematic liquid tran-
sition [1,2]. Dipolar liquids are of interest to researchers in
quite distinct fields like low-molecular-weight liquids or lig-
uid crystals, colloidal ferrofluids, and polymers. This is be-
cause dipolar interaction may lead to the reversible forma-
tion of polydisperse chains from molecules or colloidal
particles [3] (see in particular Ref. [1] and the references
therein) whose physical behavior is similar to that of ordi-
nary polymer systems [4]. The chain formation in turn
strongly affects the behavior of the monomer systems. This
coupling, together with the special problems caused by long-
range interaction, thus far has prevented a complete theory,
particularly for computing the phase diagram of dipolar lig-
uids.

Here we focus on the coupling between gas-liquid critical
behavior and the formation of reversible dipole chains in
Stockmayer fluids (SFs). In the latter the particles interact
via a normal 12-6 Lennard-Jones (LJ) potential plus a dipole-
dipole potential between point dipoles @ located on the LJ
sites. The Stockmayer potential is one of three potentials
used extensively to model dipolar fluids. The other two are
the dipolar soft sphere potential, which neglects the LJ at-
traction in the SF, and the dipolar hard sphere (DHS) poten-
tial, which posses a hard core instead of the SF’s LJ poten-
tial. All three models have been shown to exhibit
ferroelectric liquid order under suitable conditions (see Ref.
[5] for a detailed discussion). However, with respect to gas-
liquid phase separation they differ. The SF is based on the LJ
potential, and therefore it will phase separate even for van-
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ishing dipole moments. For models without dispersion at-
traction this is a prior unclear. For the DHS model the exis-
tence of gas-liquid phase separation still is under debate
[1,2]. Based on simulation work van Leeuwen and Smit [6]
had concluded that gas-liquid phase separation depends on
the strength of the dispersion attraction. They had investi-
gated a modified SF in which the r® term is replaced by
N6, where \ varies between 0 and 1. Notice that A=0 cor-
responds to the soft sphere potential. Below A = 0.3 they did
not find gas-liquid phase separation, which they attributed to
chain formation. This claim was supported by theoretical
work (e.g., [7,8]) showing that chains of DHSs essentially
should not interact. Because the modified SF of Ref. [6] can
be mapped onto the ordinary SF, it was concluded [9] that
the ordinary SF will not show gas-liquid phase separation for
dipole moments exceeding u=5. A different conclusion was
reached by Dudowicz, Freed, and Douglas [10], who map
the Stockmayer fluid onto a Flory-Huggins (FH) mean-field
lattice model. Their theory implies that the gas-liquid critical
point exists for all dipole strength.

The basis of our theory, i.e., the FH lattice description, is
the same as in Refs. [10-12]. However, we do choose a
different mapping between the lattice model’s direct interac-
tion parameters and the Stockmayer fluid. Our approach al-
lows us to directly relate the shift of the gas-liquid critical
point to the details of the underlying interactions. In agree-
ment with Ref. [10] our theory does not yield evidence for
the disappearance of gas-liquid criticality at large finite di-
pole strengths reported previously. This finding is supported
by the results of molecular dynamics computer simulations.
Using the simple Maxwell construction method we do ob-
serve gas-liquid criticality well beyond the above limiting
dipole strength in good accord with our theory. We also
stress the similarity between the mean-field critical behavior
in this system in comparison to ordinary systems of linear
polymers.

