
Characteristics of the asymmetric simple exclusion process in the presence of quenched
spatial disorder

M. Ebrahim Foulaadvand,1,2 Sanaz Chaaboki,1 and Modjtaba Saalehi1
1Department of Physics, Zanjan University, P.O. Box 45196-313, Zanjan, Iran

2Computational Physical Sciences Research Laboratory, Department of Nano-Sciences, Institute for Studies in Theoretical Physics and
Mathematics (IPM), P.O. Box 19395-5531, Tehran, Iran

�Received 14 August 2006; revised manuscript received 10 November 2006; published 25 January 2007�

We investigate the effect of quenched spatial disordered hopping rates on the characteristics of the asym-
metric simple exclusion process with open boundaries both numerically and by extensive simulations. Disorder
averages of the bulk density and current are obtained in terms of various input and output rates. We study the
binary and uniform distributions of disorder. It is verified that the effect of spatial inhomogeneity is generically
to enlarge the size of the maximal-current phase. This is in accordance with the mean-field results obtained by
Harris and Stinchcombe �Phys. Rev. E 70, 016108 �2004��. Furthermore, we obtain the dependence of the
current and the bulk density on the characteristics of the disorder distribution function. It is shown that the
impact of disorder crucially depends on the particle input and out rates. In some situations, disorder can
constructively enhance the current.
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I. INTRODUCTION

Transport processes in disordered media constitute an im-
portant class of problems especially in the light of their rel-
evance to the modeling of a vast variety of phenomena in
physics and many interdisciplinary areas. A partial list of
applications includes transport phenomena in porous media,
diffusion in biological tissues, and conduction through com-
posite solids �1–3�. It is a well-established fact the disorder
can strongly affect the transport characteristics of equilib-
rium as well as out-of-equilibrium systems. Among various
nonequilibrium systems, low-dimensional driven lattice
gases have played an important role in describing the trans-
port in many physical, chemical, and biological processes
�4–8�. In particular, one-dimensional �1D� driven diffusive
systems in the absence of disorder have been extensively
studied during the past two decades, and at present there
exists a rich literature of results both analytic and numeric
�6�. Phase structures of these systems are well known. It is
well understood that non-equilibrium systems can exhibit
phase transitions in low dimensions. A model which has
played a paradigmatic role in out-of-equilibrium statistical
physics is the asymmetric simple exclusion process �ASEP�
�9�. The model is amenable to exact analytical solution
�10–12�. Therefore it is a natural and important question to
investigate the effect of quenched disorder on the phase
structure of ASEP. Recently some efforts and new strides
have been made in the challenge between disorder, interac-
tion, and drive. The exploration of the disordered ASEP be-
gan with a single defective site in a periodic chain by Jan-
owsky and Lebowitz �13,14�. They showed that even one
defective site can remarkably lead to global effects on the
system current and its density profile. Evans solved the
ASEP with moving impurities where particle hopping rates
were chosen randomly from a distribution function �15�. It
was shown that special distribution functions can give rise to
a new phase transition analogous to Bose condensation. Sub-
sequently, Tripathy and Barma �16,17� considered the ASEP

on a ring with many defective sites. Their investigation re-
vealed the existence of phase segregation in a wide range of
global densities in the chain. In conjunction with the results
of the ASEP on a ring, an investigation of the disordered
ASEP in an open chain was introduced by Kolomeisky �18�.
He showed that in some ranges of input and output rates, a
single defect in the bulk could affect the system properties on
a global scale. Recently a new wave of attention has been
created on the disordered ASEP �19–28�. In particular, Chou
and Lakatos have studied the effect of a few defective sites
in the open ASEP �23�. Their investigations have revealed
that generically the disorder’s impact is highest when the
number of defects is very small. Increasing the number of
defects above a certain value has no further effect on the
system current. The question of the effect of a single defect
in the ASEP coupled with a 3D bulk reservoir with adsorp-
tion and desorption kinetics was recently addressed by Piero-
bon et al. �29�. Besides, some time-dependent aspects of the
disordered ASEP has been discussed by Barma �30�. Our
goal in this paper is to deal in some more depth with the
problem of the disordered ASEP. Especially we will focus on
the role of the binary distribution function where it provides
the possibility of simultaneous study of both the strength and
the density of disorder throughout the chain. Via extensive
Monte Carlo simulations, we show for the binary and uni-
form distribution functions that the generic impact of disor-
der is to reduce the size of the low- and high-density phases.
More interestingly, we show that in some circumstances, dis-
order can constructively act in a manner to increase the sys-
tem current.

