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A generic feature of systems with long-range interactions is the presence of quasistationary states with
non-Gaussian single particle velocity distributions. For the case of the Hamiltonian mean-field model, we
demonstrate that a maximum entropy principle applied to the associated Vlasov equation explains known
features of such states for a wide range of initial conditions. We are able to reproduce velocity distribution
functions with an analytic expression which is derived from the theory with no adjustable parameters. A normal
diffusion of angles is detected, which is consistent with Gaussian tails of velocity distributions. A dynamical
effect, two oscillating clusters surrounded by a halo, is also found and theoretically justified.
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Long-range interactions are common in nature �1�. Ex-
amples include: self-gravitating systems �2�, plasmas �3�, di-
polar magnets �4�, and wave-particle interactions �5�. Theo-
retical studies have shown that the thermodynamic properties
of these systems differ from those of systems with short-
range interactions. For instance, long-range interactions may
produce a negative microcanonical specific heat �7� and,
more generally, inequivalence of the canonical and microca-
nonical ensembles �8�. Also the dynamics of models with
long-range interactions has been studied, revealing a variety
of peculiar features such as the presence of breaking of er-
godicity in microcanonical dynamics �9,10� and the exis-
tence of quasistationary states whose relaxation time to equi-
librium diverges with system size �11,12�. A number of
paradigmatic toy models have been proposed that provide
the ideal ground for theoretical investigations. Among others,
the Hamiltonian mean-field �HMF� model �11� is nowadays
widely analyzed because it displays many features of the
long-range interactions while being simple to study analyti-
cally and numerically. Besides that, this model finds its
physical motivation as an approximate representation of one-
dimensional self-gravitating systems and constitutes an ex-
cellent entry to the self-consistent Colson-Bonifacio descrip-
tion of the single-pass free electron laser �13�. Within the
HMF scenario, non-Gaussian velocity distributions �14� and
signatures of anomalous diffusion �15� have been reported in
the literature. These discoveries have originated an intense
debate about the general validity of Boltzmann-Gibbs statis-
tical mechanics for systems with long-range interactions
�6,16�. Non-Gaussian distributions have been fitted using
Tsallis’ q exponentials �17�, i.e., algebraically decaying pro-
files predicted within the realm of nonextensive statistical
mechanics. Based on these findings, the generalized thermo-
statistic formulation pioneered by Tsallis was proposed as a
tool to describe the properties of quasistationary states that
arise in the presence of long-range forces �14�.

In this paper, we demonstrate that a maximum entropy
principle inspired by Lynden-Bell’s theory of “violent relax-

ation” for the Vlasov equation allows one to explain satisfac-
torily the numerical simulations performed for the HMF
model. Analytically obtained PDF’s are superimposed to the
numerics without adjusting any free parameter. In other
words, our results point to the fact that there is no need to
invoke generalized forms of Boltzmann-Gibbs statistical me-
chanics to describe the nonequilibrium properties of the
broad class of long-range interacting systems. The HMF
model describes the motion of N coupled rotators and is
characterized by the following Hamiltonian:

H =
1

2�
j=1

N

pj
2 +

1

2N
�
i,j=1

N

�1 − cos�� j − �i�� , �1�

where � j represents the orientation of the jth rotor and pj is
its conjugate momentum. To monitor the evolution of the
system, it is customary to introduce the magnetization, a glo-
bal order parameter defined as M = �M�= ��mi� /N, where mi
= �cos �i , sin �i� is the local magnetization vector. Starting
from out-of-equilibrium initial conditions, the system gets
trapped in quasistationary states �QSS�, whose lifetime di-
verges when increasing the number of particles N. Impor-
tantly, when performing the thermodynamic limit �N→��
before the infinite time limit, the system cannot relax toward
the Boltzmann-Gibbs equilibrium and remains permanently
confined in QSS. In this regime, the magnetization is lower
than predicted by the Boltzmann-Gibbs equilibrium and the
system apparently displays a number of intriguing anoma-
lies, e.g., non-Gaussian velocity distributions �14� and non-
standard diffusion in angle �15�. We shall here provide strong
evidence that the above phenomena can be successfully in-
terpreted in the framework of the statistical theory of the
Vlasov equation, a general approach originally introduced in
the astrophysical and two-dimensional �2D� Euler turbulence
contexts �18,19�.

