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We consider long-term correlated data with several distribution densities �Gaussian, exponential, power law,
and log normal� and various correlation exponents � �0���1�, and study the statistics of the return intervals
rj between events above some threshold q. We show that irrespective of the distribution, the return intervals are
long-term correlated in the same way as the original record, but with additional uncorrelated noise. Due to this
noise, the correlations are difficult to observe by the detrended fluctuation analysis �which exhibits a crossover
behavior� but show up very clearly in the autocorrelation function. The distribution Pq�r� of the return intervals
is characterized at large scales by a stretched exponential with exponent �, and at short scales by a power law
with exponent �−1. We discuss in detail the occurrence of finite-size effects for large threshold values for all
considered distributions. We show that finite-size effects are most pronounced in exponentially distributed data
sets where they can even mask the stretched exponential behavior in records of up to 106 data points. Finally,
in order to quantify the clustering of extreme events due to the long-term correlations in the return intervals, we
study the conditional distribution function and the related moments. We find that they show pronounced
memory effects, irrespective of the distribution of the original data.
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I. INTRODUCTION

The statistics of return intervals between well defined ex-
tremal events is a powerful tool to characterize the temporal
scaling properties of observed time series and to derive quan-
tities for the estimation of the risk for hazardous events like
floods, very high temperatures, or earthquakes. For Gaussian
distributed data it has been shown recently that the long-term
correlations �1,2�, inherent, e.g., in river flows and tempera-
ture records, represent a natural mechanism for the clustering
of the hazardous events �3,4�. The distribution density of the
return intervals strongly depends on the history, and can be
well approximated by a stretched exponential �3,5,6�. In ad-
dition, the mean residual time to the next extreme event in-
creases with the elapsed time and depends strongly on the
previous return intervals �3�.

In this paper we extend these results in several directions.
We focus on long-term correlated signals with different dis-
tributions of the values �Gaussian, exponential, power-law,
and log-normal distributions� and show numerically that �i�
the stretched exponential decay of the return interval distri-
bution density occurring for large return intervals is comple-
mented by a power-law decay regime for small return inter-
vals, �ii� both regimes are hardly affected by the distribution
density of the original data, but discreteness corrections as
well as finite-size corrections have to be taken into account
for very short and long return intervals, respectively, �iii� the
conditional return interval distribution densities, i.e., the dis-
tribution densities of those return intervals that follow imme-
diately a preceding return interval of a given size in the se-
ries of the return intervals, are hardly affected by the
distribution densities of the original data, �iv� the long-term
correlation properties of the return interval series can be es-
timated more reliably by a classical autocorrelation analysis

rather than by the more sophisticated approaches based on
random walk theory �e.g., detrended fluctuation analysis�,
and �v� in practical applications the calculation of double-
conditional return periods, i.e., the average return interval
following a preceding and prepreceding return interval of a
given size, can yield an improved risk estimation for the
occurrence of hazardous events.

There is growing evidence that many natural records ex-
hibit long-term persistence �1,2�. Prominent examples in-
clude hydrological data �7–10�, meteorological and climato-
logical records �11–15�, turbulence data �16,17�, as well as
physiological records �18–20�, and DNA sequences �21,22�.
Long-term correlations have also been found in the volatility
of economic records �23�. In long-term persistent records
�xi�, i=1, . . . ,N with mean x̄ and standard deviation �x the
autocorrelation function decays by a power law

Cx�s� =
1

�x
2 ��xi − x̄��xi+s − x̄�� � s−�, �1�

where �¯� denotes the average over i=1, . . . ,N−s, and �
denotes the correlation exponent, 0���1. Such correla-
tions are called “long term” since the mean correlation time
T=�0

�Cx�s�ds diverges for infinitely long series, i.e., in the
limit N→�. Power-law long-term correlations according to
Eq. �1� correspond to a power spectrum S�����−� with �
=1−� according to the Wiener-Khintchin theorem.

In addition to long-term correlations, natural records are
characterized by the distribution density D�x� of their values
xi. In previous work we focussed on Gaussian distributed
data �3,5,24� although broader distributions are also common
in natural records. For example, if the underlying process is
multiplicative rather than additive, one should rather expect a
log-normal distribution density. Here we study in detail how
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different long-term correlation behavior and different distri-
bution densities D�x� affect the statistics of return intervals
between extreme events.