II. FLORY-HUGGINS MODEL FOR REVERSIBLY
ASSEMBLING POLYMERS

In Ref. [13] we had introduced the following free energy
of an N-site lattice with variable occupation, i.e., including
empty sites:
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where ¢=¢g;—In[g—1]. In this equation the terms explicitly
containing the parameters &,, and &; constitute the contact
interaction part of the free energy. The other terms account
for the packing entropy proportional to the logarithm of the
number of ways s-mers can be distributed on the lattice leav-
ing a certain number of sites empty. Here 1-mers are free
solute monomers (index M) occupying a single lattice site,
and s-mers (s> 1) are reversible linear aggregates (index A)
formed by monomers. The &,, parameters are the contact
free energies of occupied sites of type x and y, respectively,
whereas g; describes the monomer-monomer interactions
within aggregates. The ¢, are the volume fractions of the
respective particles. Note that ¢,=bosN,/V, ¢p=27_,¢,, and
N= Elest+Nemp,y, where N, is the number of s-mers, N,y
is the number of empty sites, and b is the site volume. In
addition g=6 is the coordination number of the cubic lattice.
Here, in comparison to Ref. [13], we do omit additional sol-
vent particles. In the following we also drop the distinction
between the ,, parameters replacing each g,, by a single &
[14]. The resulting lattice free energy becomes

boFy, 1

T +2—1n( )+(1—¢>)ln(l—¢)

+(c+1>2(“;1>¢5. 2)

s=2

Using the equilibrium condition wu,=sw;, where

=(9F,/ r?NS)T’V,NY,(V,#) is the chemical potential of an s-mer,

we obtain ¢,=sB’e with B=¢e7. Together with the mass
conservation condition ¢= ¢, + ¢,,,, the mean particle size n
becomes
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Notice that we may combine this equation with the mass
conservation condition to yield n expressed via ¢, i.e.,

R
=+ 1 +4(g—1) e, 4
n=_+oVl+ (g—1) e (4)

The equation of state follows via P=—(3F./dV)zy , i.e.,
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using ¢,q,=(1 —-n"2)¢. This result coincides with the equa-
tion of state for monodisperse polymers of fixed length n.
Here, however, n is a function of ¢. We therefore obtain for
the gas-liquid critical point
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where m=2n-1 and K=6n(n—-1)+1, and
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For large n, the critical density vanishes as ~n;” 2, whereas
the critical temperature approaches a constant value, which
coincides with the Boyle temperature of the monomer sys-
tem.

In this theory reversible association is promoted by the
quantity g;. In particular, ;=0 describes the limit of an or-
dinary simple liquid. For &;=0 and ¢g=6, however, one ob-
tains n,=(\11+1)/2~=2.158 and not n,=1 as one may ex-
pect. This theory reaches the limit n,=1 only if exp(-c)=0.
But this means that n.=1 under all circumstances, i.e., no
association occurs even if g;#0. The effect is due to the
inability of the lattice theory to distinguish between adjacent
unassociated and reversibly bound lattice sites. Because of
this we must redefine the simple liquid (SL) limit, i.e.,
g;=0, via the simultaneous solution of Egs. (4) and (6)
given by n.g=2.0142 and ¢, g =f,(n.s)=~=0.4086. The
attendant critical temperature is T, g =—q&g s (n.s1)
~-0.4002gg g; -
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FIG. 1. Comparison of &; according to the expression in square
brackets in Eq. (24) (solid line) to &; according to the expression in
square brackets in Eq. (25) (dashed line) plotted vs r for T=10 and
u?=36. Note that &/(u>/(Tr3))==9.7 [using Eq. (25)] and r
~(.73 in this special case.

This theory can explain the decrease of the critical density
with increasing dipole strength 2, in terms of an increasing
mean particle size n. Thus we must find a link between u’
and n. We start by introducing u? on the level of the equation
of state, i.e., we approximately include the pressure contri-
bution due to long-range dipolar attractive interaction via

4 2
1 f d3r’0”<uDD> __8_771“ p
r=R

Ppp=~-——p’ = ,
bD =" g ar 9 TR3

(11)

where (upp)=—-2u*/(3Tr°) is the thermally averaged dipole-
dipole interaction energy [assuming —u?/(Tr) < 1; units are:
T:=Tkyle, r=r/o, and u’*:=u’/(4meyea’), where ky is
Boltzmann’s constant, €, is the vacuum permitivity, and €
and o are the usual LJ-parameters, which in the following set
the units energy and length]. Here r is the dipole-dipole sepa-
ration, and R is a suitable cutoff. We integrate this contribu-
tion into the equation of state (5) via the substitution

167 ut
= - . 12
€0=€o,5L 9quR3 T (12)
Inserting this equation into Eq. (7) yields
Tp) = u?  for p* — =,
T(w)=T.sq foru*=0, (13)

at fixed n,. This is in reassuring agreement with simulation
data shown in Fig. 3. We note that the applicability of Eq.
(11) rests on the premise that the individual dipoles retain
sufficient rotational freedom even as part of a reversible
chain.