First, let us recall that for mean-field Hamiltonians such
as �1�, it has been rigorously proven �20� that, in the N→�
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limit, the N-particle dynamics is described by the Vlasov
equation

�f

�t
+ p

�f

��
−

dV

d�

�f

�p
= 0, �2�

where f�� , p , t� is the microscopic one-particle distribution
function and

V����f� = 1 − Mx�f�cos��� − My�f�sin��� , �3�

Mx�f� = �
−�

� �
−�

�

f��,p,t�cos �d�dp , �4�

My�f� = �
−�

� �
�

�

f��,p,t�sin �d�dp . �5�

The specific energy h�f�=���p2 /2�f�� , p , t�d�dp− �Mx
2+My

2

−1� /2 and momentum P�f�=��pf�� , p , t�d�dp functionals
are conserved and given by their initial value.

We now turn to illustrate the maximum entropy method.
The basic idea is to coarse-grain the microscopic one-particle
distribution function f�� , p , t� into a given set of values. It is
then possible to associate an entropy to the coarse-grained

distribution f̄ , i.e., averaged over a box of finite size, and
statistical equilibrium can be determined by maximizing this
entropy while imposing the conservation of certain Vlasov
dynamical invariants. A detailed description of this proce-
dure can be found in Ref. �21� in the context of two-
dimensional Euler hydrodynamics.

In the following, we shall assume that the initial single
particle distribution takes only two distinct values, namely
f0=1/ �4���p�, if the angles �velocities� lie within an interval
centered around zero and of half-width �� ��p�, and is zero
otherwise. This choice corresponds to the so-called “water-
bag” distribution which is fully specified by energy h�f�=e,
momentum P�f�=�, and initial magnetization M0

= �Mx0 ,My0�. Vlasov time evolution can modify the shape of
the boundary of the water-bag, while conserving the area
inside it. Hence, the distribution remains two-level �0, f0� as
time progresses. Coarse-graining amounts to performing a
local average of f inside a given box and this procedure

results in f̄ . The mixing entropy per particle associated with

f̄ then reads

s� f̄� = −� dpd�	 f̄

f0
ln

f̄

f0
+ 
1 −

f̄

f0
�ln
1 −

f̄

f0
�� . �6�

The shape of this entropy comes from a simple combina-
torial analysis �7�. The maximum entropy principle is then
defined by the following constrained variational problem:

S�e,�� = max
f̄


s� f̄��h� f̄� = e;P� f̄� = �;� d�dpf̄ = 1� . �7�

The problem is solved by introducing three Lagrange multi-
pliers � / f0, � / f0, and 	 / f0 for energy, momentum, and nor-
malization. This leads to the following analytical form of the
distribution:

f̄��,p� = f0
e−��p2/2−My� f̄�sin �−Mx� f̄�cos ��−�p−	

1 + e−��p2/2−My� f̄�sin �−Mx� f̄�cos ��−�p−	
. �8�

This distribution differs from the Boltzmann-Gibbs one
because of the “fermionic” denominator which is originated
by the choice �6� of the entropy. Inserting expression �8� into
the energy, momentum, and normalization constraints and
using the definition of the magnetization, it can be straight-
forwardly shown that the momentum multiplier vanishes, �
=0. Moreover, defining x=e−	 and m= �cos � , sin ��, yields
the following system of implicit equations in the unknowns
�, x, Mx and My:

f0
x

��
� d�e�M·mF0�xe�M·m� = 1, �9�

f0
x

2�3/2 � d�e�M·mF2�xe�M·m� = e +
M2 − 1

2
,

f0
x

��
� d� cos �e�M·mF0�xe�M·m� = Mx,

f0
x

��
� d� sin �e�M·mF0�xe�M·m� = My ,

with F0�y�=�exp�−v2 /2� / �1+y exp�−v2 /2��dv, F2�y�
=�v2 exp�−v2 /2� / �1+y exp�−v2 /2��dv, where v is a dummy
variable. This system of equations is then solved using a
Newton-Raphson method and the integrals involved are also
performed numerically. For e=limN→� H /N=0.69, a value
often considered in the literature �24�, the maximum entropy
state has zero magnetization, for any initial magnetization
M0= �M0�
Mcrit=0.897. Hence, the QSS distribution does
not depend on the angles and the velocity distribution can be
simplified into