Applications of these results to boundary layer wind
fields, market volatilities, and climatological and hydrologi-
cal data can be found in Refs. �3,24–26�. Since the analysis
of long daily hydroclimatological data is complicated by the
presence of seasonal trends that cannot be eliminated com-
pletely, the studies have focused on annual data.

The paper is organized as follows. In Sec. II we discuss
the different scaling regimes and corrections that govern the
�unconditional� means and distribution densities of return in-
tervals. Section III is devoted to the long-term correlation
properties of the return intervals and to the critical discussion
of the results based on different methods. Section IV deals
with conditional return interval distribution densities and
conditional mean return intervals, and in Sec. V we briefly
conclude.

II. MEANS AND DISTRIBUTIONS OF THE RETURN
INTERVALS

For describing the recurrence of rare events exceeding a
certain threshold q, defined in units of the standard devia-
tions of the original distribution D�x�, we investigate the sta-
tistics of the return intervals r between these events as illus-
trated in Fig. 1�a�. Specifically, a return interval r occurs if
xi�q and xi+r�q while xj 	q for i� j� i+r. Figure 1�b�

shows a section of the sequence of the return intervals for
Gaussian long-term correlated data for a threshold q �quan-
tile� chosen such that the mean return interval Rq �“return
period”� is approximately 100. Figure 1�c� shows the same
section, but the original data was shuffled before, destroying
the correlations. One can see that there are more large r
values and many more short r values in Fig. 1�b� compared
to the uncorrelated case in Fig. 1�c�, although the mean re-
turn interval Rq is the same. The long and short return inter-
vals in �b� appear in clusters �3�, creating epochs of cumu-
lated extreme events caused by the short r values, and also
long epochs of few extreme events caused by the long r
values. In the following we show, how the return period Rq,
the standard deviation �r, and the distribution density Pq�r�
of the return intervals are affected by the presence of long-
term correlations as well as by different distribution densities
D�x� of the data.

In our numerical procedure, we generated sequences of
random numbers �xi� of length N=221 with either Gaussian,
exponential, power-law, or log-normal distribution with unit
variance. The corresponding distribution densities D�x� are
given by

DGauss�x� =
1

	2
�
exp�− x2/2�� , �2�

Dexp�x� =
1

x0
exp�− x/x0� , �3�

Dpower�x� = �� − 1�x−�, �4�

Dlog−norm�x� =
1

	2
x
exp�− �ln x + ��2/2� . �5�

Here, we choose, without loss of generality, �=1, x0=1, and
�=0.763 in Eqs. �2�, �3�, and �5� and select �=5.5 in Eq. �4�.

For each distribution density D�x� we generated 150 data
sets using 1000 iterations, restoring the desired power spec-
trum by Fourier filtering and restoring the desired distribu-
tion by rank-ordered replacement of the values in each itera-
tion until convergence is achieved �27�. A full explanation of
this iterative procedure is given in the appendix. For the
Gaussian data one iteration is sufficient since Fourier filter-
ing preserves the Gaussian distribution. We tested the quality
of the long-term correlations of the data with detrended fluc-
tuation analysis �DFA� �19,28� and autocorrelation function
analysis.

A. Mean return interval and standard deviation

First we consider the mean return interval Rq. For a given
threshold q, there exist Nq return intervals rj, j=1,2 , . . . ,Nq,
which satisfy the sum rule 
 j=1

Nq rj =N for periodic boundary
conditions. When the data are shuffled, the long-term corre-
lations are destroyed, but the sum rule still applies with the
same value of Nq. Accordingly, for both long-term correlated
and uncorrelated records, Rq��1/Nq�
 j=1

Nq rj is simply Rq

=N /Nq, i.e., the mean return interval is not affected by the

FIG. 1. �Color online� Return intervals: �a� Illustration of the
definition of return intervals rj between events xi above given
thresholds q1=1 and q2=2. The smallest possible r value is r=1,
which occurs if xi�q and xi+1�q. �b� Sequence of return intervals
rj for long-term correlated data xi with �=0.4 for a fixed threshold
q=2.327 so that the average r value is Rq=100. Note the logarith-
mic scale of the r-axis. �c� Sequence of return intervals for uncor-
related data �shuffled xi of �b��. In �b� more epochs with r values of
small and large size appear compared to �c�.
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long-term correlations. This statement can also be considered
as the time series analogous of Kac’s Lemma �6,29�. Hence,
Rq can be obtained directly from the tail of the �normalized�
distribution density D�x� of the values xi via

1

Rq
=

Nq

N
� 


q

�

D�x�dx . �6�

The larger q is, the larger the average return interval Rq will
be. Accordingly, there is a one-by-one correspondence be-
tween q and Rq, which depends only on the distribution den-
sity D�x� but not on the correlations.