Next we consider the lattice free energy in the limit of a
single infinitely long chain and vanishing ¢,,,, i..,

F
L —g,—In(g-1). (14)
sT

In order to find an approximate expression for g;=£,(u*) we
estimate the configuration free energy of an isolated chain
consisting of s Stockmayer dipoles based on the potential
energy
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where u;; is the LJ pair potential and T is the dipole tensor.
The summation includes the interaction of immediate neigh-
bors only, which in the one-dimensional case is not unrea-
sonable. In addition we assume a uniform “bond length” r
=|F,-,,»+1|. The configurational partition function now becomes

i 1 .
QL = f d{Q:}d{Q ,;}exp(— = U “”‘”’”) ) (16)

We want to evaluate the integration on a simple cubic lattice,
ie.,

dar 25—-1
fd{ﬂ;}d{ﬂ,z}z (7) > . (17)

{0140,

Note that there are s dipole moments connected by s—1
bonds. The chain becomes a path on the cubic lattice
(¢=6). Every lattice site on the path is occupied by a dipole
[; oriented along one of six possible lattice directions. The
possible orientations are given by the vectors ¢M=(1,0,0),
¢?=(0,1,0), e@=(0,0,1), eW==eM, ¢5=—-¢? and ¢©
=—¢®), ie., gP=ue®. Because every segment along the
chain contributes the same to the total LJ interaction we may
write this factor in front of the sum and replace the sum by
the following trace:

0'haim = exp[= (s = Dug,(N/TITH (M 'M,),  (18)

conf
where
o 1
My=2 exp(— ;E Mif)faféﬂ(é)) (19)
v=1 a,B
(k,I1=1,...,6) are the elements of a transfer matrix M, and

74

v)
kl

are the components of the dipole tensor

1
)= 5 (8ap~ 3elely). (20)

Q,

The elements of the matrix M, are simply all equal to 1. We
obtain for the configuration free energy of the chain

= p(chain)

s=1 )\max(r)>
o =~ —— min /T—In ———
sT conf s rl (”Lj(r) q2

2s—1

N

In 47, (21)

where \,,,, is the largest eigenvalue of M given by
M) =26%(1 4+ 274+ 12¢72 4 2e7 3 4 74 (22)
with

w

= (23)

a=
Note that min, accounts for the fact that r is a variable pa-
rameter. Comparing Eq. (14) with Eq. (21) we find that g; is
given by
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FIG. 2. Based on the theoretical curves shown in Fig. 3 this plot
compares & u’/ (Tcrg)] (solid line) at the critical point with the
simple approximation —2u?/T, (dashed line).

1
&= }MLJ(r) —1In )\max(r) +21In q > (24)

"= pin

where we have replaced (s—1)/s by unity. Here r,,, is the
separation for which the expression (24) acquires its mini-
mum. Note also that the term (2s—1)/s In(4r) that appears
in Eq. (21) is missing here. This is because a factor s In(4 ),
corresponding to the dipole orientation, is not present in the
lattice free energy. The remaining part, (s—1)In(4), corre-
sponds to the orientation of the bonds in the off-lattice case,
which in the lattice model is replaced by the term In(g—1).
Notice that for u?>=0 we find &;,~u; /(r,,;,)/T. Because the
LJ fluid is our simple liquid we must not use (24) directly but
rather

&= [_ In )\max(r) +21In q]r:rmin’ (25)

where r,,;, is the optimal monomer separation within a chain
computed via minimization of expression (24).

