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We study tilings of the square lattice by linear trimers. For a cylinder of circumference m, we construct a
conserved functional of the base of the tilings, and use this to block diagonalize the transfer matrix. The
number of blocks increases exponentially with m. The dimension of the block corresponding to the largest
eigenvalue is shown to grow as �3/21/3�m. We numerically diagonalize this block for m�27, obtaining the
estimate S�=0.158520±0.000015 for the entropy per site in the thermodynamic limit. We present numerical
evidence that the continuum limit of the model has conformal invariance. We measure several scaling dimen-
sions, including those corresponding to defects of monomers and L-shaped trimers. The trimer tilings of a
plane admits a two-dimensional height representation. Monte Carlo simulations of the height variables show
that the height-height correlations grows logarithmically at large separation, and the orientation-orientation
correlations decay as a power law.
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I. INTRODUCTION

The study of statistics of densely packed polymers has
long been of interest to physicists. Onsager had argued that
solutions of long rodlike molecules should show orienta-
tional order at high densities �1�. Flory’s approximate analy-
sis suggested that linear rodlike molecules on a two-
dimensional lattice should also exhibit an orientational order
at high densities �2�. However, for the case of dimers on a
lattice—the only case that is analytically soluble—it is
known that for all nonzero monomer densities, there is no
long-range orientational order �3�. In the limit of zero mono-
mer density, one gets power-law decay of correlations for
�bipartite� square and hexagonal lattices �4,5�, but only short-
ranged correlations on the triangular lattice �6�. Recently
there have been studies of the dimer problem on the cubic
lattice �7� and of interacting classical dimers on the square
�8� and cubic �9� lattices.

Monte Carlo simulations of Baumgärtner show that for
semiflexible lattice polymers close to full packing there is no
long range order, no phase transition, and the correlation
length is of the order of the size of the polymer �10�. How-
ever, the exact solution of a single semiflexible polymer that
is fully packed on the square lattice �the so-called Flory
model� exhibits a low-temperature phase of crystalline order
and an infinite-order transition to a disordered, critical high-
temperature phase in which the critical exponents vary con-
tinuously with temperature �11�.

It is generally believed, but not proved, that in the con-
tinuum case in three dimensions, long needlelike molecules
would undergo a isotropic-nematic transition. In two dimen-
sions, a spontaneous breaking of continuous rotational sym-

metry is not allowed, but there is a Kosterlitz-Thouless phase
with power-law decay of orientational correlation functions
�12,13�. But the situation is less clear for systems of hard-
core molecules on a lattice. In the limit of high density, one
can get a solid-like phase where one of the sublattices is
preferentially occupied, e.g., in the cases of hard squares and
hard hexagons �14�. The same behavior is seen in Monte
Carlo studies with lattice models of extended hard discs �15�.
However, triangular trimers on the triangular lattice can be
solved exactly, and do not show a long-range order even at
close packing �16�. De Gennes has argued that long straight
needles may not show an ordered phase on the square lattice
�17�. There are not many studies of other molecular shapes in
lattice models, as realistic modeling of actual experimental
system assemblies of different shaped molecules �e.g., ellip-
soids, banana-shaped molecules, etc.� is better done in the
continuum space. Tilings by L-shaped trimers and T-shaped
tetramers of m�� strips, for m�5 have been studied using
the transfer matrix technique earlier �18,19�.

In this paper we study random trimer tiling of the square
lattice with horizontal and vertical trimers �Fig. 1�. We wish
in particular to assess if there is a long-ranged correlation of
the orientational order in this problem in the limit of zero
monomer density. The problem is first addressed in the ge-
ometry of semi-infinite cylinders of size m��. We show
how to set up the corresponding transfer matrix and numeri-
cally diagonalize it for m�27. We use these data to extrapo-
late to the m→� limit, determining in particular the entropy
per site in a random trimer tiling in the thermodynamic limit.
We also prove the existence of a family of matrices which
commute with the transfer matrix and show that the transfer
matrix decomposes into a number of blocks which is expo-
nentially large in m. Our results for the free energy and vari-
ous correlation functions are consistent with a conformally
invariant system of central charge c=2.15±0.2. In particular,
the correlation length �m is found to increase linearly with m.

It is known that trimer tilings admit a two-component
height field representation �20�. In the plane, we use this to
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study correlations of the height field by Monte Carlo simu-
lations, and find that the correlation function �h�r�h�0��� var-
ies as ln��r � � for large �r�. We have also studied the orienta-
tional correlations in the simulations, and find that they
decay as power laws.

The plan of the paper is as follows. In Sec. II we present
the construction of a height representation for a trimer tiling.
In Sec. III the constants of motion are obtained for trimer
tilings on a cylinder. In Sec. IV the number of disjoint sec-
tors is calculated by the generating function formalism. In
Sec. V we set up the transfer matrix for the problem and in
Sec. VI we present the results of numerical diagonalization
of the transfer matrix. In Sec. VII we discuss the trimer-
trimer correlation functions and in Sec. VIII height-height
correlation functions, both obtained by Monte-Carlo simula-
tions. Our conclusions are presented in Sec. IX. An appendix
adapts the working of Sec. IV to a more general tiling prob-
lem.

II. TRIMER TILINGS AND HEIGHT REPRESENTATION

We represent each trimer as a set of three consecutive
squares along a line, oriented horizontally or vertically. For
each tiling of a two-dimensional plane by trimers �Fig. 1�,
one can define a configuration of a height model at the ver-
tices of the square lattice, where the heights are two-
dimensional vectors �21,22� as follows.

Choose two-dimensional vectors e1, e2, and e3 such that
they satisfy the condition e1+e2+e3=0. A convenient choice
is e1= �1,0�, e2= 1

2 �−1,�3�, e3= 1
2 �−1,−�3�, as shown in Fig.

2. Equivalently the vectors can be represented as complex
numbers e1=1, e2=�, and e3=�2, where �=e2�i/3. The
height h�i , j� at any site �i , j� is an integer linear combination
of basis vectors e1, e2, and e3.