However, there is no one-by-one correspondence between
q and the variance �r

2��1/Nq�
 j=1
Nq �rj −Rq�2 of the return in-

tervals. Figure 2 shows �in units of Rq� the standard deviation
�r for uncorrelated data and long-term correlated data with
three correlation exponents. Due to the appearance of larger
return intervals with increasing correlations �i.e., decreasing
correlation exponent ��, the standard deviation also in-
creases. The decrease of �r for small and large Rq is due to
discretization effects and finite-size effects, respectively,
which will be discussed in the following sections.

B. Stretched exponential and finite-size effects
for large return intervals

For uncorrelated data �“white noise”�, the return intervals
are also uncorrelated and �according to the Poisson statistics�
exponentially distributed with Pq�r�= 1

Rq
exp�−r /Rq�, where

Rq is the mean return interval for the given threshold q �see,
e.g., Ref. �30��. When introducing long-term correlations in
Gaussian data the shape of Pq�r� for large values of r, r
�Rq, is changed to a stretched exponential �3,5,6,24� �see
also Ref. �31��

Pq�r� �
a�

Rq
exp�− b��r/Rq��� , �7�

where the exponent � is the correlation exponent, and the
parameters a� and b� are independent of q. Their dependence
upon � can be determined from the two normalization con-
ditions that must hold for the �discrete� distribution density
Pq�r�:



r=1

�

Pq�r� = 1, 

r=1

�

rPq�r� = Rq. �8�

If we replace the sums for the discrete values of the return
interval r by integrals and disregard the deviations from Eq.
�7� for small values of r �see Sec. II C�, we can solve these
two equations for a� and b�, obtaining

a� =
�
�2/��

2�1/��

and b� =

�2/��

�1/��

, �9�

where 
�x� is the Gamma function. Hence, a� and b� are not
free parameters but rather determined only by the correlation
exponent � �see also Ref. �6��. Hence, if � is determined
independently by correlation analysis, we can obtain a data
collapse of all curves for different values of q by plotting
RqPq�r� versus r /Rq according to Eq. �7� �3�, since the de-
pendence of Rq on q is given by Eq. �6�. However, we have
to note that Eq. �7� does not hold for small values of r �see
Sec. II C�, causing some deviations in the values of param-
eters a� and b� and the data collapse.

Figure 3 shows the rescaled distribution density function
of the return intervals for the four different types of distribu-
tions of the original data �Gaussian, exponential, power-law,
and log-normal according to Eqs. �2�–�5�� with correlation
exponents �=0.2 and 0.4 in a double-logarithmic scale. The
shape of the corresponding stretched exponentials �7� is also

FIG. 2. Standard deviation of r values divided by Rq as a func-
tion of Rq for �a� Gaussian and �b� exponential uncorrelated data
�circles� and long-term correlated data �squares �=0.7, triangles �
=0.4, and diamonds �=0.2�. The �r�Rq� dependences are represen-
tative also for data with other distribution densities D�x�.

FIG. 3. �Color online� Normalized distribution density function
RqPq�r� of r values with Rq=100 as a function of r /Rq for long-
term correlated data with �=0.4 �open symbols� and �=0.2 �filled
symbols; we multiplied this data by a factor 100 to avoid overlap-
ping curves�. In �a� the original data was Gaussian distributed, in
�b� exponentially distributed, in �c� power-law distributed with
�=5.5, and in �d� log-normally distributed. All four figures follow
quite well stretched exponential curves �solid lines, Eq. �7�� over
several decades. For small r /Rq values a power-law regime seems
to dominate, while on large scales deviations from the stretched
exponential behavior are due to finite-size effects.
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plotted. The agreement is best for the Gaussian data, but also
for the other distributions the stretched exponential fit is a
good approximation over several decades.