The last ingredient to our theory of the u?> dependence of
the critical point is the relation

,
by = bO,SL_0~ (26)
To,sL

Here ry is the root of expression (24), and ry g, =1 is the root
of the same expression in the limit u>=0. Because the dipo-
lar interaction within a chain leads to an attraction increasing
with increasing u?, we do see from Eq. (6) that at constant 7,
this leads to an increase of the critical monomer number
density p.=¢./by. However, if n. is increasing with increas-
ing u? then the competition of the two effects will determine
pe(ud).

The two quantities r,,;, and r, are illustrated in Fig. 1,
which shows the dependence of the expression (24) on r for
T=10 and u*>=36. The minimum of this expression (solid
line) yields r,,;, and the function —In \,,,,(r)+2 In g (dashed
line) evaluated at r=r,,, is s(u*/(Tr..))~=9.7 for this
temperature and dipole strength. In addition r,=0.73 is the
root of expression (24) in this special case. Figure 2 shows
the comparison of e[ u?/(T,.r.. )] plotted vs dipole strength
with the simple approximation —2u?/T,. We note that the
simple approximation comes close to being constant for >
>10.
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In order to compute the critical point shift as function of
u? together with the critical aggregation number 7, we need
to solve Egs. (4), (6), and (7) using Egs. (12), (25), and (26).
Introducing the definitions x,=p./p. s and x;=T,./T. 5 we
may rewrite the above set of equations, i.e., Egs. (4), (6), and
(7), in a more transparent form:

ne= % " %\"/1 +4(q - De™"if,(n,), (27)

x =
P rﬂfp(nC,SL) '

1 Al
_<1 | _) _ filnes). 29)
Xr o Xt fr(n)
where k=167p. 5[ T(nc,SL)/ [9R3T§,51f p(nc,SL)]’ o
=ro(u?.T,), and &;=&[u?/(T,r,,)]. Here p. g and T, are

the respective values for the LJ system.

We want to discuss this result before comparing it to com-
puter simulation. Assuming for the moment that r,,;,, and r,
are constants, we do observe that x, or p, will simply de-
crease if the average critical chain length increases at 7,.. We
do expect an increase of n,. because for small dipole strength
w? increases faster than T, as Eq. (29) shows. However, for
long chains f(n.) approaches 1 and 7.y’ This in turn
implies that &; becomes constant, which means that n. and
thus also p. approaches a constant. This basic behavior, i.e.,
an initial slow increase of T, as function of ,LLZ, which sub-
sequently will be steeper and proportional to u? and the de-
crease of p, which then levels off as soon as T,.o u?, is
modified by the u? dependence of r,,, and r,. A decrease of
Fin With increasing u? promotes growth because it tends to
increase the magnitude of &;. This will decrease f,(n,) caus-
ing p. to decrease. On the other hand the factor 1/r, in Eq.
(28) will counteract this decrease to some extent. In the fol-
lowing section we analyze this dependence numerically.

III. COMPARISON TO MOLECULAR DYNAMICS
SIMULATION RESULTS

Figure 3 compiles and compares simulation results for the
gas-liquid critical temperature 7. and the critical density p,
of the Stockmayer fluid plotted versus dipole strength u>.
The star symbols denote data points obtained by this group
using molecular dynamics simulations in conjunction with
the Maxwell construction method to determine the coexisting
gas and liquid densities. We carry out a large number of NVT
simulations along an isotherm which allows us to employ the
Maxwell construction to obtain the coexisting densities of
the pure gas and the pure liquid. Note that the system was
compressed and subsequently expanded to check for hyster-
esis. Repeating this procedure for a series of temperatures
yields the gas-liquid coexistence curve, which we analyze
using the well-known scaling relations to extract the critical
point data. For selected dipole strengths the resulting binodal
lines were confirmed using thermodynamic integration
(Kofke’s method). These simulations are described in detail
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FIG. 3. Top: Gas-liquid critical temperature 7, of the Stock-
mayer fluid vs dipole strength 42, Symbols indicate computer simu-
lation results (stars, this group); hollow squares, Ref. [6]; hollow
diamonds, Ref. [9]; hollow triangles, Ref. [16]; crosses, Ref. [17]).
Bottom: Gas-liquid critical density p,. of the Stockmayer fluid vs
dipole strength 2. The solid lines are the theoretical result obtained
for R=4.1.

