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Our interest goes to the different virial contributions to the equation of state of charged colloidal suspen-
sions. Neglect of surface effects in the computation of the colloidal virial term leads to spurious and paradoxi-
cal results. This pitfall is one of the several facets of the danger of a naive implementation of the so called one
component model, where the microionic degrees of freedom are integrated out to only keep in the description
the mesoscopic �colloidal� degrees of freedom. On the other hand, due incorporation of wall induced forces
dissolves the paradox brought forth in the naive approach, provides a consistent description, and confirms that
for salt-free systems, the colloidal contribution to the pressure is dominated by the microionic one. Much
emphasis is put on the no salt case but the situation with added electrolyte is also discussed.
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I. INTRODUCTION

In a complex mixture where several species with widely
different characteristic time and space scales coexist, it is
common practice to resort to a coarse grained description
integrating from the partition function all degrees of freedom
that do not belong to the main �larger� constituent �1–4�. This
leads to a state dependent effective Hamiltonian for the main
constituent, thereby allowing a one component model
�OCM� description. The motivation for such a procedure is
not only to facilitate contact with experiments, where most
of the time the small constituents cannot be probed directly,
but also to simplify the theoretical treatment. Indeed, one can
then use the well developed statistical mechanics tools from
the theory of simple liquids to study the OCM. This transpo-
sition from simple to complex fluids is, however, paved with
practical difficulties, see, e.g., �5,6�. It is the purpose of the
present paper to discuss one such pitfall arising in the
context of charged colloidal suspensions.

The system we will consider is made up of Nc charged
spherical hard particles �colloids� immersed in a solvent with
dielectric constant �, which fills a box with volume V limited
by a neutral hard wall. The colloid’s interior is assumed to
have the same dielectric constant as the solvent. Each colloid
bears a charge Zce where e is the elementary charge and
Zc�1. The medium outside the container is a structureless
dielectric continuum with dielectric constant ��. To ensure
electroneutrality, the solution contains NcZc microscopic

counterions, assumed monovalent. Additional microions may
also be present due to the dissociation of an added salt and
the total number of microions is denoted Nmicro. The particles
interact through Coulomb forces and hard sphere exclusion,
although in the subsequent analysis, the hard-core interaction
will turn out to be irrelevant.

The paper is organized as follows. In the situation where
�=��, we consider in Sec. II the different virial contributions
to the equation of state. In the salt-free case, we argue that
the colloidal contribution Pocm has to be negligible compared
to the microionic one �Pmicro�. We then show that a naive
implementation of the OCM picture leads to a violation of
the constraint Pocm� Pmicro. Section III for �=�� and Sec. IV
for ���� are devoted to the resolution of this apparent para-
dox. It will be shown that in a closed cell, the surface con-
tribution to the colloidal virial Pocm is comparable to the bulk
term, while only the latter is considered in the naive picture.
Hence its failure, resulting from a gross overestimation of
Pocm. As a consequence, the knowledge of a good effective
potential in the bulk is insufficient when it comes to directly
computing the colloidal virial in a closed box. Concluding
remarks are drawn in Sec. V, where we discuss in particular
how the effective potential can be used—indirectly but from
a standard procedure—to compute the total pressure of the
system. While most of the analysis holds without salt, the
situation of an added electrolyte is also briefly addressed.
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II. EQUATION OF STATE, EFFECTIVE INTERACTIONS,
AND ONE COMPONENT MODEL VIRIAL

A. Equation of state

We start by the simplest situation where �=�� and con-
sider all charged species in the solution. The virial theorem
allows us to write the total osmotic pressure P �with respect
to pure solvent� in the form

�PV = Nc + Nmicro +
�

3� �
i�col+micro

ri · Fi
int� , �1�

where �=1/ �kT� is the inverse temperature and the summa-
tion runs over colloids and microscopic ions, therefore in-
volving Nc+Nmicro terms. In Eq. �1� the angular brackets de-
note a statistical average �that coincides with time average�
and Fi

int is the �internal� force exerted on particle i at position
ri, due to hard-core and Coulombic interactions in the solu-
tion. Adding the force exerted by the wall to Fi

int would
therefore provide the total force Fi

tot felt by particle i. We
note here that it is possible to express the pressure in Eq. �1�
as a surface integral over the wall of the total �colloid
+microions� concentration. Applying the virial theorem to
the microions only, we have

