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We present a further development of an inhomogeneous scaled particle theory �I-SPT� for hard particle fluids
confined by hard walls, such that the reversible work of cavity insertion can now be determined for all cavities
that intersect one of the walls. Building upon a previous version of I-SPT �D. W. Siderius and D. S. Corti, Phys.

Rev. E, 71, 036141 �2005��, a new function, F̄, is introduced, which is proportional to the net force on the
surface of the cavity in the direction normal to the wall. The reversible work of cavity insertion is then
determined by an integral over the force required to “push” the cavity of fixed size into the fluid starting from

a position behind the wall. An exact relation for F̄ at certain cavity locations and radii is derived and an

accurate interpolation scheme is proposed for the computation of F̄ beyond these exact limits. The chosen
interpolation incorporates a large number of exact and nearly exact conditions, several of which follow from

the surface thermodynamics of macroscopic cavities. Work predictions using F̄ are highly accurate as com-
pared to simulation results at low to moderate fluid densities. Good agreement still persists at densities near the

hard-sphere freezing transition. The interpolation of F̄ is also used to estimate the depletion force between a
hard sphere solute and the wall. The I-SPT entropic force predictions are in good agreement with simulation
results presented in the literature. Due to its reliance upon physical and geometric arguments, I-SPT provides
important insights into the origin of various depletion effects such as how the interplay between geometry and
the varying local density at the cavity surface gives rise to the appearance of multiple attractive regions at
intermediate solute sizes and a universal repulsive region, both within solute to wall separations that are less
than the diameter of a solvent particle. Finally, all of the scaled particle theory-based methods presented here
can, in principle, be extended to describe hard particle fluids confined by nonplanar surfaces, thereby providing
estimates of the depletion force between a solute and a variety of surfaces of interest.
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I. INTRODUCTION

Recently, the present authors developed an initial exten-
sion of scaled particle theory �SPT� to inhomogeneous hard
particle fluids �1,2�, where the nonuniform fluid density that
develops near a hard, structureless wall is explicitly taken
into account. New physical as well as geometric insights
were generated into the structural changes brought about by
the insertion of cavities near a wall. While successful, this
version of inhomogeneous SPT, or I-SPT, was limited to
those cases for which the cavity exposed to the nonuniform
fluid near the wall has a volume equal to or less than that of
a hemisphere. To extend the range of I-SPT, at least with
respect to the types of systems that it can describe, one de-
sires to consider cavities located at any distance from the
wall, i.e., cavities beyond the hemisphere. Although work
toward this goal is still in progress, we present here a further
development of I-SPT in which the force on a cavity that still
intersects the wall �actually the exclusion plane it generates
for the hard-sphere fluid� is determined. Rather than growing
a cavity radially at a given location, we instead consider the
forces needed to “push” a cavity into the fluid when starting
from a position behind the wall. This new route is chosen
since it allows for the use of additional conditions within
I-SPT and avoids some difficulties that arise if one were to

focus on the growth of cavities. While our extension of
I-SPT is similar to both bulk SPT �3� and the previous ver-
sion of I-SPT, some key differences arise, leading to new
conclusions and interpretations of I-SPT quantities.

Due to the equivalence of cavities and hard-sphere sol-
utes, our I-SPT relations may also be used to predict the
depletion, or entropic, force between a hard-sphere solute
and a hard wall �for a particularly important range of solute-
wall separations�. Depletion forces are effective forces that
arise in mixtures of colloids due to asymmetries in the local
ordering of each colloidal species, much like a potential of
mean force in a pure fluid �4–8�. Within various colloidal
dispersions of interest, the interactions between colloids are
often dominated by short-ranged repulsive forces, and as
such are similar in nature to a dispersion of hard spheres. An
SPT-based approach is therefore a natural starting point for
the analysis of such systems. Since SPT has already yielded
a large number of insights into the thermophysical properties
of hard-sphere fluids, such as the importance of geometry in
controlling hard-particle behavior �9–12�, one suspects that
both SPT and I-SPT should likewise provide useful informa-
tion about the physical and geometric aspects of depletion
interactions �4,5�.