elsewhere [15]. All other symbols denote previously pub-
lished data by other groups [6,9,16,17]. Notice that the data
taken from Ref. [6] were mapped via the relations Ty
=N"Tyr5, psr=N"pyrs, and pgr=N""*p,;5 (cf. Sec. 1T in
Ref. [9]). These relations transform the potential considered
in Ref. [6] (VLS), i.e.,

2
UuLS(ruLSsMuLS)_ 4 ( 1 N 1 ) MoyLs f
- 2 " Me - 3 />
TyLs Tors\ryrs rvLs TyrstyLs

(30)

where f simply is a function of the relative orientation of two
interacting dipoles, to the Stockmayer potential (ST), i.e.,

Usrrer,pusy) 4 (1 1 Msr
L e | SV N 3D
Tsr Tsr\rep 1) Tsirsy

It is worth noting that the authors of Ref. [6], using Gibbs
ensemble Monte Carlo simulations, were unable to observe
gas-liquid coexistence for A <0.3, which for the Stockmayer
potential corresponds to u?>24. It is also worth noting that
the above mapping allows us to interpret the limit when iso-
tropic attraction becomes vanishingly small in terms of the
ordinary Stockmayer fluid in the limit of large dipole mo-
ments.

The theoretical curves are obtained by numerical solution
of Egs. (27)—(29) computing ¢; according to Eq. (25) using
ro obtained via the minimization condition (24). Here we use
the LJ critical constants, p, ¢ =0.305 and T, =1.32. The
only adjustable parameter is the cutoff radius R in Eq. (11),
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which is set to R=4.1. The resulting agreement with the
simulation results for 7, vs u? shown in Fig. 3 (top panel) is
excellent. The bottom panel of Fig. 3 shows the theoretical p,
vs u? (again for R=4.1) in comparison to the simulation
results. We do find quite reasonable agreement between the
theory and our simulations over the entire range of dipole
strengths. However, both our theory and the simulations
yield critical densities which are systematically lower than
the values obtained previously with the Gibbs ensemble mo-
lecular dynamics (GEMD) method in the range u?>>5. In
addition, and more important, we do observe gas-liquid criti-
cality for u?=30 and u?=36. This is well above the limit
discussed previously beyond which the gas-liquid critical
point should disappear.

It is worth pointing out that an equally good result for 7',
vs u? may be obtained by simply adding the pressure con-
tribution (11) to any simple monomer equations of state [for
instance Eq. (5) with n=1 or the van der Waals equation of
state]. It is the decrease of the critical density with increasing
wu?> which presents a challenge. In the case of Eq. (5) with
n=1 or the van der Waals equation the critical density is
inversely proportional to the monomer volume. In order for
the critical density to drop this volume must effectively in-
crease. The reversible aggregation of monomers into linear
chains offers a simple mechanism as shown by Eq. (6). Even
though the FH-type lattice model employed here is not dif-
ficult, there is an even simpler way to understand this point
intuitively. Let b describe the volume parameter in the van
der Waals equation. Then, as just mentioned, the critical
(chain) number density p”" is proportional to b7, i..,
piﬁh“i”ocb‘l. If now a reversible chain consisting of n mono-
mers can be treated as an “ideal coil” or “blob” with a mean
diameter ~n'? and therefore with b~ n*? interacting with
other such blobs the resulting critical density of this fluid of
blobs obeys p“" ~ n=32 Multiplying p"“" with n we obtain
for the monomer number density p,~n~"2. This is exactly
the same scaling behavior as in Eq. (6) for large n.. The
problem with this simple van der Waals picture is that there
usually is significant overlap between blobs at the densities
of interest. For instance, we can extend the scaling argument
to the critical temperature, which in the van der Waals case is
proportional to a/b, where a is the attraction parameter. Us-
ing axn® we obtain T,xn'?, ie., the critical temperature
does not approach a finite value as n— . In the case at hand
this yields an exaggerated rise of T, with increasing u’.