The lattice edges are assumed to be oriented rightwards or
upwards, and they are labeled with vectors e1, e2, and e3
periodically as shown in Figs. 3�a� and 3�b�. The labeling is
such that moving along a horizontal or vertical line from any
vertex up or right encounters a periodic sequence of labels

e1, e2, e3. This rule still leaves some freedom in choosing the
sequence of bonds; two convenient choices are shown in
Figs. 3�a� and 3�b�.

Now, for any given tiling of the square lattice, the height
field h�i , j� is defined so that if the directed edge l from siteFIG. 1. A trimer tiling with periodic boundary conditions in the

vertical direction.

FIG. 2. Choice of unit vectors.

FIG. 3. �a� A trimer tiling of 3�5 lattice with assignment of
labels to the edges of the lattice �b� An alternative assignment of
labels �c� the height configuration corresponding to label in �a�,
where �n1 ,n2� denotes the height h�n1 ,n2�	n1e1+n2e2.

GHOSH, DHAR, AND JACOBSEN PHYSICAL REVIEW E 75, 011115 �2007�

011115-2



a to the site b does not belong to the interior of a tile �i.e., it
forms part of the boundary shared by two tiles�, and it has
label e�, then h�b�−h�a�=e�. This determines the heights at
all vertices up to an unimportant additive constant. The con-
stant can be fixed by arbitrarily choosing h�0�=0.

Note that for the two choices of edge weights shown in
Fig. 3, the height difference along any edge of trimer has
modulus 1. For �a�, it value is �7 or 2 for the internal edges
of trimers, and for the choice �b�, it only takes the value �7.
An example of the values of the height field following the
convention �a� is illustrated in Fig. 3�c� for a particular con-
figuration of trimers.

The choice �a� has a particular advantage. It can be shown
that any trimer covering of a plane can be obtained from any
other by a sequence of the basic flip operation, in which
three adjacent horizontal trimers are replaced by three adja-
cent vertical ones �Fig. 4�. Under a basic flip move, it is easy
to check that the height changes only at four sites and the
modulus of the change in height 
	�h�
 is always 3. We can
think of the values of the height field as forming a triangular
lattice on the complex plane. This lattice can be broken into
nine sublattices �Fig. 5�, such that even after any such flip,
the value of height stays on the same sublattice. Also, differ-
ent sublattices of the height field are in one-to-one corre-
spondence with a nine sublattice decomposition of the origi-
nal square lattice �Fig. 5�.

III. CONSTANTS OF MOTION FOR TRIMER TILINGS ON
A CYLINDER

In this section we consider the geometry where the square
lattice has been wrapped on a cylinder of circumference m.
The fully packing constraint on the trimer tilings then im-
plies strong constraints on the configurations of trimers al-
lowed along different rows. In fact, given some local con-
figuration of trimers along a row, any local trimer
configurations become disallowed along any other row. If we
think of the row-to-row transfer matrix as an trimer evolution
operator for configurations on a line these constraints can be
described in terms of some constants of motion under this
evolution.

The simplest constant of motion of this type can be con-
structed in terms of the invariants for loops �23�. Given a
trimer tiling, define an allowed loop as a sequence of nearest
neighbor bonds on the lattice that returns to the starting
point, and does not intersect itself, and none of the steps
crosses a trimer. In other words, an allowed loop goes along
the boundaries of trimers. Define G as the group generated by
two generators a and b, which satisfy

a3b = ba3

ab3 = b3a . �1�

Now we attach weights �elements from the group G� to each
step of the loop. These read respectively a, a−1, b, and b−1

for a step of the loop to the right, to the left, up, and down.
Finally, to each loop L we assign a weight wL�G as the
ordered product of the weights attached to the steps along the
loop. Eqs. �1� imply that wL does not depend on the way
�starting point and direction� in which the loop L is traversed
when building up the product weight. Moreover, it is easy to
see that for a nonwinding loop �i.e., an allowed loop on the
cylinder which is homotopic to a point�, wL is equal to iden-
tity. �The proof goes by induction on the number of trimers
enclosed by the loop.�

Also, wL takes the same value for any allowed loop that
winds around the cylinder. Indeed, let L be such a loop. Then
it is easy to see that wL does not change if the loop is de-
formed locally so that the number of trimers below it
changes by ±1. Thus, wL is a constant for the tiling. How-
ever, given two products wL and wL� of the generators a±1,
b±1, checking whether wL=wL� by using the rules �1� is non-
trivial. We now describe a different construction that is
equivalent to this, but more convenient to use.

Figure 6 shows a partial tiling of the plane, starting from
a base �shown hatched in the figure�. Each trimer occupies
three horizontally or vertically consecutive squares. Periodic
boundary conditions in the horizontal �x� direction are as-
sumed. The base is supposed without overhangs, and can

FIG. 4. The flip move exchanging three vertical trimers with
three horizontal trimers.

FIG. 5. �Color online� �a� 3�3 superlattice decomposition of
the square lattice into nine sublattices. �b� Height variables corre-
sponding to a tiling of the square lattice form a triangular lattice.
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therefore be specified by its height profile H0�x�. The only
constraints about the partial tiling we assume is that it has no
holes, and no overhangs. In particular, the tiled region can
also be described by a height profile H�x�.

We now construct an invariant of the tiling as follows.
First, let A, B, and C be any three noncommuting matrices
satisfying the condition

A3 = B3 = C3. �2�

Clearly such matrices exist; one family of possible choices is
given by

A = �1 
1 �1

0 � �1

0 0 �2 � ,

B = �1 
2 �2

0 �2 �2

0 0 �
� ,

C = � 1 0 0


3 � 0

�3 �3 �2 � , �3�

where �=e2�i/3, and 
i, �i, �i are any complex numbers.
Next, we assign to each square one of the three colors a,

b or c, where each color corresponds to a value of its vertical
coordinate y�mod3� �see Fig. 6�. The height profile H�x� can
then be characterized by a word l1 , l2 , . . . , lm over the letters
a, b, c, where for any x=1,2 , . . . ,m the letter lx specifies the
color corresponding to y=H�x�. For example, the word char-
acterizing the partial tiling in Fig. 6 reads bbbaaabcccbccba.
Correspondingly to this word, we construct a functional of
H�x�, denoted by J�H�x��, which is defined as the trace of a
product of matrices A, B, C, where each factor is obtained
from a letter in the word by replacing a�A, b�B, c�C.
For example, for the sequence given above, we get the func-
tional

J�H�x�� = Tr�BBBAAABCCCBCCBA� . �4�

Note that by the usual cyclic properties of the trace, the
functional depends only on the height profile, and not on the
starting point. We can therefore write J�H�x��=J�H�.