The deviations from the stretched exponential at the right
tail of the curves in Fig. 3 �i.e., for r�Rq� are due to finite-
size effects. Figures 4�a� and 4�b� show that finite-size ef-
fects seem to cause a decrease of Pq�r� for r�Rq compared
with the stretched exponential Eq. �7�, unless we consider
very long series. The series analyzed here have the lengths
N=213 �triangles�, 217 �squares�, and 221 �circles�. The plots
suggest a convergence in the asymptotic regime �large r�
towards the stretched exponential curve �solid line�. For
small values of Rq the deviations are weaker since the num-
ber of return intervals, Nq=N /Rq, is much larger and the
statistics is better.

C. Power-law regime and discretization effects
for small return intervals

Next we consider the deviations from the stretched expo-
nential form at small values of r, r�Rq �see Fig. 3�. Figure 5
shows the left parts of Pq�r� for three return periods Rq and
again the four distribution densities D�x�. The figure reveals
the occurrence of an additional scaling regime for 0.01
�r /Rq�1 for Gaussian and exponentially distributed data,
see �a� and �b�, and for 0.1�r /Rq�1 for power-law and
log-normally distributed data, see �c� and �d�. The scaling
behavior with Rq still holds in this new regime, such that data
for different values of q collapse onto each other as long as
r�1. The scaling behavior in this regime might be charac-
terized by a power law, giving rise to the two-branched an-
satz

RqPq�r� � �� r

Rq
���−1

for 1 � r 	 Rq,

exp�− �b
r

Rq
��� for Rq � r � N �

�10�

replacing Eq. �7�. For Gaussian and exponential distribution
densities D�x�, ���� seems to be consistent with the data.

However, we cannot fully exclude the possibility that ��
might depend slightly on the quantile q, in particular for
power-law and log-normal distribution densities D�x�. The
normalization factors and the parameter b cannot be calcu-
lated exactly for Eq. �10�, which is a drawback of the two-
branched distribution density.

Figures 3–5 show that the behavior of Pq�r� as described
by Eq. �10� becomes visible only for very long data sets. If
short and, e.g., exponentially distributed data are studied, the
stretched exponential regime shrinks and an asymptotic pure
exponential decay of Pq�r� can be observed. In this case,
Pq�r� displays a combination of �i� discretization effects for
very small r values, �ii� power-law behavior for intermediate
r values, and �iii� an exponential decay for large r values,
resembling the return interval distribution obtained for seis-
mic activity �32–34�.

For very small return intervals �r close to 1� the continu-
ous distribution density Eq. �10� has to be replaced by a
discrete distribution. Figure 5 clearly shows the deviations
from the power-law regime because of the discreteness of the
r values. The first few points move upwards �r=1 and 2,
maybe up to r=5�, because they accumulate probability from
�impossible� smaller noninteger intervals. Hence, the data
points for r close to 1 do not obey the scaling of the distri-
bution density with Rq, and no data collapse can be achieved
for them. For the power-law distributed data and the log-
normal distributed data, Figs. 5�c� and 5�d�, the discretization
effects even seem to suppress the full development of the
power-law scaling regime.

Return intervals r=1 are of particular relevance when an-
swering the question if two consecutive events xi and xi+1
will surpass the threshold q. Figures 6�a� and 6�b� show the

FIG. 4. �Color online� Finite-size effects on Pq�r�. Deviations
from the stretched exponential curve for large r /Rq and �a� small
Rq=10 as well as �b� large Rq=250 in data with �=0.4 for three
lengths N=213 �triangles�, 217 �squares�, and 221 �circles� indicate
finite-size effects. For large values of q and small lengths N the
occurrence of very large r is actually impossible �r	N−N /Rq�.
The finite-size effects for Gaussian data are representative for all
four distribution densities D�x� we considered. FIG. 5. �Color online� Power-law decay of Pq�r� for r�Rq for