fQSS�p� = f0
e−�p2/2−	

1 + e−�p2/2−	
, �10�

with � and 	 numerically determined from system �9�. Ve-
locity profiles predicted by �10� are displayed in Fig. 1�a� for
different values of the initial magnetization. Gaussian tails
are always present, contrary to the power-law �q exponential�
fits reported in Ref. �14�. Note that the power-law decay was
already excluded on the basis of numerical simulations in
Ref. �22� for initial zero magnetization states. At M0=Mcrit
=0.897, a bifurcation occurs �see Fig. 1�b�� and the magne-
tization of the quasistationary state MQSS becomes nonzero,
which means that the equilibrium Lynden-Bell distribution
develops an inhomogeneity in angles. The details of this
phase transition are further discussed in Ref. �23�.

We validate our theoretical findings in the initial magne-
tization range M0� �0,Mcrit�, by performing numerical simu-
lations with N ranging from 103 to 107. Numerical velocity
distributions are compared in Fig. 2 with the analytical solu-
tion �10�. Although not a single free parameter is used, we
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find an excellent agreement in the tails of the distribution.
The discrepancies observed in the center of the distributions
are commented below.

To discuss the behavior of M in the QSS, one must dis-
tinguish different magnetization intervals. Consider first the
interval M0� �Ma ,Mcrit�, with Ma�0.5. Both Mx and My are
found to approach zero when the number of rotators is in-
creased, in agreement with the theory outlined above. Our
results correlate well with the scaling �M��N−1/6 reported in
Ref. �24�. Numerical simulations also confirm the presence
of a bifurcation at M0=Mcrit, and indicate that the distribu-
tion in angles is indeed inhomogeneous above this value.

Interestingly, when the initial magnetization lies instead in
the interval �0,Ma�, Mx and My display regular oscillations
in time, which appear only when a large enough number of
rotators �N�106� is simulated. It is important to emphasize
that the oscillations are centered around zero, i.e., the equi-
librium value predicted by our theory. This feature shares
striking similarities with the evolution of the laser intensity
in the Bonifacio-Colson model �13�.

We now discuss the presence of two symmetric bumps in
the velocity distributions obtained numerically �see Fig. 2�.
This is a consequence of a collective phenomenon which
leads to the formation of two clusters in the �� , p� plane.
Both clusters form early in time and then acquire constant
opposite velocities which are maintained during the follow-
ing time evolution. Hence, the clusters migrate away from
their initial spatial locations and enlarge their relative sepa-
ration. Consequently, the bumps displayed by the velocity
distributions are not transient features, but represent instead
an intrinsic peculiarity of QSS. When increasing the initial
magnetization M0, the relative velocity decreases and the
two clusters tend to merge. To the best of our knowledge,
this is a collective phenomenon which has not been previ-
ously detected. A simple dynamical argument can be elabo-
rated to shed light onto the process of formation of the clus-
ters. Consider the one-particle Hamiltonian 
�� , p�= p2

2
−Mx cos �−My sin � associated to �1�, where �� , p� are the
conjugate variables of the selected rotor. For short times,
���0+ p0t. One then finds Mx��sin �� sin �pt� / ����pt�
and My �0. Using this result, one ends up with


��,p� =
p2

2
+

sin ��

2���pt
�sin�� − �pt� + sin�� + �pt�� ,

�11�

which corresponds to the Hamiltonian of one particle inter-
acting with two waves of phase velocities ±�p. Depending
on the initial condition, the particles can be trapped in one of
the two resonances, the latter being therefore directly respon-
sible for the arising of two highly populated regions. More-
over, by including higher order corrections to the above cal-
culation one can show that the two resonances tend to
overlap when M0→1, in agreement with our numerical find-
ings.