We now have the remarkable theorem

J�H� = J�H0� . �5�

In other words, J is the same for all valid partial tilings,
grown from the same base, and is equal to its value for the
base.

The proof is by induction on the number of trimers in the
tiling. It is clearly true for no trimers. If we add a vertical
trimer at x, the height increases by 3, and the letter lx does
not change. If we add a horizontal trimer, it must be done on
a locally flat substrate. Then in the word, the substring aaa
may be replaced by bbb, or bbb by ccc, or ccc by aaa.
However, by Eq. �2�, this does not change J. Q.E.D

For the particular choice of A, B, C given in Eqs. �3�, we
actually have the additional property A3=B3=C3=I. For any
choice of matrices having this additional property the word
l1 , l2 , . . . , lm can be transformed into an “irreducible word”
�24� by recursively deleting any subsequent �modulo m� oc-
currences of three equal letters �i.e., lili+1li+2=aaa, or bbb, or
ccc� in the original word. In the example shown in Fig. 6, the
base is characterized by the �reducible� word
cccbbaaaccaaaba, which then corresponds to the irreducible
word bbccba. By the theorem, this is also the irreducible
word of any partial tiling built on that base.

The invariant J is a polynomial function of the param-
eters 
i ,�i ,�i in the matrices �3�. We can therefore expand J
in multivariable power series in these variables. By the theo-
rem, all the coefficients in this expansion are the same for
any allowed tiling, and are constants of motion for the trans-
fer matrix.

For trimers tilings on a torus, we can define other invari-
ants J�nx,ny� corresponding to other homotopy classes of non-
contractible loops. The allowed homotopy classes are char-
acterized by the winding numbers nx, ny along the two

FIG. 6. Partial filling on top of
a given base �shown hatched�.
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coordinate directions, with nx∧ny =1 and nx+ny 
1 �25�.
Our previous invariant is J=J�1,0�. However, the invariants
J�nx,ny� are not all independent, as can easily be inferred from
the simple example when J�1,0� corresponds to abababab. . .;
and there is then only one possible trimer tiling which com-
pletely fixes the values of all other loop variables.

IV. DECOMPOSITION OF PHASE SPACE
INTO DISJOINT SECTORS

The word associated with the base can be any sequence of
m letters chosen from a, b, c. The number of all possible
base profiles H0�x� �modulo the addition of vertical trimers�
for a cylinder of width m is therefore 3m.

We have already seen that two height profiles H1�x� and
H2�x� are reachable from each other if and only if
J�H1�x��=J�H2�x��. Hence the transfer matrix for this prob-
lem has a block diagonal structure, with no transition pos-
sible between configurations with different J.

It is straightforward to determine the number of irreduc-
ible words of length n
2 that start with any two specified
letters. Let us denote by Nd�n� �Ns�n�� the number of irre-
ducible words in which the initial two letters take fixed dif-
ferent �same� values. Using the condition that in an irreduc-
ible word we cannot have any three consecutive letters being
identical, it is easy to see that they satisfy the recursion re-
lation

Nd�n + 1� = 2Nd�n� + Ns�n� ,

Ns�n + 1� = 2Nd�n� �6�

for n
2, with the initial condition Nd�2�=Ns�2�=1. These
equations are easily solved giving

Nd�n� =
1

4�3
�− �1 − �3�n + �1 + �3�n� ,

Ns�n� =
1

12
��3 + �3��1 − �3�n + �3 − �3��1 + �3�n� . �7�

The total number of irreducible strings tn of length n is then
obtained by taking into account the multiplicities due to the
possible choices of the two initial letters:

tn = 6Nd�n� + 3Ns�n� . �8�

The total number of sectors for a cylinder of width m
�with 3�m� is then 
k=0

m/3t3k. Note that this number is expo-
nentially large in m. For comparison, for dimer tilings �with
2�m� the number of sectors is just 2m+1.

Note that each of the tm sectors corresponding to an irre-
ducible word of length m contains only one state of the trans-
fer matrix �these sectors are “stuck” in the sense that there is
only one tiling configuration possible for the given base, and
under evolution under the transfer matrix, the state of a col-
umn uniquely determined�. On the other hand, the sector
corresponding to the empty irreducible word comprises a
number of states in the transfer matrix which grows expo-
nentially with m.

It is straightforward to obtain precisely this latter number,
i.e., the number of words of n letters that reduce to the empty
irreducible word. Namely, it corresponds to the size of the
largest sector of the transfer matrix, which is also the sector
corresponding to the largest eigenvalue.

To this end, let us first define

Ga = aaa + abbbaa + aabbba + acccaa + aaccca

+ abbbcccaa + acccbbbaa + ¯ �9�

as the formal sum over all unfactorizable words with initial
letter a that are reducible to the empty word. Here unfactor-
izable means that the words contributing to Ga must not be
the concatenation of two nonempty words each of which is
in turn reducible to the empty word. Note also that the re-
quirement that the initial letter be a implies, by the property
of unfactorizability, that the last reduction before reaching
the empty word is of the type aaa��. We similarly define
Gb and Gc. The sum in Eq. �9� can then be expressed as

Ga = a�1 + �Gb + Gc� + �Gb + Gc�2 + ¯ �,

a�1 + �Gb + Gc� + �Gb + Gc�2 + ¯ �a

= a
1

1 − �Gb + Gc�
a

1

1 − �Gb + Gc�
a . �10�

Now substituting a=b=c=x in Eq. �9� we obtain the gener-
ating function for irreducible words with a formal weight x
per letter:

g�x� = Ga�a = x� = 

n=1

�

g3nx3n, �11�

where g3n is the number of different unfactorizable words
that start with a given fixed letter and are reducible to the
empty word. By Eq. �10�, g�x� then satisfies the equation

g�x��1 − 2g�x��2 = x3. �12�

This is a cubic equation in g�x� and can be solved explicitly.
Among the three solutions for g�x�, two can be discarded as
unphysical on the ground that g�0��0. The last, physical
solution can be expanded into a polynomial series in x, as

g�x� = x3 + 4x6 + 28x9 + 240x12 + 2288x15 + 23296x18

+ 248064x21 + 2728704x24 + ¯ .