Rq � 150 �circles�, 250 �squares�, and 500 �triangles� for �a� Gauss-
ian, �b� exponentially, �c� power-law, and �d� log normally distrib-
uted data with �=0.4 �solid symbols� and �=0.2 �open symbols,
shifted upwards by a factor ten to avoid overlapping curves�. The
dashed line is the stretched exponential Eq. �7�, the solid line is a
power law with slope �−1 as a guide to the eye. The power-law
effect in �a� and �b� appears in the scale range 0.01�r /Rq�1 and
in �c� and �d� in 0.1�r /Rq�1. For even smaller r /Rq values �r
=1,2 ,3 , . . . � all four figures show an upward trend which is due to
the discreteness of the r values.
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distribution of the r=1 values for Gaussian and exponen-
tially distributed data as a function of the return period Rq
�i.e., of the threshold q�. In uncorrelated data the probability
to have another extreme event directly after any extreme
event must be 1/Rq �stars in Fig. 6�, because each data point
xi is an extreme event with probability 1 /Rq and there are no
correlations. In long-term correlated data the probability to
find another extreme event directly after an extreme event
will be higher due to the persistence of the data. The figure
shows, how this probability changes with increasing correla-
tions �i.e., decreasing ��. Except for small values of � the
shape of the curves seems to be a power law of the form
Pq�1��Rq

−�, in agreement with Eq. �10� and the assumption
��=� �35�. The larger Rq is chosen, the larger the difference
between Pq�1� in correlated and uncorrelated data. The dis-
tribution Pq�2� of the r=2 values �Figs. 6�c� and 6�d�� shows
a similar power-law for large values of Rq, but deviates for
small Rq.

III. LONG-TERM CORRELATIONS OF THE RETURN
INTERVALS

The form of the distribution density Pq�r� of return inter-
vals r between extreme events in long-term correlated data
indicates that very short and very long return intervals are
more frequent than for uncorrelated data. However, Pq�r�
does not quantify, if the return intervals themselves are ar-
ranged in a correlated fashion, and if clustering of rare events

may be induced by long-term correlations. In our previous
work �3,24� we reported that �i� long-term correlations in a
Gaussian time series induce long-term correlations in the se-
quence of return intervals and �ii� that both correlation func-
tions are characterized by the same correlation exponent �.
We showed that this leads to a clustering of extreme events,
an effect that also can be seen in long climate records.

Here we present further support for our result �ii� showing
that it is independent of the distribution density D�x� of the
data. We also compare the results of classical autocorrelation
analysis and detrended fluctuation analysis �DFA� �19,28�
and explain why in this case the classical autocorrelation
analysis is more suitable than the more sophisticated DFA
�see also Refs. �5,6��.

A. Autocorrelation analysis

In order to determine the autocorrelation behavior of the
return interval series �rj�, j=1,2 , . . . ,Nq, for a given quantile
q we calculate the autocorrelation function of the return in-
tervals �see Eq. �1� where xi is replaced by ri�. Figure 7
shows Cr�s� and Cx�s� for data characterized by the four
distribution densities D�x� and four mean return periods Rq.
One can see that for each distribution, the data approxi-
mately collapse to a single line, exhibiting the same slope as
the original data. This shows that the return intervals are also
long-term correlated, with the same value of � as the original
data. There is, however, one important difference in the cor-
relation behavior: For the return intervals, the autocorrelation
function Cr�s� is significantly below the autocorrelation
function Cx�s� of the original data �also shown in Fig. 7� by
a factor between 2 and 3, depending on the distribution. Ac-
cordingly, there is additional white noise in the return inter-
val sequences that only weakly depends on the return period
Rq.

FIG. 6. Dependence of Pq�1� and Pq�2� on � for various quan-
tiles q. The distribution of the return intervals of size r=1 is plotted
versus Rq for �a� Gaussian and �b� exponentially distributed data
with correlation exponents �=0.2 �circles�, 0.4 �diamonds�, 0.6 �tri-
angles�, 0.8 �squares� as well as uncorrelated data �stars�. The stron-
ger the correlations, i.e., the smaller �, the higher the probability
that two consecutive events xi and xi+1 exceed the given threshold q.
The straight lines indicate power laws with exponents −�, suggest-
ing the discretization effects in Fig. 5 to be independent of q or Rq.
Note that the larger Rq, the stronger the correlation effect. Figures
�c� and �d� show the same for return intervals of size r=2.