Having derived an analytical expression for the velocity
distribution function �10�, which is fully validated by the
numerics, enables to take advantage of the predictions re-
cently obtained in Ref. �25� using Klimontovich’s approach.
In �25� it was demonstrated that the momentum autocorrela-
tion function can be deduced by knowing only the tails of the
velocity distributions. The latter being shown above to be
always Gaussian �see Eq. �10��, the momentum autocorrela-
tion �p�t�p�0��, is expected to decay as ln t / t. Here the brack-
ets represent the average over N rotators. The mean square
displacement of the angles �2�t�= ���i�t�−�i�0��2� is also a
quantity of interest. The scaling �2� t� defines the diffusion
behavior: �=1 corresponds to normal diffusion and �=2 to
free particle ballistic dynamics. Intermediate cases corre-
spond to the anomalous diffusion behavior. Here, for any
water-bag initial conditions, the behavior of the momentum

FIG. 1. �Color online� �a� Velocity profiles �10� predicted theo-
retically for different initial magnetizations �see legend, where we
have reported also the values of the parameter � and 	�. �b� final
magnetization as a function of M0. A phase transition is observed at
M0=0.897 for e=H /N=0.69.

FIG. 2. �Color online� Velocity distribution functions. Symbols
refer to numerical simulations, while dashed solid lines stand for
the theoretical profile �10�. Panels �a�, �b�, and �c� present the three
cases M0=0.3, M0=0.5, and M0=0.7 in lin-log scale, while panel
�d� shows the case M0=0.3 in lin-lin scale. The numerical curves
are computed from one single realization with N=107 at time
t=100. Here e=H /N=0.69.
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autocorrelation function implies �25� that a weakly anoma-
lous diffusion has to be expected, with a diffusion exponent
�=1 and logarithmic corrections. On the numerical simula-
tions side, it is claimed in Ref. �24� that the QSSs of HMF
display anomalous diffusion with an exponent � in the range
1.4–1.5 for 0.4�M0�1. These results are contradicted by
more recent papers �26�, where normal diffusion behavior is
found. To provide further insight, we have monitored the
time evolution of �2 by employing a larger number of par-
ticles �N=105� than in previous investigations. As clearly
demonstrated by inspection of Fig. 3, a large value of the
exponent � is clearly excluded. On the contrary, the almost
normal diffusion found is in complete agreement with the
theoretical scenario discussed above.

In this paper, by drawing analogies with the statistical
theory of violent relaxation in astrophysics and 2D Euler
turbulence, we have analytically derived known properties of
the quasistationary states of the HMF model. In particular:
�i� velocity probability distributions in all quasistationary
states investigated are accurately described by Lynden-Bell
statistics �10�; �ii� Gaussian tails of such maximum entropy
states ensure an algebraic decay of momentum autocorrela-
tion functions and, hence, a normal diffusion of the angles.
Our theoretical approach is fully predictive, contrary to re-
sults obtained using nonextensive thermostatistics, which
consist in parametric fits that are not justified from first prin-
ciples. Despite this success of violent relaxation theory, we
do not expect it to be so precise in all long-range systems:
due to incomplete relaxation of the Vlasov equation �18,19�,
the QSS should deviate somewhat from Lynden-Bell’s statis-
tical prediction. Besides that, we have discovered that a
double cluster spontaneously forms for all magnetizations.
This collective effect was not known before. Our maximum

entropy principle is unable to capture this phenomenon, for
which we have developed an analytical approach based on
analogies with similar effects encountered in plasma-wave
Hamiltonian dynamics. More refined maximum entropy
schemes, accounting for the conservation of additional in-
variants besides the mass, are expected to give a full descrip-
tion of these phenomena and represent a challenge for future
investigations.
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FIG. 3. �Color online� The exponent �=d log��2� /d log�t� is
plotted as a function of the rescaled time �= t /N. Starting from the
initial ballistic value 2, it converges to the normal diffusion expo-
nent 1. Simulations refer to M0=0.3, and M0=0.9. Here N=105 and
e=H /N=0.69.
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