Apart from the trivial root in x=0, g�x� has two non-trivial
coincident roots for x3=xc

3=2/27. For x near xc, g�x� varies
as

g�x = xc − �� =
1

6
− A�1/2 + o��1/2� . �13�

This implies that for large n

g3n � A�27

2
�n 1

n3/2 . �14�

Using g�x�, we can now construct the generating function
H�x� of all words �factorizable or not, and with any initial
letter� that are reducible to the empty word. We have clearly
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H = 1 + �Ga + Gb + Gc� + �Ga + Gb + Gc�2 + ¯

=
1

1 − �Ga + Gb + Gc�
. �15�

Setting a=b=c=x in Eq. �15� as before, we get

H�x� = 

n=1

�

H3nx3n, �16�

where H3n is the total number of words of length n that are
reducible to the empty word. The leading terms of the poly-
nomial series are

H�x� =
1

1 − 3g�x�
= 1 + 3x3 + 21x6 + 183x9 + 1773x12

+ 18303x15 + 197157x18 + 2189799x21 + 24891741x24

+ ¯ . �17�

For x near xc, H�x��H�xc�−A�xc−x�1/2, whence H3n also
varies as

H3n � A�27

2
�n 1

n3/2 �18�

for large n, where A is the same constant as in Eq. �14�.
The coefficients appearing in Eq. �17� coincide with the

observed dimension of the transfer matrix in the largest ei-
genvalue sector �see Table I below�. Finally, let us note that
the working of this section can be adapted to a more general
tiling problem. This is relegated to Appendix A.

V. SETTING UP THE TRANSFER MATRIX

The number of ways Nn�m� to tile a cylinder of width m
�with 3�m� and height n, with periodic boundary conditions
in the m-direction and free boundary conditions in the n di-
rection, can be found as �0 � �Tm�n �0�. Here, Tm is the transfer
matrix that adds one row of width m, �0� is an initial state
corresponding to an initial horizontal base, and �0� is a pro-
jection operator on the state corresponding to a final horizon-

tal base. For finite n, diagonalizing T by means of a similar-
ity transformation leads to an expression of the form Nn�m�
=
i�i�m��
i�m��n, where 
i�m� are the eigenvalues of T. The
corresponding amplitudes �i�m� depend on our choice of
boundary conditions in the n direction. We are mainly inter-
ested in the limit n�1, for which one has simply

Nn�m� � �
1�m��n, �19�

where 
1�m� is the largest eigenvalue of Tm. The correspond-
ing entropy per site is then

Sm =
1

m
ln 
1�m� . �20�

We shall now describe two different ways of constructing
the transfer matrix.

A. First construction

The first construction is conveniently described in terms
of a more general tiling problem �see Appendix A� of tiling
the plane by horizontal p-mers �of size p�1 elementary
squares� and vertical q-mers �of size 1�q�. The trimer case
is recovered for p=q=3.

We first shift the tiling by half a lattice spacing, both
horizontally and vertically, with respect to the underlying
square lattice. The tile boundaries then intersect some of the
lattice edges, and it is natural to describe the tiling by assign-
ing an appropriate variable �“spin”� si to each lattice edge i.

An edge i intersecting a tile boundary has si=0. Each
vertical q-mer encloses q−1 lattice edges which are not in-
tersected by its boundaries; the lowest of these edges has si
=1, the second-lowest si=2, and so on, and the highest edge
has si=q−1. Each horizontal p-mer encloses p−1 lattice
edges which are not intersected by its boundaries; the left-
most of these edges has si=q, the second-leftmost has si=q
+1, and so on, and the rightmost edge has si=q+ p−2.

Using a construction well known from the theory of inte-
grable systems, the row-to-row transfer matrix can be written

Tm = Tr0R0m ¯ R02R01, �21�

where each of the matrices R0k act on two ingoing edges
�labeled 0 and k�, joins them by adding one vertex, and pro-
duces two outgoing edges �labeled k� and 0��, as shown in
Fig. 7. The trace over the edge 0 corresponds, graphically, to
adding the first horizontal edge of a new row, and making
sure that it joins to a horizontal edge carrying the same spin
s0, once the row has been completed.

It remains to specify the elements of the matrix
R0k�s0 ,sk ;sk� ,s0��. These are one for the cases

TABLE I. The dimension of the transfer matrices Tm, dim1�Tm�,
without symmetrization, and dim2�Tm�, with symmetrization, is
shown for different m. Also shown are the entropy per site Sm and
the correlation length �2 defined in Eq. �30�.

m dim1�Tm� dim2�Tm� Sm �2

3 3 3 0.37754275 0.58860147

6 21 6 0.21764117 0.95122814

9 183 19 0.18163298 1.50340426

12 1773 99 0.17027036 2.15126321

15 18303 672 0.16557863 2.83712631

18 197157 5667 0.16322214 3.54463208

21 2189799 52689 0.16187256

24 24891741 520407 0.16102733

27 288132303 0.16046299

FIG. 7. Labeling of the R matrix.
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�s0,sk;sk�,s0�� =�
�0,0;1,0�,�0,0;q,0� ,

�0,i;i + 1,0� with 1 � i � q − 2,

�0,q − 1;0,0� ,

�i,0;0,i + 1� with q � i � q + p − 3,

�q + p − 2,0;0,0�
�22�

and zero for all other cases. Indeed, the first line in Eq. �22�
corresponds to the lower left corner of any tile; the second
line to the interior of a vertical tile; the third line to the upper
right corner of a vertical tile; the fourth line to the interior of
a horizontal tile; and the fifth line to the upper right corner of
a horizontal tile. Finally, the trace in Eq. �21� is over s0
=0 ,q ,q+1, . . . ,q+ p−2.