FIG. 7. �Color online� Autocorrelation functions Cx�s� of the
original data ��� and Cr�s� of the return interval series for �a�
Gaussian, �b� exponentially, �c� power-law, and �d� log-normally
distributed data with �=0.4 for Rq= 10 �circles�, 20 �squares�, 50
�triangles�, and 100 �diamonds�. All curves show a power-law be-
havior indicating long-term correlations in the sequence of return
intervals with the same correlation exponent � �straight lines�.
Curves for large Rq show weaker correlations at large scales s due
to finite-size effects. All results were averaged over 150 configura-
tions of original data with length N=221.
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We believe that this uncorrelated component is a conse-
quence of the way the return intervals are constructed. Tiny
changes in the threshold q can lead to large changes of sev-
eral return intervals in the records. Thus, small white noise in
the original data leads to larger noise in the return intervals,
and this causes the significant additional random component.
There is no crossover in the scaling behavior of the autocor-
relation function except for finite-size effects.

B. Detrended fluctuation analysis

Alternatively to the autocorrelation function or autocova-
riance function one can employ fluctuation analysis �FA�
�13� or detrended fluctuation analysis �DFA� �19,28,36,37�.
In DFA, one considers the cumulated sum Yi=
 j=1

i yj of stan-
dardized records �yj� �i.e., mean 0 and variance 1� and stud-
ies, in time windows of length s, the mean fluctuation F�s� of
Yi around a best fit �e.g., quadratic fit for DFA2�. For long-
term correlated data, F�s� scales as F�s��s�, with the rela-
tion �=1−� /2. Figure 8 shows the fluctuation functions
Fr�s�, determined with FA and DFA, for the return interval
series �rj� in Gaussian long-term correlated data with �
=0.4 and four values of Rq �Rq=10, 20, 50, and 100�. On
large scales s both curves approach the slope �=0.8 corre-
sponding to the correlations of the original data �solid lines�.

Obviously, on smaller scales the observed slopes differ
significantly from �=0.8 and seem to be closer to �=0.5
particularly for large Rq, suggesting uncorrelated behavior on
short time scales s. Linear fitting of the fluctuation functions
in log-log plots can thus lead to reduced values of � that
might suggest an increasing loss of correlations for increas-
ing thresholds q. However, it has been shown that a process
consisting of a long-term correlated component and an un-
correlated noise component yields a fluctuation function of
the form �39�

F2�s� � As + Bs2�, �11�

where A and B are the weighting prefactors of the uncorre-
lated and correlated components. The scale s�

��A /B�1/�2�−1�, where the contribution of both terms is
equal, defines a crossover length between the two scaling
regimes. For s�s� the first term dominates, while for
s�s� the second one dominates. As a consequence, the
asymptotic scaling behavior F�s��s� can be observed only
at large values of s �as seen in Fig. 8�, in particular when
B�A.

We suggest that this crossover in the scaling behavior of
the FA and DFA fluctuation functions is the reason for the
apparent loss of two-point correlations with increasing
threshold value q observed in Refs. �5,6�. This problem is
even more severe, if multifractal features of a record are
being investigated by multifractal detrended fluctuation
analysis �MF-DFA� �6,38�, since the superposition rule Eq.
�11� no longer applies for MF-DFA, and multifractal proper-
ties of two superimposed processes can become very com-
plicated. In our opinion, previous DFA results on market-
volatility records �26� also suffer from the same drawback,
which yielded lower �-values for the return intervals than for
the original records.

IV. CONDITIONAL RETURN INTERVALS

The long-term correlations in the sequence of the return
interval series studied in the previous section lead �i� to clus-
tering of rare events and �ii� to long epochs of very few
extreme events—both because of clumping of both short and
long return intervals. Hence, the probability of finding a cer-
tain return interval r depends on the history and in particular
on the value of the preceding interval r0. In the following we
show that this effect is nearly independent of the distribution
density D�x� of the original data. We also study �double-�
conditional return periods, which are the mean return inter-
vals of those return intervals that immediately follow after
preceding and prepreceding return intervals r0 and r−1 of
fixed values, and which might further improve predictions
and risk estimations.