II. DESCRIPTION OF THE PROBLEM AND NUMERICAL
SOLUTION

To keep the paper self-contained, let us first define the
disordered ASEP. Imagine a one-dimensional stochastic pro-
cess defined on a discrete 1D lattice of length L. Each site
can hold at most one particle. We assign an integer-valued
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number si to each site i �see Fig. 1�. If site i is occupied, si
=1. If it is empty, then si is zero. The system configuration at
each time t is characterized by specifying the occupation
numbers si, i=1, . . . ,L. During an infinitesimal time dt each
particle can stochastically hop to its rightmost neighboring
site provided the target site is empty. If the target site is
already occupied by another particle, the attempted move-
ment is rejected. The hopping takes place with a site-
dependent rate pi which is drawn from a given distribution
function f�p�.

There is no spatial correlation between the set pi , i
=1, . . . ,L, and correspondingly the pi’s can be regarded as
independent stochastic variables which are identically dis-
tributed according to the site-independent distribution func-
tion f�p�. Denoting the averaged local density at site i by ni,
one can simply write the following rate equations for a par-
ticular realization of hopping rates p1 , . . . , pL�i=2, . . . ,L−1�:

d

dt
�ni� = pi−1�ni−1�1 − ni�� − pi�ni�1 − ni+1�� , �1�

d

dt
�n1� = ��1 − �n1�� − p1�n1�1 − n2�� , �2�

d

dt
�nL� = pL−1�nL−1�1 − nL�� − ��nL� . �3�

No exact analytical solution exists for the above set of
nonlinear differential equations. Restricting ourselves to the
stationary-state properties of the system, we set the left-hand
sides equal to zero. We further simplify the equations by
taking the assumption of a mean-field equation where the
two-point function is replaced by the product of two one-
point functions. This assumption reduces the steady-state
equations into a set of nonlinear algebraic equation with L
unknowns n1 ,n2 , . . . ,nL.

A. Numerical approach to mean-field equations

Even by employing the assumption of a mean field, we
are not able to solve the nonlinear algebraic equations.
Therefore, we should resort to numerical methods. We now
outline a numerical approach for solving the set of nonlinear
equations. The approach is based on the shooting method for
solving boundary-value problems. To this end, we choose a
trial n1 denoted by n1

tr and successively evaluate n2 , . . . ,nL
through forward iteration. The system current then turns out
to be ��1−n1

tr�. Since the current should be equal for all sites,
if the guessed value of n1

tr was correct, then the current
evaluated from the last site—i.e., �nL—would have the same
amount ��1−n1

tr� evaluated from the first site. To match these
currents, we gradually increase n1

tr from zero and evaluate

both currents from the first and last sites. Whenever these
two values become equal, then we have a solution. Note that
in an acceptable solution, all the densities �n1� , . . . , �nL�
should lie between 0 and 1. We are interested in knowing the
overall effect of disorder on the transport characteristics of
the ASEP. For given values of � and �, we evaluate the
current and density for many samples of disordered chains
and average over these samples. We denote the sample-
averaged current and bulk density by �J� and ���, respec-
tively. For obtaining a better insight, we have also executed
extensive Monte Carlo simulations. The disorder distribu-
tions we consider consist of uniform and binary. More ex-
plicitly, the normalized uniform distribution in the interval
�a ,b� has the functional form f1�p�= 1

b−a with mean a+b
2 and

variance
�b−a�2

12 . The binary distribution has the form f2�p�
= f��p− p1�+ �1− f���p− p2� where the binary rates p1 and p2

and their probabilities f and 1− f are given. The mean value
and the variance are fp1+ �1− f�p2 and fp1

2+ �1− f�p2
2− �fp1

+ �1− f�p2�2, respectively. In the subsequent sections, we
show the result of simulation as well as numerical solution of
the mean-field equations.