In some applications it might be of interest to give differ-
ent weights to horizontal and vertical tiles. This can readily
be done, by attributing the desired weight to the lower left
corner of each tile, corresponding to the first line of Eq. �22�.

The transfer matrix Tm is constructed in the base of spins
states �s1 ,s2 , . . . ,sm� corresponding to an initial row of ver-
tical edges, with each sk� �0,1 , . . . ,q−1�. The factorization
�21� of Tm is particularly suited for using sparse-matrix and
hashing techniques, so that Tm can be multiplied onto an
arbitrary initial vector in time �m dim�Tm�. The first few
eigenvalues of T can be found by an iterative scheme �the
so-called power method �26�� based on iterating such multi-
plications.

The largest eigenvalue sector, corresponding to growing
the tiling from a horizontal base, is obtained by choosing the
initial vector so that the reference state �s1 , . . . ,sm�
= �0, . . . ,0� carries weight one, and all other states carry
weight zero. The whole state space for the given sector is
constructed automatically in the iterative process. For the
largest eigenvalue sector, the total number of states is found
to be given by Eq. �17�; this constitutes a useful check of the
numerical algorithm. Excited sectors, corresponding to non-
horizontal bases, can be similarly accessed by choosing an-
other appropriate reference state as the initial vector.

The above construction has enabled us to numerically di-
agonalize Tm for m�27. The corresponding eigenvalues are
tabulated in Table I.

B. Second construction

The second construction of the transfer matrix is de-
scribed here for the original trimer tiling problem. We first
define the tiling at level n as the set of all tiles that have at
least one square with a y coordinate less than or equal to n.
Hn�x� is also the height profile for this set of tiles above y
=n. Then Hn�x� clearly lies between 0 and 2, and may be
characterized by a sequence of the type
21222000122110¯ . The transfer matrix TC,C� is 1, if the
height configuration C� can be reached from C by adding
some tiles, otherwise 0.

The transfer matrix is constructed simply as follows: Let
the configuration C be given by some sequence of 0’s, 1’s
and 2’s as above. We add trimers to this configuration to all
sites with height 0. We can place a horizontal trimer at any

place where three consecutive sites have height 0. This
changes the heights at these sites to 1. We place zero or more
horizontal trimers this way. To each remaining site with
height 0 we add a vertical trimer, so that the height of that
site becomes 3. Now there are no sites with height 0, and the
maximum height is 3. Finally we measure heights from a
new reference point one unit higher, and decrease all heights
by 1. This gives the new height configuration C� with heights
given again by a sequence of 0’s, 1’s, and 2’s.

There is a simple way to represent this transfer matrix as
a spin hamiltonian. Denote the three possible heights at site i
by a quantum spin that can be in any one of three orthonor-
mal states �0�, �1�, and �2�. We denote the three states at site
i by �0i�, �1i�, and �2i�. Define the operator Si

− by

Si
−�hi� = �hi��, where h − h� = 1 �mod 3� . �23�

We define Pi
0 as the projection operator for the state �0i�, i.e.,

Pi
0�0i� = �0i�,Pi

0�1i� = Pi
0�2i� = 0. �24�

Then it is easy to see that the transfer matrix can be written
as

T = Tr�
i=1

L �Si
− Pi

0 0

0 0 Pi
0

Pi
0 0 0

� . �25�

To prove this, we only need note that expanding the product,
the only nonzero terms are of the form S−S−P0P0P0S−

¯ ,
where we have a string of S− at consecutive sites, inter-
spersed with the product of three P0’s at consecutive sites.

As an example, let us consider random horizontal and
vertical trimer tilings of a square lattice with periodic bound-
ary conditions in the horizontal direction, i.e., an infinite cyl-
inder of width m. For convenience we choose m to be a
multiple of 3. A typical tiling of the cylinder is shown in Fig.
1. It is easy to see that on a 3�� cylinder a horizontal trimer
can be followed by three vertical trimers, or by another hori-
zontal trimer in exactly three ways due to the periodic con-
ditions in the horizontal direction. The possible height con-
figurations are thus “000,” “111,” and “222,” and the m=3
transfer matrix is given by

T = �3 1 0

0 0 1

1 0 0
� . �26�

The quantum Hamiltonian corresponding to Eq. �25� has a
simpler form. We associate different weights wh and wv with
the horizontal and vertical trimers, with wh�wv. Then the
matrix T can be written as T0T1T2, with

T j = exp�zh

i=1

L

�i
j�i+1

j �i+2
j �

Here �i
j is defined as the operator that acts on the state

�h� �h=0, 1, 2� at site i as follows
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�i
j�h� = �h + 1��j,h .

Ignoring terms of order zh
2, we get the quantum Hamiltonian

as

H = 

i=1

L



j=0

2

�i
j�i+1

j �i+2
j

We can reduce the size of the transfer matrix by working
in a sector where the basis vectors are invariant under trans-
lations and reflections. Thus for 6�� cylinder, in the sector
where the irreducible word is empty, we have six basis vec-
tors, “000000,” “000111,” “111111,” “000222,” “111222,”
“222222,” and the other vectors are related to these by sym-
metry. The number of vectors needed for the transfer matrix
for a 3n�� cylinder is less than H3n by approximately a
factor of 6n. The resulting size of the transfer matrix for n
�8 is shown in Table I. By using the rotational and transla-
tional symmetries the reduction in the size of the transfer
matrix �still in the largest eigenvalue sector� can be judged
by comparing the second and third columns of Table I. The
above construction has enabled us to numerically diagonalize
Tm for m�24. It is less efficient than the sparse matrix ob-
tained by first construction but calculating the nonleading
eigenvalues is much easier this way. The corresponding cor-
relation lengths obtained from the second eigenvalue are
given in Table I.

We have also studied the case when m is not a multiple of
3. We recall that in the more familiar case of dimer tilings,
for even m, there is a one-dimensional height mapping, and
accordingly the continuum limit is that of a free boson with

c=1. For odd m, however, the height representation has non-
periodic boundary conditions, corresponding to a twist op-
erator, which leads to renormalization of the effective central
charge to ceff=−2 �31�. Returning to the trimer problem, we
see that taking m�mod3��0 also introduces twist operators
here, and would change the effective value of central charge.
The entropy per site Sm for m�mod3�=1 and 2 is listed in
Table II.