NmicrokT +
1

3� �
i�micro

ri · Fi
tot� = 0 = NmicrokT

+
1

3� �
i�micro

ri · Fi
int�

−
kT

3 ��box
�micro�r�r · d2S� , �2�

where the surface integral with normal oriented outward
runs over the box confining the system. Inserting the latter
equality into Eq. �1�, we obtain

P = �ckT + Pocm + Pmicro with Pocm =
1

3V� �
i�col

ri · Fi
int�;

�3�

Pmicro =
kT

3V��box
�micro�r�r · d2S� ,

where �c=Nc /V and �micro�r� denotes the total microion den-
sity at point r. Within mean-field approximation, this equa-
tion may be found in �1�. The first term on the right hand side
of Eq. �3� is the colloid ideal gas term which can be safely
neglected in practice for the parameter range of interest here
�see below�. The second term—of central interest here—is
the colloid-colloid virial contribution and is indexed by the
subscript OCM since it would be the only term considered
�apart from the ideal gas one� in the OCM approach, re-
stricted to the mesoscopic degrees of freedom 	ri
1�i�Nc

. In-
deed, the statistical average �¯� may be performed in two
steps:

Pocm =
1

3V��
i=1

Nc

ri · Fi
int�

col+micro

=
1

3V��
i=1

Nc

ri · �Fi
int�micro�

col

=
1

3V��
i=1

Nc

ri · Fi
eff�

col

, �4�

where we have introduced the microion averaged effective
force Fi

eff exerted on colloid i for a given colloid configura-
tion.

The third term in Eq. �3�, Pmicro, accounts for the direct
coupling between colloids and microions. In principle, this
third term is to be averaged over the colloidal degrees of
freedom. However, even at simplified or mean-field level, a
full Nc-colloid simulation is computationally demanding
�7–9�, and further simplifications are helpful. Of particular
interest are two such simplifications, both belonging to the
Poisson-Boltzmann family, that reduce the initial Nc-body
problem onto a Nc=1-body situation. The first one is the
common cell model approach originating from a solid state
point of view where the Wigner-Seitz cell around a colloid is
constructed and then “sphericalized” for the sake of simplic-
ity. The Poisson-Boltzmann equation is solved within this
cell, and from the microionic density profile one can then
estimate Pmicro. The second model is the renormalized jel-
lium model �10� where a liquid state point of view is
adopted: the colloid-colloid pair distribution function gcc�r�
is considered structureless so that other colloids around a
tagged macroion behave as a continuous background. The
charge of this background is a priori unknown, and enforced
to coincide with the effective charge. This self-consistency
requirement leads to a unique and well defined effective
charge �10�. It has been shown that for salt-free suspensions,
these two models—cell and jellium—both lead to a pressure
Pmicro that is in excellent agreement with existing experimen-
tal data �11� and primitive model simulations for P �12,13�,
see, e.g., �10,14,15�. We note that Pmicro may be coined a
“volume” term �2,17,18�, since—at least, within the cell
model and jellium approaches—it does not depend on the
colloidal degrees of freedom but only on the mean colloidal
density. The good agreement one obtains with the exact pres-
sure P for both models implies that for salt-free systems
P
 Pmicro. This is corroborated by a recent study of finite
stiff-chain polyelectrolytes �19�. From Eq. �3� where the
ideal gas contribution ��ckT� is neglected, this may be trans-
posed into the following requirement:

Pocm � Pmicro. �5�

A similar conclusion was reached in Ref. �20�.