III. BINARY DISTRIBUTION FUNCTION

Let us first discuss the binary distribution of the quenched
disorder. Although in this type of distribution the defect
strength is allowed to take only an integer number of values
�here 2�, but even in this simple case one encounters some
nontrivial aspects which are worth investigating. Figure 2
depicts the dependence of average current versus � for some
fixed �. The parameters of the binary distribution function is
as follows: f =0.5, p1=0.8, and p2=1.2. The mean value of
the quenched hopping rate is fixed at 1. The bulk density and
the current have been averaged over 1000 disordered
samples, and the system size is 200.

One observes similar behavior to the normal ASEP. Cur-
rents rise up to a critical � and then get saturated. The overall
effect of disorder is to reduce the value of the currents in
each phase. In the normal ASEP, the dependence of current
on � in the high-density �HD� phase is ��1−��. Saturation

FIG. 1. Asymmetric exclusion process with spatial disorder.

FIG. 2. �J� versus � for various input rates �.
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of current means that we are in the maximal-current �MC�
phase. However, the current saturates at 0.15 which is less
than the value of the maximal current, 0.25, in the normal
ASEP. The reason is due to the presence of defects which
slow down the current. Figure 3 exhibits the dependence of
�J� versus the input rate �.

The behavior seen in the above graph is analogous to the
normal ASEP with the difference that the disorder has
yielded to an overall diminishing of �J�. In the normal ASEP,
the dependence of �J� on � in the low-density phase is ��1
−��. We note that upon entering the saturation regime—i.e.,
the MC phase—the current value, which is 0.15, is less than
that of the normal ASEP, 0.25. The dependence of bulk den-
sities on � and � are exhibited in Figs. 4 and 5. Similar to
current diagrams, the overall behavior is analogous to the
normal ASEP. Here the effect of disorder is to enhance the
densities.

One observes the persistence of the first-order high- to
low-density transition. The saturation density is slightly
above the normal ASEP value � which is due to defects. For
higher � corresponding to the MC phase, the limiting density

is the same as the normal ASEP—i.e., ���=0.5. This indi-
cates that the presence of defects does not alter the density in
the maximal current phase but reduces the current as dis-
cussed earlier. The dependence of ��� on � is shown in
Fig. 5.

Similar to Fig. 4, the density value in the saturation re-
gime is roughly 0.5 which is the same as the normal ASEP
density value in the MC phase. However, ��� differs from
1−� in the low-density �LD� phase. We note that both high
to low and low to high phase transitions which are first order
in the normal ASEP are replaced with a smoother behavior in
the presence of disorder. We have extensively performed
Monte Carlo simulations for all ranges of � and �. The simu-
lation results confirm the existence of three phases of LD,
HD, and maximal current. Furthermore, our simulations
show the growth of the maximal-current region and shorten-
ing of the sizes of the LD and HD phases, respectively. These
findings are in agreement with the mean-field-based conclu-
sions of Harris and Stinchcombe �22�. If one changes the
parameters of the binary distribution function, the overall
picture remains qualitatively the same as in the above dia-
grams. Nevertheless, the quantitative values of both �J� and
��� in the phases depend on the parameters of the distribution
functionals. More concisely, currents and densities are func-
tions of f�p�. In Fig. 6, we exhibit the phase diagram of the
disordered ASEP for some binary distribution functions.