The development of accurate expressions for entropic
forces are also of scientific and technical interest, given the
importance of entropic interactions in governing the behavior
of hard-sphere-like fluids �6,13–16� as well as the potential
of depletion forces to control the self-assembly of colloidal
systems �6,17�. SPT has previously been applied by Corti*Electronic address: dscorti@ecn.purdue.edu
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and Reiss �18� to compute the depletion force between a hard
colloid and a hard wall. Utilizing the surface thermodynam-
ics of macroscopic cavities, these authors obtained relatively
simple expressions for both the entropic potential and the
entropic force. While reasonably accurate at low solvent
packing fractions, their approach proved to be lacking at
higher densities since it failed to account for the nonuniform
density near the hard wall. Within the framework of surface
thermodynamics, the free energy cost of changing the perim-
eter of the “three-phase” contact line �i.e., the intersection of
the hard-sphere solvent, wall and the cavity�, or line tension
�a linear analogue of the surface tension�, was not included
in the analysis. �The neglecting of the line tension was not an
oversight, however, since an expression for the line tension
of the “three-phase” interface is currently not known. In con-
trast, the surface tension of a cavity within a hard-particle
fluid can be determined using SPT quantities �19�.� Develop-
ing an extension of SPT that is tailored specifically for hard-
particle fluids confined between hard walls is one of the
goals of the current paper. By explicitly including the effects
of the nonuniform density into SPT, knowledge of the line
tension is not required since it will already be accounted for
in the resulting SPT relations.

Although I-SPT is well suited to studying depletion inter-
actions, our focus does not, however, reside entirely with the
estimation of entropic forces. Further development of I-SPT
also serves to generate new insights into the behavior of
confined fluids, just as traditional SPT was able to do for
uniform fluids. And when an SPT-based expression for the
line tension of hard-particle fluids is finally generated, I-SPT
will provide the various relations needed to estimate this
important quantity.

The paper is outlined as follows. SPT and I-SPT are
briefly reviewed in Sec. II. In Sec. III, the extension of I-SPT
is presented, where a function describing the net force on the
cavity surface is introduced. Exact relations for this I-SPT
function are derived and the interpolation scheme utilized to
represent this function beyond the exact limits is discussed.
The simulation methods used to generate data for compari-
son to I-SPT predictions are outlined in Sec. IV. The appli-
cation of the I-SPT relations to predicting depletion forces is
presented in Sec. VI. In Sec. VII, some interesting geometric
features of the new version of I-SPT are discussed. Conclu-
sions are contained within Sec. VIII. Two appendixes also
introduce and verify several conditions that are used within
our proposed interpolation scheme.

II. ESSENTIAL FEATURES OF SPT

Before deriving several additional inhomogeneous SPT
expressions, we briefly review some of the relations of bulk
�homogeneous� SPT �3� as well as provide an overview of
the already existing version of I-SPT �1,2�. More complete
and detailed reviews of both forms of SPT may be found in
Refs. �1,20–22�. To begin, we note that a basic concept of
any version of SPT is the equivalence of hard-sphere par-
ticles and cavities. Within the hard-sphere fluid, a cavity is
defined as a spherical region devoid of solvent hard-sphere
centers. Consequently, a hard sphere solute of diameter �s in

a fluid of solvent hard spheres of diameter � is equivalent to
and concentric with a cavity of radius �, where �= ��s

+�� /2 �3�. A cavity becomes equivalent to another solvent
hard sphere when �=�.

The central function of SPT for isotropic, unconfined
hard-sphere fluids is G���, where �G��� is defined as the
local density of hard-sphere centers at the surface of a cavity
of radius � and � is the density of hard-sphere centers far
from the cavity �3�. Given that �G���kT is the local stress
normal to the cavity surface �where T is the temperature and
k is Boltzmann’s constant�, G��� is related to W���, the re-
versible work of adding a cavity of radius of at least �, by �3�

W��� = 4��kT�
0

�

G�r�r2dr . �1�

For ��� /2, G��� is known exactly. Beyond this limit, G���
may be well represented by one or more interpolation func-
tions between �=� /2 and �→�, each of which may utilize
a number of exact conditions on G���. If a single interpola-
tion function is chosen, its usual form is that of a Laurent
series in �−1, the number of terms and interpolation coeffi-
cients being determined by the number of conditions one
imposes on G��� �3,20,23�. Solving for these interpolation
coefficients yields, among other quantities, an equation of
state of the hard-sphere fluid, where we note that G���
= p /�kT �in which p is the pressure of the hard-sphere fluid�.