A. Conditional return interval distributions

In order to study the history effects on the distribution
density Pq�r� of the return intervals r we first consider the
conditional distribution density Pq�r �r0�, defined as the dis-
tribution density of all those return intervals that directly
follow a given r0 value in the sequence of return intervals.
For uncorrelated data Pq�r �r0�= Pq�r�. Figure 9 displays the
ratio between Pq�r �r0� and Pq�r� for Gaussian and exponen-
tially distributed long-term correlated data with six Rq values
�20, 50, 100, 150, 250, and 500�, for r0 /Rq�1/4, 1, and 4, as
a function of r /Rq. For fixed r0 /Rq all data points collapse
onto single curves, independent of q and independent of the
distribution of the original data. We thus find scaling behav-
ior of the conditional distribution density function

FIG. 8. �Color online� Fluctuation analysis �FA� and detrended
fluctuation analysis �DFA� of the series of return intervals for �a�
Rq=10, �b� 20, �c� 50, and �d� 100. The FA ��� and the DFA1 ���
fluctuation functions Fr�s� of the sequence of return intervals are
shown for Gaussian long-term correlated data with �=0.4. The
asymptotic slope � is related to � via �=1−� /2. The solid lines
have the slope �=0.8 ��=0.4�. On small scales a slope close to �
=0.5 is observed due to the large uncorrelated component in the
return interval series, while the relative prefactor of the long-term
correlated component is decreasing with increasing Rq.

EICHNER et al. PHYSICAL REVIEW E 75, 011128 �2007�

011128-6



Pq�r�r0� =
1

Rq
fr0/Rq

�r/Rq� �12�

as in Eq. �10�. The long-term correlations in the sequence of
r values cause a culmination of small r values for small r0
and large r values for large r0. The conditions r0=Rq /4 and
r0=Rq yield maxima at comparable r values, r�0.2Rq and
r�2Rq, respectively, see Figs. 9�a�, 9�b�, 9�d�, and 9�e�. For
r0=4Rq a strong enhancement of large return intervals r
�10Rq is observed, see Figs. 9�c� and 9�f�. When the series
of r values is shuffled, i.e., all correlations are destroyed,
Pq�r �r0� and Pq�r� are identical, but still show the stretched
exponential shape. For uncorrelated original data Pq�r� and
Pq�r �r0� both follow a simple exponential decay.

B. Conditional mean return intervals

In contrast to the mean return interval Rq, the conditional
mean return interval Rq�r0�=
r=1

� rPq�r �r0�, i.e., the average
return interval of those r values that follow directly an inter-
val of size r0, clearly exhibits correlation effects. Figure 10
shows Rq�r0� in units of Rq as a function of r0 /Rq for four
values of Rq �5, 10, 50, and 250�, �=0.4, and the four dis-
tribution densities D�x� listed in Eqs. �2�–�5�. The correlation
effect becomes apparent: after small values of r0 /Rq the next
expected return interval Rq�r0� is smaller than Rq, and after
large r0 /Rq, Rq�r0� is much larger than Rq. Although the

shapes of the �more or less� collapsing curves depend
slightly on the original distribution, the tendency is the same
for all four original distribution densities. We like to note
again that finite-size effects, violating the scaling behavior,
are most pronounced for the exponential distribution.

Due to the tight conditions regarding r0, the conditional
mean return interval Rq�r0� requires very large statistics and
is thus not suitable for studies of real recordings. The quan-
tity can be improved by integrating over two ranges of r0
values, e.g., r0 larger or smaller than the return period Rq,
resulting in only two conditions. Therefore we define Rq

+ and
Rq

− as the average return intervals that follow r0 values either
larger �+� or smaller �−� than Rq. Figure 11 shows Rq

+ and Rq
−

�filled symbols� in units of Rq as a function of the correlation
exponent � of the data for all four distributions. For uncor-
related data �results shown at �=1�, Rq

+ and Rq
− coincide with

Rq. The smaller �, the stronger the correlations, and the more
pronounced is the difference between Rq

+ and Rq
−.

Figure 11 also shows the average conditional return inter-
vals Rq

++ and Rq
−− of those r-values that directly follow two

return intervals, r0 and r−1, both larger �++ � or smaller
�−−� than Rq. As expected, the correlation effect is even
stronger in Rq

++ and Rq
−− but the quantities require more sta-

tistics than Rq
+ and Rq

−. All curves in Fig. 11 look very similar
and suggest that an effect of the shape of the distribution of
the original data is minor, when the data is long-term corre-
lated.