B. Effective interactions

Both Poisson-Boltzmann cell and jellium approaches are
not only useful to estimate the pressure, but also to derive
effective parameters for solvent+microions averaged
colloid-colloid interactions. By construction, the effective
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potential is that which leads to the correct colloid-colloid
pair structure encoded in the potential of mean force gcc,
assuming pair-wise colloid-colloid interactions within the
OCM model �see, e.g., �1��. Although the effective potential
has a clear-cut definition, there is no rigorous operational
route to construct this object. In general, when microionic
correlations do not invalidate the mean-field picture �13�, a
good approximation is to write the effective potential as a
sum of pair-wise Yukawa terms of the form

�veff�r� = Zeff
2 �B� exp�	effa�

1 + 	effa
�2exp�− 	effr�

r
�6�

with a the colloid radius, �B=�e2 /� the Bjerrum length, and
Zeff and 	eff the effective charge and inverse screening length
computed within the cell or jellium model �10,21–23�. Such
a “DLVO”-like expression �1,2,4� would accurately repro-
duce the large distance interaction of two colloids in a salt
sea �1,2,4�. Its relevance in the no-salt case will not be dis-
cussed. As will become clear below, we are interested here in
orders of magnitude, that should not depend on the precise
form of Eq. �6�.

C. An apparent paradox

Within the jellium model, the salt-free equation of state
takes a particularly simple form,

�Pmicro = Zeff�c. �7�

Within the cell model, this expression is not exact but ap-
proximately correct. For a highly charged macroion, one has
Zeff�1 which allows us to neglect the ideal gas term in Eq.
�3�. In spite of its simplicity, the expression �Pmicro=�cZeff
hides a complex density dependence through Zeff and is in
excellent agreement with the exact pressure P found experi-
mentally or in primitive model simulations, as emphasized
above. In addition, the effective screening length reads �10�

	eff
2 = 4
�B�cZeff. �8�

The constraint embodied in Eq. �5� may therefore be
rewritten

�Pocm � Zeff�c. �9�

Alternatively, in the low electrostatic coupling regime �where
Zeff coincides with Zc�, one should recover the ideal gas
pressure �P
�c�1+Zeff�. Given that in this limit,
�Pmicro
�cZeff, we recover the requirement �9�, that will be
an important benchmark for the following analysis. We now
turn to the formulation of the apparent paradox.

In the bulk of the suspension, the effective potential �6�
provides the effective force acting on a colloid i,

Fi
eff = �

j=1

Nc

Fij
eff =� − �

j=1

Nc

�rveff�r��
r=ri−rj

. �10�

Considering naively that Pocm appearing in Eqs. �3� and �4�
is dominated in a very large system by its bulk behavior, we
insert Eq. �10� into Eq. �4� to approximate Pocm by Pocm

* with

Pocm
* =

1

3V��
i,j=1

Nc

ri · Fij
eff�

col

=
1

6V��
i,j=1

Nc

rij · Fij
eff�

col

,

�11�

where rij =ri−r j. We will subsequently omit the subscript
“col” indicating the degrees of freedom involved in the
average. Introducing the colloid-colloid pair correlation
function gcc�r�, we can write

�Pocm
* = −

�c
2

6
�

r=2a

�

gcc�r�
d�veff�r�

dr
rd3r �12�

=
2
�c

2Zeff
2 �B

	eff
2 �1 +

�	effa�2

3�1 + 	effa�2�
+

�c
2

6
�

r=2a

�

�gcc�r� − 1��1

+ 	effr��veff�r�d3r . �13�

To estimate the above quantity, it is sufficient to keep the
dominant term only, which is the first one on the right hand
side �rhs�, arising from the long-range behavior of the pair
correlation function �gcc→1 at large distances�. In this term,
the curly brackets may be safely approximated by 1 since at
low densities, 	effa�1. Remembering Eq. �8�, we obtain

Pocm
* 


2
�c
2Zeff

2 �B

	eff
2 �14�



1

2
Zeff�c. �15�

The factor 1 /2 which appears is classical �see, e.g., �1��. The
important point here is that estimation �15� by far violates
the constraint �9�. A similar conclusion would be reached
including the first correction in Zeff

2 exp�−	effr� /r to the long
distance behavior g=1 when computing the integral on the
rhs of Eq. �13�: this yields Pocm

* 
Zeff�c /2�1+O�	eff�B��
with 	eff�B�1 in the dilute limit. The paradox here is that
the very same approach that provides a contribution Pmicro
very close to the total pressure gives an effective potential
that apparently spoils the previous agreement, by grossly
overestimating the colloidal virial contribution to the pres-
sure. We will see that this feature is not ascribable to a failure
of the functional form of Eq. �6�, which provides a decent
approximation for the quantity Pocm

* .