When a hard-sphere fluid is confined by hard, planar
walls, a cavity can now intersect either wall and, as illus-
trated in Fig. 1, may be less than full spheres when overlap
occurs �1�. The inhomogeneities arising from the confining
walls requires one to introduce a modified version of the SPT
function G��� since the local density of hard-sphere centers

FIG. 1. Coordinate system used to describe cavities near a hard
wall. The cavity �represented by the long-dashed line� of radius � is
centered at z=h. The z axis originates a distance � /2 from the hard
wall, where � is the diameter of a hard-sphere solvent particle �rep-
resented by the solid circles; the centers of the hard-sphere solvent
particles cannot access the region for which z�0�. 	 measures the
angle originating from a line perpendicular to hard wall and colin-
ear with the cavity center. 
 describes the rotation around this line.
Since the fluid is isotropic in the x and y directions, the system is
symmetric about 
.
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at the cavity surface is no longer spherically symmetric and
also depends on the cavity’s location �with respect to the
walls�. Here, the inhomogeneous SPT function G�� ,	 ,h� is
defined such that �G�� ,	 ,h� is the local density of hard-
sphere centers for the three identifying coordinates �, 	, and
h �1�. As shown in Fig. 1, � is the cavity radius, 	 identifies
the angular position, and h locates the cavity relative to the
hard wall �only cases in which h�0 were considered in Ref.
�1�, ensuring that a cavity always overlapped the z=0 plane
for any ��. For convenience, G�� ,	 ,h� is averaged over 	 to

yield the function Ḡ�� ,h�, which proves to be a more useful

quantity. For example, Ḡ�� ,h� is known exactly in terms of
the hard-sphere density profile, ��z�, for ���h2+ �� /2�2

�where z is the distance normal to the wall, see Fig. 1� and
various conditions restrict its form for larger values of � �1�.
Similar to G���, Ḡ�� ,h� is interpolated from �
=�h2+ �� /2�2 to �→� by a Laurent series, but solving for
the interpolation coefficients does not yield an equation of
state in this case. In contrast, I-SPT requires an equation of
state as input �which can be obtained, if desired, from bulk
SPT �3��. A special case of I-SPT occurs when the cavity is a
perfect hemisphere, or h=0. Another exact condition on

Ḡ�� ,h� is then allowed �1�, as compared to cavities in which

h�0. For simplicity, the I-SPT function Ḡ�� ,h� is rewritten

as Ḡ��� when h=0. Finally, analogous to bulk SPT, the re-
versible work of adding a cavity at the position h�0 is given
by �1�

W��,h� = 2��kT�
0

�

Ḡ�r,h��r2 + rh�dr . �2�

III. I-SPT: FORCE EXERTED ON A CAVITY THAT
INTERSECTS A HARD WALL

The previous version of I-SPT only considered cavities
located at h�0. To enable I-SPT to describe cavities inter-
secting a hard wall for h�0, a fundamentally different ap-
proach from the two earlier forms of SPT �1,3� is needed.
Within each of these previous SPT versions, small cavities
are first inserted at a particular location and then grown ra-
dially to the desired final size. Instead, our present method
first begins with a cavity of desired size located at some
distance behind the hard wall, which is then inserted into the
fluid by “pushing” it at constant radius through the z=0
plane �Fig. 1�. The reversible work needed to push the center
of the cavity to a new location is related to an integral of the
net force exerted on the cavity by the solvent. In what fol-
lows, we turn to the framework of I-SPT to derive a general
expression for the net force on the surface of the cavity in
terms of the I-SPT function G�� ,	 ,h�. We then determine an
exact relation for this force under certain conditions and dis-
cuss the interpolation function needed, along with various
conditions constraining its form, to describe the net force
beyond the exact region.

Begin by considering a pure component hard-sphere fluid
located near a hard, structureless wall. Our chosen coordinate

system is again defined in Fig. 1, where the z axis originates
a distance of � /2 from the actual hard wall. Hence, the den-
sity of hard-sphere centers for z�0 is uniformly zero. For
z�0, the density profile is given by ��z�, beginning at ��0�
= p /kT and eventually oscillating and dampening to the inte-
rior bulk density �. For a given cavity of radius � with a
center located at z=h, we only consider configurations for
which −��h��, ensuring that the cavity always intersects
the z=0 plane. �No work is required to translate the cavity
from a distance h�−� to h=−�.�

Now, for any point on the surface of the cavity, the local
stress normal to the cavity surface is again given by
�G�� ,	 ,h�kT. The force exerted in the z direction on a dif-
ferential area element is this local stress multiplied by both
�2 sin 	d	d
 and �−cos 	�, the former being the differential
area while the latter is the projection of the local stress in the
negative z direction. Similar to other relations that have ap-
peared before �9–11,24�, the total force, F�� ,h�, on the cav-
ity in the negative z direction follows from an integral over
the cavity surface and is equal to

F��,h� = − �
0

2� �
0

cos−1�−h/��
�G��,	,h�kT�2 sin 	 cos 	d	d


= − 2��kT�2�
0

cos−1�−h/��
G��,	,h�sin 	 cos 	d	 . �3�

In Eq. �3�, the upper bound on 	 is cos−1�−h /��, the 	 angle
at which the cavity intersects the z=0 plane. In terms of
F�� ,h�, the reversible work of moving the center of a cavity
of constant radius � starting from z=−� to a final position h
can now be written as

W��,h� = − �
−�

h

F��,z�dz

= 2��kT�2�
−�

h

dz�
0

cos−1�−z/��
G��,	,z�sin 	 cos 	d	 .