VI. NUMERICAL DIAGONALIZATION
OF THE TRANSFER MATRIX

Two-dimensional isotropic statistical systems with short-
range interactions at the critical point may exhibit invariance
under conformal transformations �27�. For a cylinder of
width m the finite-size corrections to the entropy per site Sm
are then of the form �28�

Sm = S� +
�c

6m2 + o�m−2� , �27�

where S� is the entropy per site in the thermodynamic limit
m→� �i.e., in the infinite plane� and c is the central charge
�conformal anomaly number� which determines the univer-
sality class of the problem �27�.

It is important that estimates of S� obtained by extrapo-
lating of data for different values of m �mod 3� have to be
consistent with each other. Estimates for S� and c obtained
by fitting pairs �Sm ,Sm+3� to Eq. �27� are shown in Table III.
Clearly, there is still some residual m dependence. In general,
in conformal field theory, one can also have a nonuniversal
1 /md correction to scaling term in Eq. �27�,

TABLE II. Entropy per site Sm for m�mod 3�=1 and 2.

m Sm m Sm

4 0.15682941 5 0.13541741

7 0.15773925 8 0.15031598

10 0.15789911 11 0.15438343

13 0.15806225 14 0.15603971

16 0.15817988 17 0.15687242

19 0.15825951 20 0.15734824

22 0.15831410 23 0.15764475

TABLE III. Estimates of entropy S� and the central charge c from fits using successive pairs of cylinder
widths m.

�m ,m+3� S� c �m ,m+3� S� c �m ,m+3� S� c

�3,6� 0.16434064 3.664674 �4,7� 0.16728470 −0.319490 �5,8� 0.16121121 −1.231563

�6,9� 0.15282642 4.456333 �7,10� 0.15818038 −0.041283 �8,11� 0.15986633 −1.167350

�9,12� 0.15566128 4.017785 �10,13� 0.15805270 −0.029334 �11,14� 0.15895040 −1.055394

�12,15� 0.15723777 3.584218 �13,16� 0.15829869 −0.076314 �14,17� 0.15871184 −1.000265

�15,18� 0.15786649 3.314046 �16,19� 0.15840838 −0.111719 �17,20� 0.15862738 −0.968649

�18,21� 0.15813526 3.147735 �19,22� 0.15845364 −0.133847 �20,23� 0.15858708 −0.946406

�21,24� 0.15826623 3.037424

�24,27� 0.15833844 2.957992
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Sm = S� +
�c

6m2 +
e

md , �28�

with 2�d�4. Here we adopt the following strategy: we
choose trial values of d and S� and obtain c and e from Eq.
�28� by sequential two-point fits. We find that for different m
values there is reasonable convergence for d=2.78±0.10 and
S�=0.158520±0.000015. In Table IV, we have listed the val-
ues of c and e obtained by two-term sequential fits for Sm
with m=0,1 and 2�mod 3�, using the fitting form Eq. �28�
�see Fig. 8�. The estimate for central charge is c=2.15±0.2.
Our estimate for the effective charge is ceff=−0.28±0.02 for
m=1�mod 3�, and ceff=−0.79±0.02 for m=2�mod 3�.

To inquire further into the critical behavior of trimer til-
ings, we can measure as well Sm

�i�= 1
m ln 
i�m�, where 
i�m� is

some subleading eigenvalue �i�1�. From conformal field
theory we expect to get corrections to follow the behavior
�29�

S� − Sm
�i� = �2	i −

c

6
� �

m2 + o�m−2� , �29�

where 	i=hi+ h̄i is the scaling dimension of the field corre-
sponding to the excited state described by 
i. Alternatively,

Eq. �29� may be stated in terms of the correlation length

�i =
1

ln�
1/
i�
�30�

of the excitation on the cylinder. This then reads

�i =
m

2�	i
, �31�

i.e., the correlation length is proportional to the cylinder
width.

We shall now give numerical evidence that Eq. �29� holds
true for a number of excitations �i.e., that the resulting finite-
size estimates for 	i converge as m→��. The trimer tilings
have a conformally invariant continuum limit �this is known
to be true for dimer tilings �30�.

The first kind of excitation i=2 in the largest eigenvalue
state sector �i.e., with the tilings grown on flat base� has
already been mentioned above. The corresponding correla-
tion length � is shown in Table I and plotted against m in Fig.
9. One finds a slope a= 1

2�	2
�0.23, corresponding to 	2

�0.69.
We have also studied the case of 3�m, but with tilings

grown from a nonplanar base. For simplicity we shall con-
sider only the two simplest sectors. The first one corresponds
to taking the initial state s1=1, and sk=0 for k=2, . . . ,m, in
the notation of Sec. V A. The associated exponent 	D is

TABLE IV. Estimates of c and e from two-point fits with e /md correction for d=2.774 and S�

=0.15852 for m�mod 3�=0, 1, and 2.

�m ,m+3� c e �m ,m+3� c e �m ,m+3� c e

�3,6� 4.48761407 −0.8859 �4,7� −0.11255023 0.0932 �5,8� −0.77423123 −0.5984

�6,9� 2.24822274 3.8068 �7,10� −0.26174392 0.4455 �8,11� −0.78830675 −0.5615

�9,12� 1.85242965 4.9419 �10,13� −0.27727375 0.4938 �11,14� −0.79454721 −0.5406

�12,15� 1.98106106 4.4810 �13,16� −0.27266918 0.4762 �14,17� −0.79175635 −0.5519

�15,18� 2.09438199 3.9984 �16,19� −0.27314362 0.4784 �17,20� −0.78906173 −0.5645

�18,21� 2.14525639 3.7489 �19,22� −0.27959514 0.5114 �20,23� −0.78903295 −0.5647

�21,24� 2.15734045 3.6821

�24,27� 2.14936018 3.7310

FIG. 8. Convergence of Sm with 1/m for m=0 �mod 3� ���, m
=1�mod 3� ���, m=2 �mod 3� ���. Continuous lines are fits from
Eq. �28� that converges to S�=0.15852 for d=2.774 and c and e as
listed in Table IV.