D. How can the paradox be resolved?

The root of the paradox reported above is that approxi-
mating Pocm by Pocm

* is incorrect: while Pocm
* provides a rea-

sonable estimate for the bulk contribution to Pocm, surface
effects make that in the vicinity of the wall, the effective
force felt by a colloid, differ from Eq. �10�. These surface
induced terms play a key role here and contribute a large
amount to the colloidal virial Pocm, no matter how large
the system is. It turns out that bulk and surface induced
contributions almost cancel each other, so that the resulting
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expression for Pocm is much smaller than Pocm
* and therefore

fulfills the requirement �9�. Our goal in the remainder is to
illustrate this cancellation explicitly, from a correct descrip-
tion of confinement effects. To this aim, it is judicious to
simplify the problem by considering the limit of point col-
loids �a=0�, and by identifying the effective charge with the
bare one Zc. Considering charge renormalization effects is
here immaterial and focusing on dilute systems where 	a is
small, finite a effects do not affect our main conclusions. In
the bulk of the suspension, the effective potential therefore
takes a simple Yukawa form

�veff�r� = Zc
2�B

exp�− 	r�
r

, �16�

with 	2=4
�BZc�c.
At this point, a comparison with simple electrolytes seems

appropriate, for the aforementioned cancellation is already
present. For our discussion, we may consider that the role of
the colloids is played by the cations, and that the anions
constitute the remaining “microions.” The pressure has to be
close to �1,4�

�Pelectrolyte 
 �anion + �cation −
	3

24

, �17�

with equal mean densities �anion=�cation. From the contact
theorem, we deduce the densities at the wall,

�anion�wall� = �cation�wall� 
 �anion −
	3

48

. �18�

Rewriting Eq. �3� in the form

�Pelectrolyte = �cations +
�

3V� �
i�cation

ri · Fi
int� + �anion�wall�

�19�

we obtain from Eqs. �17� and �18�

�

3V� �
i�cation

ri · Fi
int� 
 −

	3

48

. �20�

Given that 	2=8
�BZ2�cation, we have 	3 / ��Pocm
* ��	�B

which is a small quantity for a dilute system. We explicitly
see here that the “colloidal” virial �left hand side �lhs� of Eq.
�20� up to a factor �� is by far smaller than the estimation
Pocm

* .

III. WALL MEDIATED FORCES WITHOUT DIELECTRIC
DISCONTINUITY

In the vicinity of the wall, the colloids do not see a spheri-
cally symmetric environment. As a consequence,

�i� the usual exp�−	r� /r pair interaction is modified;
�ii� the mean force acting on a colloid does not vanish.

This is a one body, wall induced effect, mediated by the
microions. It is therefore an internal force, that should be
taken into account in Eq. �4�. It should not be confused with
the external �and short range� direct colloid-wall interaction.

Evaluating the rhs of Eq. �4� therefore requires a careful
computation of both types of microion averaged colloidal

forces. To this end, we need the solution 
z�� ,z�� of Debye-
Hückel equation �2
z=	2��z��
z in the case where a test
charge is located in the solution a distance z from an infinite
neutral wall. We have introduced the Heaviside function �
and cylindrical coordinates �� ,z�� such that the test particle
is located at �0,z� with z�0. The planar geometry approxi-
mation for the wall is sufficient provided the cell size or
radius of curvature is much larger than Debye length
1/	. We start by the situation of equal dielectric constants
inside and outside the solution ��=���. The electrostatic
potential may be written in the form of a Hankel �two dimen-
sional Fourier� transform �26� where q and � are conjugate
quantities �24,25�,


z��,z�� = Zc�B�
0

� � k − q

k + q
e−k�z+z�� + e−k�z−z���1

k
J0�q��qdq;

�21�

k � �	2 + q2.

The second term in the integrand �e−	�z−z��� gives exactly
Zc�B exp�−	r� /r where r= ��2+ �z−z��2�1/2 is the distance
to the source. This is the standard Debye-Hückel potential
which dominates in the bulk. The remaining term, which
vanishes at large distances �	z or 	z��1� is due to the
presence of the interface.