�4�

As noted above, the lower bound on the z integral in Eq. �4�
is z=−� since a cavity centered at this position has not pen-
etrated the fluid and, as such, the work of placing a cavity at
that position is zero.

The expressions for F and W are not solvable without
general knowledge of G�� ,	 ,h�. At present, the form of
G�� ,	 ,h� is known only for limited situations �2�. As a sim-
plification, we introduce the function

F̄��,h� = �
0

cos−1�−h/��
G��,	,h�sin 	 cos 	d	 , �5�

which allows Eqs. �3� and �4� to be written very compactly
as

F��,h� = − 2��kT�2F̄��,h� �6�

and
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W��,h� = 2��kT�2�
−�

h

F̄��,z�dz . �7�

A closer examination of Eq. �5� shows that F̄ is proportional
to the net force on the cavity surface due to collisions with

the surrounding hard-sphere solvent particles. �Note that F̄ is
not an average pressure on the cavity surface, but simply a
quantity proportional to the net force on the cavity surface.�
F̄�0 indicates that the net force is directed toward the wall,
such that �positive� work must be performed to further push
the cavity into the fluid or the cavity “feels” an attractive

force in the negative z direction. F̄�0 corresponds to a net
force that is directed away from the wall, such that �negative�
work is recovered upon further movement of the cavity or
the cavity feels a repulsive force directed in the positive z

direction. F̄ can have different signs because collisions at a
particular 	 are weighted by sin 	 cos 	. For 	�� /2, the

contribution of G�� ,	 ,h� to F̄ is always positive. For 	

�� /2, the contributions to F̄ become negative. The sign of

F̄ therefore depends on which set of contributions is larger.

Initially, F̄ begins at a value of zero, F̄�� ,−��=0, and then
immediately becomes positive since 	 never exceeds � /2 for
h�0. When 	 can exceed � /2 for h�0, some contributions

to F̄�� ,h� become negative. We expect that these negative
contributions will become larger in magnitude than the 	

�� /2 positive contributions, thereby yielding F̄�� ,h��0,
since both attractive and repulsive depletion forces between a
hard-sphere colloid and a flat surface have been reported,
e.g., Ref. �24�. The local density enhancement that is known
to develop around 	=cos−1�−h /�� also reinforces this pre-
diction, in which the density of hard-sphere centers for 	
�� /2 was shown to eventually outweigh the density of
spheres contacting the surface for 	�� /2 �2�.

Similar to G��� and Ḡ�� ,h�, F̄ is related to the probability
of inserting a cavity by use of the general result of fluctua-
tion theory �25�,

W��,h� = − kT ln P0��,h� , �8�

where P0�� ,h� is the probability of randomly observing the
desired cavity configuration. Substituting the above into Eq.
�6� and differentiating with respect to h yields

F̄��,h� =
− 1

2���2

� ln P0��,h�
�h

. �9�

For all cavity sizes, P0 may be expressed in terms of second-
order, third-order, etc., correlation functions �3�. Since these
functions are not known in general, this expression for P0 is
of limited applicability. Yet, for certain values of h for a
given �, P0 reduces to a form that yields an exact and useful

relation for F̄�� ,h�.

A. Exact expression for F̄„� ,h…

For cavities that intersect the plane at z=0 and may con-
tain at most one hard-sphere center, P0 is rigorously given by
�1�

P0��,h� = 1 − ��
0

h+�

��z���2 − �z − h�2�dz , �10�

where ��z� is the aforementioned density of hard-sphere cen-
ters at z. By integrating the density profile over a body of
revolution corresponding to that portion of the cavity beyond
z=0, the second term on the right-hand side of Eq. �10�
determines the average number of hard-sphere centers found
within the cavity. When this number is subtracted from unity,
given that the cavity can contain at most one particle center,
the result is simply P0�� ,h�. In Ref. �1�, Eq. �10� was shown
to be valid for cavities whose largest chord spanned a dis-
tance equal to � �again ensuring that the cavity could contain
at most one hard-sphere center�. Presently, this condition is
satisfied by one of two different criteria:

�1� For ��� /2 and all cavity centers for which −��h
��.