FIG. 9. �Color online� The correlation length � plotted against
the cylinder width m. The dotted line has the slope a=0.23.
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related to the rate of decay of the correlation function of
these monomer defects created by removing a single trimer
from a full covering, and then allowing the monomers to
diffuse. In the continuum limit, this function of two closeby
monomers separated at by third monomer at distance R is
expected to decay as R�−	D�. The second sector that we
shall consider is built from the initial state s1=1, s2=2, and
sk=0 for k=3, . . . ,m. The associated exponent 	L corre-
sponds to a pair of L-shaped defects �or closely bound com-
pounds of a dimer and a monomer�.

The estimates for 	D and 	L, obtained by adding a non-
universal 1 /md correction to Eq. �29�, are shown in Table V.
The dimer defect is the most relevant. In the continuum
limit, described by the two-dimensional height field, the ex-
ponents 	D and 	L would describe the decay of vortex-
vortex correlation functions. Their final values appear to be
of the order 	D=0.62±0.1 and 	L=0.82±0.1, but clearly the
words of caution on the slow convergence rate made above
when discussing the extrapolations of c are also applicable
here.

VII. CORRELATION FUNCTIONS

Given a trimer tiling, we assign to each lattice face a state

Then we can define the correlation function Gij�X ,Y� as
the probability that the face at X is in the state s= i and the
face at Y is in the state s= j �with 1� i , j�6�. In the ther-
modynamic limit, translational invariance implies that
Gij�X ,Y� is only a function of �X−Y�, and we write it as
Gij�R� with R=X−Y. However, all the correlation functions
are not independent. For instance, we can express the func-
tion G1j�R� in terms of the function G2j�R� as

G1j�R� = G2j�R + ex� . �32�

Using such equations, one can express the functions where i
or j take values 1 ,3 ,4, or 6 in terms of the functions
G22,G25, and G55. Again G22 or G55 are related by the sym-
metry in the horizontal and vertical direction. This only

leaves the functions G22 and G25. The conditional probability
that the site R is occupied horizontally, given that the origin
is in state 2, is written 1/2+ f�R�, so that the probability of
finding a vertical trimer at R is 1 /2− f�R�. We therefore have

G22�R� + G22�R + ex� + G22�R − ex� =
1

2
+ f�R� , �33�

G25�R� + G25�R + ey� + G25�R − ey� =
1

2
− f�R� . �34�

The above equations can be solved as linear inhomogeneous
equation in G22 and G25, and can be solved if f�R� is known
for all R. Thus we have only one unknown function f�R�.
Note that Eq. �33� is a difference equation in the x coordinate
�the y coordinate does not change�. The general solution
reads

G22�X,Y� = G22
0 �X,Y� + AYsin k0X + BYcos k0X , �35�

where k0=2� /3. G0
22�kx ,ky�, the fourier transform of

G̃0
22�X ,Y�, is given in terms of f̃�kx ,ky�,the fourier transform

of f�x ,y�, by

G̃0
22�kx,ky� = 1/�1 + 2coskx� f̃�kx,ky� .

This is well behaved for kx=k0 as f̃�k0 ,ky�=0 for all ky.
However, A and B must be zero, since the function G22�X ,Y�
is known to decay to a constant value 1/6 for large X. Thus
we can determine G22 and similarly G25 uniquely in terms of
f�R�.

VIII. MONTE CARLO SIMULATIONS

We have already introduced the local move of a block of
three vertical trimers replacing a block of three horizontal
trimers, or vice versa �see Fig. 4�. It has been shown that on
a square lattice the above move is ergodic for fixed boundary
conditions, i.e., all possible configurations can be reached
from any initial configuration �22�. Starting from any initial
configuration, say the standard configuration with all trimers
vertical, repeating the local operation at randomly chosen
sites generates a random trimer tiling.

In our Monte Carlo simulation, we start with a L�L lat-
tice fully packed with all trimers vertical �L=15,45,60,90�.
We impose periodic boundary conditions in both directions
such that we can access only the sector corresponding to the
null string. In one Monte Carlo step, we randomly select one
of the trimers, and check if can be flipped using the move of
Fig. 4. If yes, the flip is made, if no, the move is rejected, and
another site is selected. We discard the initial 105 steps. Once
the steady state is reached, we calculate the different corre-
lation functions in the steady state. We generated data for
over 105 Monte Carlo steps per site �MCS�.

To verify that our sampling produces unbiased results, we
have used it to compute the average height on each of the
nine different sublattices. These can also be computed ana-
lytically as follows. First, we define the absolute values of
the heights by setting the mean height �h�1=0 on sublattice
1. To compute �h�2 on sublattice 2, we first note that the

TABLE V. Entropy per site for tiling of nonplanar bases and
estimates of scaling dimensions with 1/md correction with d
=2.774 correction.

m Sm
�D�

	D Sm
�L�

	L

6 0.11284785 0.10663883

9 0.13675337 0.511103 0.13215832 0.634525

12 0.14560151 0.537242 0.14225002 0.684513

15 0.14988060 0.559121 0.14733680 0.725974

18 0.15229423 0.577165 0.15029069 0.761116

21 0.15379778 0.592680 0.15217226 0.791808
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height difference between site A, belonging to sublattice 1,
and site B, belonging to sublattice 2 �i.e., along the horizon-
tal edge joining 1 and 2 in Fig. 5�a�� can either be 1 if the
edge overlaps with the boundary of a horizontal or vertical
trimer or it can be −2 or 2�−�2 if it is one of the internal
edges of a vertical trimer. Hence the mean value of hB−hA is
�1/6��4+2�−�2−2�=−�2 /2, and since B was arbitrary
�h�2=−�2 /2. In a similar way, we find that

�h�1 = �h�5 = �h�9 = 0,

�h�2 = �h�6 = �h�7 = − �2/2,

�h�3 = �h�4 = �h�8 = �/2.

We have found these values of �h�2 and �h�3 to be in excel-
lent agreement with the numerical results.