A. One colloid ion average force

The force felt by a colloid located a distance z from the
planar interface follows from Eq. �21�, considering the elec-
trostatic potential 
̃z=
z−Zc

2�Be−	r /r where the self term
has been subtracted:

�Fc-wall =�n̂Zc
�

�z�
�
̃z�0,z���

z,z�=z

= Zc
2�B�

0

� k − q

k + q
e−2kzqdq�− n̂� . �22�

In this equation, n̂ denotes the unit vector perpendicular to
the interface pointing outside the solution. We coin the force
�22� “colloid wall” and for notational convenience, we
henceforth omit the superscripts “int” and “eff.” This force
repels the colloid from the wall �k= �	2+q2�1/2�q�, as a re-
sult of microions imbalance between the half of the colloid
exposed to the wall, and the other hemisphere. Inserting Eq.
�22� into Eq. �4� we have

1

3V��
i=1

Nc

ri · Fi-wall� =
1

3V
�

wall

d2S�
0

�

�c�z�r · Fi-wall�z�dz .

�23�

To leading order, the above integral may be computed as-
suming a uniform density of colloids �c�z�=�c. In Eq. �23�, r
denotes the absolute position with r=s−zn̂ �s is therefore the
orthogonal projection of r onto the wall�. We neglect the
term in −zn̂ �that would contribute proportionally to the
surface of the system�, so that
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1

3V��
i=1

Nc

ri · �Fi-wall� �24�



��c

3V
�

wall

d2S�
0

�

s · Fi-wall�z�dz


−
�c

3V
Zc

2�B��
wall

s · n̂d2S�
��

0

�

dz�
0

� �	2 + q2 − q
�	2 + q2 + q

e−2z�	2+q2
qdq �25�


−
1

6
�cZc

2	�B �26�


−
	3

24

. �27�

Incidentally, this is exactly the Debye-Hückel form for the
excess pressure of an electrolyte �see Eq. �17��. For
dilute systems, this quantity is small compared to �cZc, as
emphasized earlier. The constraint �9� is therefore fulfilled.

B. Colloid-colloid interactions

Within the simple Debye-Hückel treatment, the potential
of interaction between two colloids near the wall �one at z,
the other at z�, with a lateral distance � between them� is
Zc
z�� ,z��=Zc
z��� ,z�. To calculate the force felt by the col-
loid at z due to all neighbors, we assume again a uniform
distribution of neighbors:

�Fcol-col�z� = n̂�c�
z�=0

�

dz��
0

�

2
�d�� �Zc�
z��,z��
�z

�
z�

�28�

=− n̂�cZc
2�B�

0

�

dq�
0

�

2
�d���	2 + q2 − q
�	2 + q2 + q

− 1�
�e−z�	2+q2 1

�	2 + q2
J0�q��qdq . �29�

The component of the force parallel to the wall vanishes
upon averaging.

Inserting this force into Eq. �4� and proceeding along
similar lines as in Eq. �24�, we have

�

3V��
i=1

Nc

ri · Fi-coll�

 �c

2Zc
2�B�

0

�

2
�d��
0

� �−
�	2 + q2 − q
�	2 + q2 + q

+ 1�
�

1

	2 + q2J0�q��qdq . �30�

Both expressions �29� and �30� are of the form of a Hankel

transform at the origin q=0 of the inverse Hankel transform
of a function A�q�, with A= �¯ −1�e−kz /k in Eq. �29� and
A= �− ¯ +1� /k2 in Eq. �30�. This is nothing but A�0� �26�,
which vanishes in both cases. Therefore, with the approxi-
mations proposed, the force in Eq. �29� and the virial term in
Eq. �30� vanish. To be more specific, we compute explicitly
the integrals in Eq. �30�:

�

3V��
i=1

Nc

ri · Fi-coll� 

1

2
�cZc�− 1 + 1� . �31�

The term in +1 in the parentheses arises from the term in +1
in Eq. �30�, which gives the usual “bulk” e−	r /r pair interac-
tion, as already mentioned. The associated virial is �Pocm

*

=Zc�c /2, as obtained in Eq. �15�. The present calculation
shows that this term is canceled by an opposite wall induced
contribution. If the simplifying assumption gcc=1 is relaxed,
the resulting expression for Eq. �31� no longer vanishes but
remains negligible with respect to �cZc. On the other hand,
relaxing the assumption of a uniform profile �c�z� leaves the
result unaffected, as will be seen in Sec. IV.