V. CONCLUSION

In this paper we have studied the statistics of return inter-
vals between extreme events in long-term persistent data

FIG. 9. �Color online� Conditional distribution density Pq�r �r0�
divided by Pq�r� for three different conditions r0 /Rq=1/4 �a�, 1 �b�,
and 4 �c� for long-term correlated ��=0.4� Gaussian distributed
original data. The maximum of the ratio moves from small r /Rq to
large r /Rq with increasing the condition r0 /Rq. The cutoff on the
right-hand side is due to finite set length and therefore limited maxi-
mum r values. The data collapse consists of six curves for quantiles
with Rq=20 �circles�, 50 �squares�, 100 �triangles down�, 150 �dia-
monds�, 250 �crosses�, and 500 �triangles up�. Parts �d� to �f� show
the same for exponentially distributed data. The collapse seems
noisier because the curves are averaged over only 150 configura-
tions compared to 1000 configurations in �a� to �c�. For uncorrelated
data, Pq�r �r0�= Pq�r� exactly, as indicated by the straight line at the
ratio one.

FIG. 10. �Color online� Conditional return periods Rq�r0� in
units of Rq versus the condition r0 /Rq for Rq � 5 �circles�, 10
�squares�, 50 �triangles�, and 250 �diamonds� for long-term corre-
lated data with �=0.4. All figures clearly display the memory effect
in form of increasing Rq�r0� with increasing r0, caused by the long-
term correlations in the original data. In uncorrelated data, Rq�r0�
=Rq, as indicated by the horizontal lines at ratio one.

STATISTICS OF RETURN INTERVALS IN LONG-TERM… PHYSICAL REVIEW E 75, 011128 �2007�

011128-7



with Gaussian, exponential, power-law, and log-normal dis-
tribution densities. We have shown that mainly the correla-
tions rather than the distributions affect the return interval
statistics, in particular the distribution density of return inter-
vals, the conditional distribution density of return intervals,
the conditional mean return intervals, and the correlation
properties of the return interval series. The stretched expo-
nential decay of the return interval distribution density for
long return intervals is complemented by a power-law decay
for small return intervals, which will dominate the behavior
in short observational data. Still, the scaling behavior with
the mean return interval holds in both regimes. In addition,

discreteness corrections as well as finite-size corrections
have to be taken into account for very short and long return
intervals.
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APPENDIX: DATA GENERATION

The long-term correlations in the random numbers were
introduced by the Fourier-filtering technique, see, e.g., Ref.
�40�. However, for the non-Gaussian distributions, �3�–�5�,
the shape of D�x� is not preserved by Fourier filtering. In
these cases we applied an iterative algorithm introduced by
Schreiber and Schmitz �27�. The algorithm consists of the
following steps: First one creates a Gaussian distributed
long-term correlated data set with the desired correlation ex-
ponent � by standard Fourier filtering �40�. The power spec-
trum SG���=FG���FG

* ��� of this Gaussian data set is consid-
ered as reference spectrum �where � denotes the frequency
in Fourier space and the FG��� are the complex Fourier co-
efficients�. Next one creates an uncorrelated sequence of ran-
dom numbers �xi

ref�, following a desired distribution, e.g.,
exponential distribution �3�. The �complex� Fourier trans-
form F��� of the �xi

ref� is now divided by its absolute value
and multiplied by the square root of the reference spectrum

Fnew��� =
F���	SG���

�F����
. �A1�

After the Fourier back-transformation of Fnew���, the new
sequence �xi

new� has the desired correlations �i.e., the desired
��, but the shape of the distribution has changed towards a
�more or less� Gaussian distribution. In order to enforce the
desired distribution, we exchange the �xi

new� by the �xi
ref�,

such that the largest value of the new set is replaced by the
largest value of the reference set, the second largest of the
new set by the second largest of the reference set and so on.
After this the new sequence has the desired distribution and
is clearly correlated. However, due to the exchange algo-
rithm the perfect long-term correlations of the new data se-
quence were slightly altered again. So the procedure is re-
peated: the new sequence is Fourier transformed followed by
spectrum adjustment, and the exchange algorithm is applied
to the Fourier back-transformed data set. These steps are
repeated several times, until the desired quality �or the best
possible quality� of the spectrum of the new data series is
achieved.
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