To compute the height-height correlation function

H�x,y� = ��h�X + x,Y + y� − h�X,Y��2� �36�

we averaged the data over all positions �X ,Y�. The results are
shown in Fig. 10. For next nearest neighbors, height differ-
ence squared is 1 with probability 2/3, 4, and 7 each with
probability 1/6. Hence H�1,0�=H�0,1�=5/2 which has been
verified against the results of the simulations. For system
size L, H�x ,y� varies for large r as

H�x,y� � 	2ln��BL�2�sin2��x

L
� + sin2��y

L
�� + 1� , �37�

where 	2=0.69 and B=4. Since H�1,1��H�1,−1�, there
should also be a term depending on sin2���x−y� /L�, but this
should decay faster for large r, and we have not included it in
our fits. For large r=�x2+y2 it is easy to see that

H�r� � 2	2ln�r� �38�

or, equivalently, we have

c − C�r� � 	2ln�r� , �39�

where c is a constant and C�r�= �h�r�h�0��. From our esti-
mates of 	2=0.69 and a=0.23, from Eq. �31� it is seen that
	2=1/ �2�a� in agreement with the theory of conformal in-
variance.

In Fig. 11, we have plotted f�R ,�� for three different di-
rections �=0,� /4 ,� /2. We used a lattice of size 90�90,

and 105 MCS to get the data. In each case, we see that in
each direction, the function f�R ,�� decreases as a power, f
�R−x, with x�1.5. However, it is observed that the effective
exponent decreases with R and it is difficult to make mean-
ingful estimates due to large fluctuations in the data.

IX. CONCLUSIONS

We have studied the problem of tiling the plane with tri-
mers, and seen that it differs from the well-known dimer
tiling problem in a number of ways. First, the number of
sectors in the transfer matrix grows exponentially rather than
linearly with system size. Second, in the natural height map-
ping, the height variable is a two dimensional vector. If the
tiling problem is conformally invariant, one could therefore
reasonably expect it to have central charge c=2. To check
this hypothesis, and the inference on c, we have performed
extensive numerical transfer matrix calculations, on cylin-
ders of widths m�27 lattice spacings. The finite-size correc-
tions exhibit unexpectedly large correction-to-scaling terms,
making difficult the precise estimations of the critical expo-
nents. The results are, however, clearly in favor of conformal
invariance, and this is confirmed by the logarithmic form of
the height-height correlations as obtained by Monte Carlo
simulations. Our estimate c=2.15±0.2 is in marginal agree-
ment with the expectation c=2, but we cannot definitely rule
out a more complicated behavior. We have also measured
numerically a number of other exponents, in particular the
leading thermal scaling dimension and the scaling dimen-
sions related to pairs of geometrical defects �dimers and
L-shaped trimers�.
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APPENDIX: IRREDUCIBLE WORDS FOR A GENERAL
TILING PROBLEM

The working of Sec. IV can be adapted to a more general
tiling problem in which there are two types of straight tiles:

FIG. 10. Correlation function H�x ,y� for L=60.

FIG. 11. �f�R ,��� as functions of R for �=0 ���, �=� /4 ���,
�=� /2 ���. Straight lines have slope −1.5.
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horizontal p-mers �i.e., of size p�1 elementary squares� and
vertical q-mers �of size 1�q�. We suppose for the rest of this
appendix that p
3 and that q
2.

The words describing the sector decomposition of the
transfer matrix are then made of q different letters. An irre-
ducible word is one in which there is no substring of p con-
secutive equal letters. For 1�k� p−1 we then define Nk�n�
as the number of irreducible words of length n in which the
last k letters are all equal, but in which the last k+1 letters
are not all equal.

The initial conditions for the recursion relations are by
convention

Nk�p − 1� = 1 for 1 � k � p − 1. �A1�

This definition of Nk�n� does not yet take into account the
multiplicity due to the q-dependent number of ways that one
may chose the last p−1 letters. Denoting this multiplicity
Mk�p−1� one finds

Mk�p − 1� = qp−1−k�q − 1� for 1 � k � p − 2,

Mp−1�p − 1� = q . �A2�

Indeed, one needs to choose the first p−1−k letters arbi-
trarily and then complete the word with a single letter, cho-
sen different from the last one chosen arbitrarily. Note that
the sum of all multiplicities is 
k=1

p−1Mk�p−1�=qp−1 as ex-
pected.

For any n
 p−1 one then has the recursion relations

N1�n + 1� = �q − 1�

k=1

p−2

q1−kNk�n� + q3−pNp−1�n� ,

Nk�n + 1� = qNk−1�n� for 2 � k � p − 2,

Np−1�n + 1� = �q − 1�Np−2�n� . �A3�

This generalizes Eq. �6�. Equivalently, the recursion relations

can be written in matrix form by defining the vector N� �n�
with elements Nk�n�. One then has N� �n+1�=TN� �n�, where

T= �Tij� is a matrix with elements that can be read off from
Eq. �A3�. Iterating this, one finds

N� �n� = Tn+1−p1� = S · Dn+1−pS−11� , �A4�

where 1� = �1,1 , . . . ,1�t and S is the matrix of eigenvectors of
T that turns T into diagonal form through D=S−1 ·T ·S. Writ-
ing this out for given values of p and q will yield an explicit
solution generalizing Eq. �7�.

The total number tn of irreducible words of length n is
then obtained by taking into account the multiplicities

tn = 

k=1

p−1

Mk�p − 1�Nk�n� . �A5�

This generalizes Eq. �8�.
To obtain the total number of words that are irreducible to

the empty word, we first define Gl as the number of irreduc-
ible unfactorizable words with initial letter l=1, . . . ,q. Intro-
ducing also

G0 = 

n=0

� �

�=2

q

Gl�n

�A6�

the generalization of Eq. �10� reads

Gl = l�G0l�p−1. �A7�

The corresponding generating function g�x� then satisfies

g�x��1 − �q − 1�g�x��p−1 = xp. �A8�

The generating function for all words that are reducible to
the empty word is then

H = 

n=0

� �

l=1

q

Gl�n

=
1

1 − 

l=1

q

Gl

�A9�

and reads explicitly

H�x� =
1

1 − qg�x�
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