We conclude here that summing the two contributions
from Eqs. �27� and �31� provides a value for Pocm that is
compatible with the constraint �9�.

IV. ANALYSIS IN PRESENCE OF A DIELECTRIC
DISCONTINUITY

In this section, we extend the previous analysis to the
situation where the dielectric constants are not matched:
�=�� /��1. The relevant parameter range corresponds to
��1, e.g., for water droplets in air in spray-drying experi-
ments. The first important difference with the �=1 case is
that the equation of state �3� takes a different form. The
pressure is indeed not solely given by the contact densities of
charged species at the wall, but contains additional electric
contributions �polarization or image effects�. On the other
hand, Eqs. �1� and �2� are still formally correct provided one
also includes in the “internal” forces the electric forces from
the wall. The resulting equation of state reads

P = �ckT +
1

3V� �
i�col

ri · Fi
int� +

kT

3V��box
�micro�r�r · d2S�

+
1

3V��box
r · TeldS� . �32�

Here

Tel =
�

8

E2I −

�

4

E � E �33�

is the Maxwell tensor, with E the local electric field and I the
isotropic tensor.

The counterpart of Eq. �21� now reads


z��,z�� = Zc�B�
0

� � k − �q

k + �q
e−k�z+z�� + e−k�z−z���1

k
J0�q��qdq;

�34�

MACROION VIRIAL CONTRIBUTION TO THE OSMOTIC… PHYSICAL REVIEW E 75, 011401 �2007�

011401-5



k � �	2 + q2.

As in the case �=1 and as long as ��0, the corresponding
interaction between two colloids decays as �−3 at large dis-
tances parallel to the wall �see �27� for a discussion of this
dipolarlike term�. When �=0, the wall can be formally re-
moved considering the electric image located symmetric to
the z=0 plane.

The colloid-colloid and colloid-wall interactions readily
follow from Eq. �34�. At short distances z→0, the latter di-
verges like z−1�1−�� / �1+�� �25�, which corresponds to the
unscreened interaction of a particle with its own image. This
divergence means that the uniform colloid density cannot be
invoked when it comes to computing Eq. �23�. To obtain the
leading order behavior, we can assume that the colloids are
distributed with the Boltzmann weight �c�z�=�c exp�
−�
c−wall�z��, where Fc−wall=−�
c−wall and the potential

c−wall deriving from Eq. �34� vanishes for z→�. The pre-
cise knowledge of this potential is, however, not required
since

1

3V��
i=1

Nc

ri · Fi-wall�
=

�c

3V
�

wall

d2S�
0

�

r · Fc-wall�z�exp�− �
c-wall�z��dz

�35�


�ckT�exp„− �
c-wall�z�…�0
� �36�


− �ckT . �37�

This term therefore cancels the ideal gas one on the rhs of
Eq. �32�.

The wall induced colloid-colloid contribution to the col-
loidal virial may be computed along similar lines as in Sec.
III B. An expression involving again a Hankel transform
composed with its inverse is again obtained, with now a
function

A�q� = ��	2 + q2 − �q
�	2 + q2 + �q

− 1� 1
�	2 + q2�

0

�

dz�c�z�e−z�	2+q2
.

�38�

Since A�0�=0, we conclude here that

��
i=1

Nc

ri · Fi-coll� 
 0, �39�

so that the total colloidal virial �including colloid-colloid and
colloid-wall interactions� is close to −�ckT, which is a small
quantity compared to the microionic contribution Zc�ckT.
Equation �32� can finally be rewritten,

P 

kT

3V��box
�micro�r�r · d2S� +

1

3V��box
r · TeldS� .

�40�

V. CONCLUDING REMARKS

Before briefly discussing the situation where a salt is
added, two comments are in order.