We note that the size of the MC phase is an increasing
function of the variance of the distribution function. The rea-
son is that currents and densities are dominated by the num-
ber of defective sites. If the variance of the distribution is
large, then the probability of finding sites with notably small
hopping rates is considerable and therefore �J� and ��� are
highly affected. The enlargement of the MC phase has been
reported for the ASEP with a single defect in the bulk �18�.
We recall from the normal ASEP that the critical values of
the input and output rates are �c=�c= p

2 where p is the hop-
ping rate. In principle, since �, �, and p are rates, they can
vary from zero to infinity. Therefore, it is possible to choose
the time unit such that p scales to unity. In the disordered

FIG. 3. Disorder-averaged current vs � for various output rates
�. System size is 200.

FIG. 4. Disorder-averaged densities vs � for various input rates
�. System size is 200, and averaging has been executed over 1000
disordered samples.

FIG. 5. Disorder-averaged densities vs � for various output rates
�. System size is 200, and averaging has been executed over 1000
disordered samples.
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version of the ASEP, one does not have a single hopping rate,
so it would be better not to restrict ourselves to a particular
time unit. For the sake of comparison we write the values of
the density and current in the low-density, high-density, and
maximal-current phases of the normal ASEP:

�LD =
�

p
, �HD = 1 −

�

p
, �MC =

1

2
. �4�

Having in the mind that J= p��1−�� we thus obtain

JLD = ��1 −
�

p
� , �5�

JHD = ��1 −
�

p
� , �6�

JMC =
p

4
. �7�

Since in the binary distribution there are three
parameters—namely, p1, p2, and f—we have studied two
distinguished cases. First, we restrict ourselves to the condi-
tion �p�= fp1+ �1− f�p2=1. This leaves only two free param-
eters. In the second case, we impose the condition p2=1
while f and p1 are free to take arbitrary values in �0,1�. In
the latter case, the emphasis is on the role of defective sites
�p1�1� among normal sites �p2=1� whereas the former case
allows having fast hopping sites with rate p2�1. Our simu-
lations showed that there is no significant differences be-
tween the results of these two cases. Therefore in what fol-
lows, we only exhibit the results for the case p2=1—i.e.,
slow defective sites among normal sites. Our first set of
graphs �all obtained via Monte Carlo simulations� illustrates
the dependence of �J� on f for various p1 in three sets of
input and output rates corresponding to low input and high

output, high input and low output, and high input and high
output.

When � is small and � is high �Fig. 7�, the effect of
increasing f is to reduce the current. Smaller values of p1
exhibit a sharper decrease. This is natural since the bulk
density is low and therefore the system current is more sen-
sitive to both the number and the strength of the defects. The
dependence of �J� on f changes qualitatively when one goes
to the situation characterized by high � and low � as in Fig.
8. Here we are confronted with unexpected and novel fea-
tures. For p1 less than 0.15, the current appears as a decreas-
ing function of f while for p1�0.1 it increases up to a maxi-
mum and then starts diminishing. Accordingly, the optimum
value of f at which �J� is maximum is no longer f =0 but
rather a nonzero fmax. This implies that the effect of disorder
is to enhance the current which is a desirable effect. The
location of fmax shifts towards higher values when one in-
creases p1. For large p1, �J� shows up an increasing behavior
with a small slope. The slope tends to zero when p1→1 as
expected. For relatively high values of � and � �Fig. 9�, one
still observes that the dependence of current versus f shows a
decreasing character. In this case, the disorder has the ex-
pected behavior; i.e., the higher the number of the impurities,

FIG. 6. Phase diagram of the disordered ASEP for some binary
distributions. The distribution parameters are specified in the figure.
All the distributions have f =0.5 and �p�=1 but the variances are
different.
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FIG. 7. �J� vs f for various p1: �=0.05 and �=0.8. System size
is L=300.

FIG. 8. �J� vs f for various p1: �=0.8 and �=0.05. System size
is L=300.
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the larger the decrease of �J�. However, the interesting point
is the abrupt change in the behavior of the current reduction.
For each p1, the current shows a rapid reduction up to a
certain f and then decreases very smoothly in a nonlinear
fashion. This again marks the fact that impurities affect the
system beyond a certain relative frequency. These results are
in agreement with �28�. To gain a deeper insight, it would be
instructive to look at the behavior of ��� versus f . In low-
input and high-output rates �Fig. 10�, one observes that for
low p1 the bulk density rises up to a maximum and then
decreases even below the value of the normal ASEP. One
might naively think that increasing the density of defective
sites leads to an enhancement of the bulk density due to the
formation of high-density regions behind them. However, the
point is that if the density of defective sites reaches a certain
value, then the probability of finding defective sites in the
vicinity of the first site of the chain increases too.