The existence of chains near the gas-liquid critical point is
illustrated pictorially in Fig. 4. The figure shows two snap-
shots taken during a molecular dynamics simulation of 2048
Stockmayer particles with u?=36 near the critical density.
The upper panel shows a system configuration at a tempera-
ture high enough to suppress chain formation. The lower
panel corresponds to 7= T.. In this case chain segments are
clearly discernible.

The preceding theoretical analysis of the critical point
shift attributes the decreasing critical density to a corre-
sponding increase of the average chain lengths. In order to
support this point Fig. 5 shows the dependence of the aver-
age chain length at criticality, obtained from MD simula-
tions, on dipole strength. Two Stockmayer particles are con-
sidered to be neighbors along a chain if their distance is less
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FIG. 4. Snapshots taken during a molecular dynamics computer
simulation of 2048 Stockmayer particles with u?=36 at p=0.099
(=p.). Top: T=14.0; bottom: T=~T,. Each Stockmayer particle is
represented by a cone oriented along the instantaneous direction of
the particle’s dipole moment.

than r,. This is a very simple criterion and consequently the
average chain length depends considerably on the value of
r,. More complicated criteria combine distance, dipole ori-
entation, and interaction energy. Nevertheless, we do observe

Ne

50

20

10

e

1 2 5 10 20

FIG. 5. Mean critical aggregation number n, vs dipole strength
2. Solid circles, MD simulation analyzed with r,=1.0 (bottom),
1.1 (middle), 1.2 (top); solid line, theoretical results corresponding
to the theoretical curves in Fig. 3.
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FIG. 6. The critical point of n-alkanes as function of n. Large
dots, experimental critical point data for n-alkanes taken from Table
2 in Ref. [18] vs the number of methylene groups, n: small dots,
critical density computed via p.=6.718nP./T.; solid lines, FH
theory with 77'=1300 K and bp=1 in the units used here; dashed
line, density based on MP2 calculations of the all-frans molecular
volume.

a significant increase of the average chain length regardless
of the specific r, value supporting our above premise. In
addition to the simulation results the figure includes the the-
oretical dependence of n, on u? (corresponding to the solid
lines in Fig. 3). The agreement between theory and simula-
tion is qualitative. The theoretical n, is plagued by a strong
dependence on the details of the interaction between the
Stockmayer particles. Quantitative agreement between
theory and simulation can, for instance, be improved if an
additional factor is introduced reducing the numerical value
of g; in Eq. (25). However, this procedure does not yield
additional physical insight beyond the level of the present
one-parameter theory.

Finally, we want to draw a more explicit correspondence
between the FH lattice description and an ordinary system of
chain molecules at gas-liquid criticality. Figure 6 shows ex-
perimental critical point data for n-alkanes vs their number
of methylene groups, n. The solid curves are well-known
results followiFg from the equation of state, Eq. (5) [4], i.e.,
T,=T:n/(1+\n)* with T, =Tg,,, ¢.=1/(1+n), and P, ac-
cordingly. We emphasize that this is not an attempt to de-
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scribe the critical data for n-alkanes quantitatively. This has
been done elsewhere [18—20]. In addition, corrections to the
FH critical point shift at large n, where 7 is the monodisperse
chain length in pure polymer systems or in polymer-solvent
mixtures also have been discussed (e.g., [21,22]). Instead,
the main purpose of Fig. 6 is to highlight similarities be-
tween the Stockmayer system near gas-liquid criticality and
an ordinary fluid of linear polymer or polymerlike molecules.