A. Closed cells vs periodic boundary conditions

From the previous discussion, it appears that the equation
of state �3� holds when the system is confined by a hard wall,
and would fail if periodic boundary conditions �pbc� would
be enforced. The inadequacy of Pocm

* to approximate Pocm
may then be phrased in the following way:

3VPocm
* �

1

2��
i,j=1

Nc

�
n

rij · Fij
eff�rij − Rn��

pbc

�41�

���
i

Nc

ri · Fi
eff�

hard walls

, �42�

where in Eq. �41�, the sum involves all periodic images of
the cell considered: n is a vector with components in Z3,
which indexes the center Rn of a given image of the “cen-
tral” cell. The central cell has R0=0 and since we deal here
with a short range effective potential, the sum over n may be
truncated to retain only the seven terms with �n��1.

However, for any simple fluid where the forces Fi are
given, Eq. �42� would be an equality. Indeed we have

��
i

ri · Fi�
hard walls

simple fluid
�

1

2��
i,j

rij · Fij�
hard walls

simple fluid
, �43�

where the rhs shows negligible dependence on the boundary
conditions provided the system is large enough, and can then
be computed with pbc provided the correct forces are con-
sidered �Fi=� j�nFij�rij −Rn��. Hence

��
i

ri · Fi�
hard walls

simple fluid
=

1

2��
i,j

�
n

rij · Fij�rij − Rn��
pbc

simple fluid
.

�44�

The difference between Eqs. �42� and �44� illustrates the im-
portant role of microions. We may also consider that the �
sign in Eq. �42� arises from the density dependence of the
effective pair potential.

A natural question at this point is does the knowledge of
the “bulk” effective potential �6� between colloids allow to
compute their virial Pocm as it appears in Eq. �3�? The answer
is positive in a closed cell, at the OCM level, provided that
due account is taken for the dielectric images of the colloids.
In the following section, we address a related question, and
discuss how the full pressure of the colloidal system may be
recovered, assuming again that the only information at hand
is that of the bulk effective colloid-colloid interaction.

B. Back to the DLVO potential

We consider here a simple liquid that interacts with a
pair-wise potential given by Eq. �6�, with effective param-
eters Zeff

* �1 and 	eff
*2 =4
�BZeff

* �c
* �salt-free case, for simplic-
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ity�. These parameters are fixed a priori, and chosen to co-
incide with those relevant for a colloidal suspension at
�c=�c

*. The potential of interaction is therefore density inde-
pendent and the system, later referred to as “auxiliary,” can
be studied for �c��c

*.
We consider the parameter range �essentially low density�

where the excess pressure of such a system is well approxi-
mated by Pocm

* in Eq. �14�:

�Pocm
* 


2
�c
2Zeff

*2�B

	eff
*2 =

1

2

�c
2

�c
*Zeff

* . �45�

Incidentally, the contact theorem indicates that the contact
density in the case where the system is confined by a closed
box, reads �c�wall�
�c

2Zeff
* / �2�c

*�. This quantity is much
larger than the mean density �c �except when �c is extremely
small, a limit of little interest here�. This excess with respect
to the mean density is to be contrasted with the depletion
from the wall that is present in the original colloidal system
containing microions: Eq. �22� for �=�� shows a repulsive
colloid-wall behavior, and the depletion is even stronger
when ���� due to like-sign images; see the discussion after
Eq. �34�.

The pressure of the simple liquid with DLVO interactions,
close to Pocm

* , has a priori nothing to do with the pressure
Poriginal of the real colloidal system. It has also nothing to do
with the colloid virial contribution entering Eq. �3�. How-
ever, for �c=�c

*, the colloid-colloid structural information
is the same for both original and auxiliary systems. One
may then invoke Kirkwood-Buff identity �28� which states
that the inverse compressibility of the original colloidal sus-
pension coincides with the long wavelength limit of the
colloid-colloid structure factor Scc�k�:

� = �� ��Poriginal

��c
�

T
�−1

= Scc�0� . �46�

The compressibility in our auxiliary simple liquid with fixed
potential of interaction is therefore the same at �c=�c

* �and
only at this density�

� �Poriginal

��c
�

T
=

�c=�c
*� �Pocm

*

��c
�

T,	eff
* ,Zeff

*
. �47�

This offers a means to compute the equation of state of the
original colloidal system from integrating the inverse com-
pressibility of the auxiliary one. In this integration, due ac-
count must be taken of the density dependence of both Zeff