This in turn gives rise to a blocking of the current of
particles in the chain bulk. As a result, a large portion of the
bulk remains almost in a LD regime which leads to a de-
crease in the bulk density throughout the chain. This scenario
remains valid for small p1. For larger p1, one observes the
expected increase of the bulk density upon increasing the

density of defective sites f . The reason is that once the defect
strength is reduced below a threshold, the formation of high-
density regions behind these weak sites will be suppressed
and therefore the particles can more easily flow throughout
the bulk. As a result of this flow, enough particles can be
found in the bulk. This increases the number of local high
regions behind defects which in turn give rises to the en-
hancement of ���. In the high-�, low-� regime �Fig. 11� and
for p1�0.2 the dependence of the bulk density on f is
sharply decreasing up to a certain f . Afterwards, ��� becomes
independent of f and a lengthy plateau region forms. At f
=0.9, ��� shows a rather linear increase to its asymptotic
value 0.5 in the MC phase. We note that when f =1, all the
sites are defective. For instance, in the case p1=0.1, the criti-
cal input and output rates are �c=�c=

p1

2 =0.05. In this case
�=0.8 and �=0.05 lie in the MC phase and hence ��� ap-
proaches 0.5 in the limit f →1. The reason is that when the
input is high and the output is low, impurities give rise to
phase segregation behind them �17,18�. The formation of
macroscopic low-density regions in front of them leads to a
sharp reduction of ���. For p1�0.2 the decrease of ��� be-
comes much more smooth. The reason is that weaker defects
are unable to produce low enough density regions. The other
interesting point is that when the input rate is high, increas-
ing the number of defects will prevent a high inflow of par-
ticles, which is due to the largeness of � and regulates the
flow along the bulk. The overall effect is to reduce ��� from
high � to much lower values. As we had already seen in the
current diagrams, in some values of p1, this diminishing in
the bulk density is accompanied by the current increment as
exhibited in Fig. 8. Now let us discuss the regime where �
and � are both greater than 0.5 �Fig. 12�. For weak defect
strength, the density is almost independent of f . For p1 less
than 0.5, ��� shows a smoothly decreasing dependence on f
until it becomes independent of f and correspondingly a pla-
teau region forms. The length of the plateau is relatively
large and becomes larger for smaller values of p1. Increasing
f beyond the plateau value, one again encounters an increas-
ing behavior of ��� until it reaches the normal ASEP value
���=0.5 in the limit f =1 in which all sites have become
defective. In order to shed more light on our understanding,

FIG. 9. �J� vs f for various p1: �=0.6 and �=0.8. System size is
L=300.

FIG. 10. Bulk density dependence on f for various values of p1:
low-density phase �=0.05 and �=0.8. System size is L=300.

FIG. 11. Bulk density dependence on f for various values of p1:
high-density phase �=0.8 and �=0.05. System size is L=300.
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we now study the effect of varying the disorder strength p1
for fixed values of f . Analogous to the previous studies, we
first consider the current which is shown in Figs. 13–15.

When � is small and � large, the effect of increasing p1 is
to increase the current to its normal value ��1−��. For each
f , �J� increases with p1 up to a certain value and then gets
saturated. This implies that below a certain strength, the de-
fect strength is incapable of affecting the current. This pic-
ture changes dramatically when large � and small � are
taken into account. In this case, �J� increases with p1 up to an
f-dependent value and then starts decreasing. The maximum
current sustained by the system is considerable. While in the
case �=0.8 and �=0.05, the current for the normal ASEP is
��1−��	0.05; here, we observe that disorder can remark-
ably enhance the current to almost a doubled value around
0.12.