Notice that 7., is not known for n-alkanes. In the literature
a rather wide range of values is discussed, e.g.,
1100 to 1700 K in Ref. [18]. Here we use T.. =1300 K. No-
tice that the function f7(n) in Eq. (7) also approaches a con-
stant value in the limit n—oe, It is the factor (12) that yields
the u” dependence of T, in the Stockmayer system. In the
case of p., now the critical mass density, we use p,
=mg')/ b(()")qﬁc simply setting m(()")/ bg”: 1. Here bg‘) is the vol-
ume per carbon subunit, and m(()" ) is its mass. The important
point to note is that both quantities depend on n. This is
demonstrated by the dashed line in the middle panel of Fig.
6. The line connects the values (mg’)/ bé"))/ (mél)/ bgl))pf'”h“"e
obtained for n=1,2,...,6 using the experimental critical
density of methane. m"/b” is obtained by dividing the
mass of the respective n-alkane by its volume computed via
the quantum chemistry program SPARTAN [23] using second-
order Mgller-Plesset (MP2) perturbation theory (6-31G" ba-
sis set) applied to all-frans conformations (for n>4). Notice
that the initial rise of the critical density with n is the con-
sequence of a shrinking volume per C subunit essentially due
to dispersion attraction. This is the motivation to include the
relation (26) into the above theory, even though the maxi-
mum exhibited by p. in Fig. 3 is much less pronounced in
comparison to the maximum of the critical mass density in
Fig. 6. In order to extend the available data for p, to larger n
values we have assumed the relation p.=6.718nP_./T,. Data
values obtained via this relation are represented by the
smaller dots. Notice that P./(p.T,.)=const is a fairly good
approximation for n=< 18, where p. is known independently.
For n> 18 the scatter is considerable. But the extrapolation
suggests that the experimental p. may decrease in reasonable
accord with the FH prediction. Finally, the solid line in the
bottom panel of Fig. 6 is plotted using 75 =1300 K and b,
=bf)")=1 allowing a rough comparison between the slope of
P, for large n as obtained experimentally in comparison to
the FH result.
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IV. CONCLUSION

In this work we develop a theory, based on the FH lattice
description for polymer systems, to explain the dependence
of the gas-liquid critical point in the Stockmayer fluid on
dipole strength. The shift of the critical point to lower den-
sities and higher temperatures as function of dipole strength,
which has been observed in numerous computer simulations,
closely resembles the critical point shift as function of chain
length in ordinary linear polymer systems. The dependence
of the critical temperature on dipole strength may be ex-
plained without particle association, but this explanation
does not include the shift of the critical density. In particular,
the decrease of the critical density with increasing dipole
strength is a consequence of the existence of reversible
chains near criticality. Contrary to the case of ordinary linear
polymer systems, where the Flory approach yields a finite
critical temperature for infinite chain length, the critical tem-
perature continues to increase proportional to the square of
the dipole moment even for large average chain length. In
addition we do not find evidence, in neither simulation or
theory, for an abrupt disappearance of the gas-liquid critical
point found to occur in earlier simulation work. It is worth
noting that the possible transition to ferroelectric liquid or-
dering is not expected to interfere with this conclusion (cf.
Ref. [5]), a possibility that has been discussed in theories of
phase behavior in dipolar fluids (e.g., [24,25]).

Finally we want to comment on the relation of this work
to the defect-induced critical phase separation in dipolar flu-
ids proposed by Tlusty and Safran [26]. The present ap-
proach does not include such defects, which amount to treat-
ing the system as reversible, random network with variable
strand length including free ends and cross links. Thus far we
do not have evidence for network formation from our MD
simulations. However, cross links may be difficult to detect
for small cross-link density. Nevertheless, the free energy in
Eq. (2) can be extended by an elastic contribution to describe
a random “polymer network™ (e.g., Chapter 21 in Ref. [27])
and an appropriate defect energy contribution may be added.
Without the latter the resulting equation of state closely re-
sembles Eq. (5), where n becomes an average strand length,
for large strand lengths. However, the additional energetic
contribution will modify the equation of state and therefore
the result shown in Fig. 3.
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