*

and 	eff
* . The previous integration procedure therefore re-

quires us to consider the auxiliary system for several values
of �c for a given �c

* �to compute the derivative in the rhs of
Eq. �47��, before scanning the range of interest for �c

*. Of
course, the general procedure outlined here does not depend
on the specific form of the effective potential, and is equally
valid when salt is added. It turns out, however, that the
DLVO potential together with the salt-free approximation
�14�—which leads to Eq. �45�—provides a clear illustration
of the procedure. From Eq. �45�, we obtain the rhs of Eq.
�47�:

� ��Pocm
*

��c
�

T,	eff
* ,Zeff

*

 Zeff

* at �c = �c
*. �48�

To compute the lhs of Eq. �47�, we may come back to the
jellium model which gives �Poriginal
Zeff�c. In this expres-
sion, the effective charge may depend on the density, but for
salt-free cases, this dependence is at most logarithmic for
�c→0 �10� and provides only a subdominant term to the
compressibility, so that

� ��Poriginal

��c
�

T

 Zeff. �49�

Evaluating this expression at �c=�c
* where Zeff=Zeff

* , we re-
cover Eq. �48�. This not only illustrates the identity �47� but
also the consistency of the underlying DLVO potential.

C. Situation with added salt

When the suspension is dialyzed against a salt reservoir,
most of the technical analysis carried out earlier is still valid.
We consider a similar auxiliary system as in Sec. V B, with
effective screening length such that 	eff

*2 �4
�BZeff
* �c due to

the screening by salt ions �29�. The effective charge and
screening lengths are again chosen to coincide with those of
a colloidal system at a particular density �c

*, but are other-
wise density independent. Equation �47� still holds while
Pocm

* is given by Eq. �13�. Neglecting again the integral on
the rhs of Eq. �13�, and inserting the resulting Pocm

* in Eq.
�47�, we obtain

� �Poriginal

��c
�

T
= A4
�B�cZeff

2

	eff
2 , �50�

where we have replaced Zeff
* by Zeff and 	eff

* by 	eff after
computing the rhs of Eq. �47�. Here, the prefactor A reads

A = 1 +
�	effa�2

3�1 + 	effa�2 . �51�

Is relation �50� compatible with Pocm� P= Poriginal? Ne-
glecting Pocm �together with �ckT� in Eq. �3�, we have
P
 Pmicro which in the jellium model is given by
	eff

2 / �4
�B�. With the help of �29�, we arrive at

� �Pmicro

��c
�

T
=

4
�B�cZeff
2

	eff
2 . �52�

Equations �50� and �52� give the same result provided A is
close to unity, which means 	effa�1. We conclude here that
omitting the colloidal contribution to the pressure, Pocm, is
inconsistent when 	effa�1. It turns out, however, that A
increases very mildly with 	effa �e.g., it is close to 1.2 for
	effa=4�. A more precise discussion would require us to con-
sider the full rhs in Eq. �13�, which is beyond the scope of
this paper. Finally, we note that in the salt-free case where
	effa=3�cZeff�B /A with �c=4
�ca

3 /3 the colloidal volume
fraction and Zeff�B /a on the order of 10 for highly charged
colloids, we have 	effa�3 and therefore A close to 1 even
for packing fractions as high as 10%.
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D. Summary

We have seen that for a salt-free colloidal suspension, the
colloidal contribution Pocm to the equation of state �as writ-
ten in Eq. �3�� is a negligible quantity. This feature may
easily be overlooked in a naive implementation of the one
component model, where only Pocm

* , the bulk contribution to
Pocm, is computed. The fact that Pocm

* is of the same order of
magnitude as the total pressure P of the suspension is not
compatible with the requirement Pocm� Pmicro
 P, that has
emerged as a central constraint in our analysis. We have
shown that no matter how large the system is, surface effects
that require the resolution of Poisson’s equation in the vicin-
ity of a confining wall contribute a large amount to Pocm. To

zeroth approximation, these surface terms cancel the bulk
value Pocm

* , so that one finally recovers Pocm� P.
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