This type of constructive behavior can be explained on
the same grounds as for Fig. 8. Qualitatively, the impurities
do not allow the overflow of particles into the system bulk
which otherwise would have led to congestion and current
reduction. If p1 is small, the strength of defects is sufficient
to block the inflow of particles and reduces the current. If p1

is high enough, large inflow � will dominate and �J� is re-
duced. At an intermediate p1 we have a maximal current.
Analogous to low � high �, when both � and � are large
�Fig. 15�, increasing p1 leads to current increments. If the
density of defects is high, the current’s increase would be
linear in p1. For small f , the increase in current is rather
linear for small p1 and afterwards becomes more smooth. To
deal in some depth, we next sketch the dependence of ��� on
the defect strength p1. For small � and large � �see Fig. 16�,
one interestingly observes that if the defect concentration is
relatively small—i.e., less than 0.02, the effect of decreasing
the defect strength �increasing p1� is to reduce the density as
intuitively expected. Based on our previous arguments, de-
fects are more influential if their concentration is relatively
small �23�. Therefore, in the small-concentration regime, the
weakening of the defects leads to a sharp decrease in the
density. Beyond a certain p1, the further weakening of de-
fects does not affect ���. For defect concentration f above
0.02, the behavior of ��� undergoes a qualitative change. As
observed in Fig. 16, ��� increases up to a maximum and then
starts diminishing. The maximum value of ��� depends on f
and ranges between 0.11 and 0.25. The reason is twofold.

f
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FIG. 12. Bulk density dependence on f for various values of p1:
maximal-current phase �=0.6 and �=0.8. System size is L=300.
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FIG. 13. Current dependence on p1 for various values of f:
low-density phase �=0.05 and �=0.8. System size is L=300.
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maximal-current phase �=0.6 and �=0.8. System size is L=300.
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First, for small input rate � and intermediate concentration of
defects, strong defects are still capable of forming rather
large high-density regions behind them which results in high
���. The second reason is due to the blocking of the particles
outflow. Although � is high, strong enough defects are able
to reduce this high outflow rate and effectively reduce it.
Consequently, the bulk density rises up throughout the bulk.
Below a certain strength, the defective sites, although their
numbers are not so small, are not only incapable of forming
high-density regions behind them but also incapable of ef-
fectively reducing the output rate. Therefore, ��� becomes
decreasing. We now consider the case where � is large but �
is small �see Fig. 17�. Here the overall effect of decreasing
the defect strength is enhancement of ���. When the defect
strength is reduced, the particles can more easily enter the
chain and this leads to an increase in the bulk density. In the
limit of weak strength p1→1, we recover the normal value
�=1−�. When both � and � are large corresponding to the
MC phase in the normal ASEP, we still observe that the
effect of a reduction of the defect strength is to enhance the
density �Fig. 18�. Defects can drastically reduce the density
if their concentration and their strength are both large. Oth-
erwise, their influence is a slight reduction of the density. We

note the type of density increment is rather similar in Figs.
17 and 18.

IV. UNIFORM DISTRIBUTION FUNCTION

So far our investigation has been restricted to the case
where the disorder strength was limited to only two values.
In order to obtain a complimentary insight into the nature of
disorder effect, it would be noteworthy to consider the case
where the defect’s strength can be chosen from a continuous
interval. For this purpose, we consider the uniform distribu-
tion function for the strength of defect. Here one has two
parameters—namely, a and b—which are the first and last
points of the distribution interval. Like the binary distribu-
tion, one can introduce two classes. In the first class, �p�
= a+b

2 =1 which corresponds to the case having fast hopping
sites greater than unity. In the second class, b=1 while a�a
�1� determines the lower limit of the defect’s value. Note
that in the second class �p�= 1+a

2 �1. We now exhibit the
results for the latter case—i.e., b=1. The following diagram
depicts the dependence of �J� on the lower end of the interval
a. All diagrams which are shown next have been obtained by

0 0.25 0.5 0.75 1
0

0.05

0.1

0.15

0.2

0.25

f = 0.005
f = 0.05
f = 0.3
f = 0.3

α = 0.05
β = 0.8

p1

<ρ>

FIG. 16. ��� vs p1 for various f: low-density phase �=0.05 and
�=0.8. System size is L=300.
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FIG. 17. ��� vs p1 for various f: high-density phase �=0.8 and
�=0.05. System size is L=300.
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FIG. 18. ��� vs p1 for various f: maximal-current phase �=0.6
and �=0.8. System size is L=300.

FIG. 19. Average current �J� versus a for low � and high �,
high � and low �, and high � and high �. L=200.
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Monte Carlo simulations. The number of disordered samples
over which the averaging have been performed is 1000, and
the system size is 200.

According to Fig. 19, in low-�, high-� and high-�, low-�
regimes, beyond a=0.1, the impurities do not affect the cur-
rent and the system can maintain the normal ASEP values
��1−�� and ��1−��, respectively. In contrast, for both �
and � larger than 0.5, �J� is a smooth increasing function of
a. The current reaches its normal ASEP value 0.25 in the
limit a→1. The behavior of the average bulk density ��� on
a is shown in Fig. 20.

Contrary to the current diagrams, here the density ap-
proaches the normal ASEP value which depends on � and �.
The high-�, high-� regime has the weakest dependence on a,
and beyond a=0.1, ��� will be independent of a. Figure 21
depicts the phase diagram in the case where the average rate
of hopping is unity: �p�= a+b

2 =1 for various values of a.

Analogous to the binary distribution, the overall effect of
disorder is to enlarge the size of the maximal-current phase
and shrinkage of low- and high-density phases, respectively.

Figure 22, exhibits the size dependence of the LD �HD�
phase � in terms of the variance of the distribution functions
for both uniform and binary distribution functions. The mean
of the distribution functions is set to unity.

For the uniform distribution, the size increment of the
maximal-current phase shows a more rapid dependence on
the variance of the distribution function in comparison to the
binary distribution. The reason is due to the fact that in the
uniform distribution, the frequency of small-hopping sites
close to the lower limit of the distribution interval is more
than those in the binary distribution.

V. SUMMARY AND CONCLUDING REMARKS

Let us now summarize what has been explored in this
paper. We have investigated the statistical characteristics of
the asymmetric simple exclusion process in the presence of
spatially uncorrelated quenched disorder in the hopping rates
via extensive simulation and numerics. Our findings cover
two different distributions of hopping rates: binary and uni-
form. The conventional three-phase structure of the normal
ASEP remains unchanged. Generically, the disorder affects
the phase diagram by enlarging the maximal-current phase,
which in turn leads to squeezing the low- and high-density
phases. This is accompanied by an overall decrease �in-
crease� in the currents �densities�. We have managed to nu-
merically solve the mean-field equations. Monte Carlo simu-
lations are in support of the mean-field solutions. In brief, the
current exhibits a diminishing behavior in terms of the de-
fect’s concentration in the chain when the input rate is small
and the output rate is high. Analogously, it decreases when
both the input and output rates are relatively high. Unexpect-
edly, in the case when the input rate is large and the output
rate is small, the current shows an increasing dependence
versus the defect’s concentration. This demonstrates the non-
trivial interplay of spatial sitewise disorder with the drive.

FIG. 20. Average density versus a for low � and high �, high �
and low �, and high � and high �. L=200.

FIG. 21. Phase diagram of the disordered ASEP for a uniform
distribution of hopping rates. The distribution characteristics are
specified in the figures. All distributions have unit mean but the
variances are different.

FIG. 22. Size of the low- and high-density phases versus the
variance for uniform and binary distribution functions �a= p1, f
=0.5, and �p�=1�. L=200.
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We have also examined the properties of the ASEP under
uniformly distributed spatial disorder. Although the phase
structure is similar to that of with a binary distribution, we
have identified distinctive features between them. Our study
has been limited to disorder distribution functions with finite
second moments. We expect to observe substantial different
types of behaviors for those distributions having a long tail.
Work along this line is in progress.
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