�2� For ��� /2 and all cavity centers for which −��h
�−��2− �� /2�2.

Entering Eq. �10� into Eq. �9� results in the following exact

expression for F̄�� ,h�:

F̄��,h� =

�
0

h+�

��z��z − h�dz

��2�1 − ��
0

h+�

��z���2 − �z − h�2�dz� , �11�

for the criteria listed above. The above relation confirms that

F̄�� ,−��=0, since the force on a cavity with no exposed
surface area should vanish. Taking the derivative of Eq. �11�
with respect to h also shows that the slope of F̄�� ,h� at h=
−� is positive. This result is consistent with the arguments
presented in the preceding section, where we noted that

F̄�� ,h� should be positive for h�0.

Another thermodynamic consistency check of F̄�� ,h� is
available for the limit of h→−�. Since the fluid exerts a
stress on the z=0 plane equal to the bulk fluid pressure when
the cavity is absent, the limiting stress on the cavity surface
in the z direction, just as the cavity is being pushed into the
fluid, should also be identical to the bulk fluid pressure
�9–11�. Hence, the force in the �negative� z direction divided
by the surface area projected in the z direction must equal p
as the cavity vanishes beyond the z=0 plane, or

lim
h→−�

− F��,h�
Ap��,h�

= p , �12�

where Ap�� ,h�=���2−h2� is the surface area of the cavity

projected onto the z=0 plane. When rewritten using F̄�� ,h�
and Eq. �6�, the expected limit becomes

lim
h→−�

� 2�2

�2 − h2 F̄��,h�� =
p

�kT
. �13�

Upon entering Eq. �11� into the above, one finds that
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lim
h→−�

� 2�2

�2 − h2 F̄��,h�� =
��0�

�
, �14�

which is indeed p /�kT since ��0�= p /kT.

Since the form of F̄�� ,h� within the exact domain has

some bearing on how F̄�� ,h� is later approximated beyond

this limit, we first present F̄�� ,h� and W�� ,h� for ��� /2
using density profiles, ��z�, obtained from MC simulations.

Figure 2 shows F̄�� ,h� calculated from Eq. �11� for �
=� /2 and bulk densities of ��3=0.3, 0.5, and 0.6 �a cavity
of radius �=� /2 is equivalent to a point particle�. For this
cavity radius, overlap with the z=0 plane occurs for −� /2

�h�� /2. As expected, F̄ begins at zero and is positive for
all h�0, corresponding to 	�� /2. Also as anticipated, the
net force on the cavity vanishes at a sufficiently large h�0

�when 	 may exceed � /2�, with F̄�0 at larger values of h.
This negative force, physically interpreted as the cavity be-
ing “pulled” further into the fluid or “pushed” away from the
wall, confirms that a repulsive depletion force does develop

between a point particle and a flat wall. �Note that F̄�� ,h� is
proportional to F�� ,h�, but with an opposite sign, where
F�� ,h� is the total force exerted on the cavity in the negative
z direction.� Interestingly, a nontrivial repulsive barrier de-
velops that could prevent a point particle from being “depos-
ited” at the hard wall. Figure 2 also reveals that the value of
h�0 at which the force is zero decreases with density, while

the maximum value of F̄ always appears for h�0, i.e., be-
fore particle centers are able to exert a force on the cavity in
the positive z direction. The latter is a somewhat unexpected
result, since the total force on the cavity was presumed to
decrease only after h�0, when particles are able to access

locations for 	�� /2 and counteract the force exerted by
particles situated at 	�� /2. An explanation of the location

of the maximum in F̄ is postponed until Sec. VII. We also

note that similar F̄ profiles are observed for ��� /2.
Finally, in Fig. 3, we present W�� ,h� obtained from each

of the F̄�� ,h� profiles displayed in Fig. 2, along with the
corresponding work predictions obtained by molecular simu-
lation �see Sec. IV for details�. As expected, excellent agree-
ment between the theoretical results and the simulation pre-
dictions for the entire h domain is obtained �differences in

work values did not exceed 2
10−3kT�. Since F̄ changes
sign, the slope of W also changes sign, in which the location
of the maximum of W corresponds, of course, to the value of

h at which F̄=0.

B. Interpolation scheme for F̄„� ,h…

When the cavity is pushed into the fluid such that its
largest chord exceeds � �which occurs only for ��� /2�, Eq.
�11� is no longer valid. Beyond this point, as in other ver-

sions of SPT, we approximate F̄�� ,h� with an interpolation
function that incorporates exact information generated from
both thermodynamic and geometric arguments. In what fol-

lows, we first identify various conditions on F̄ and then pro-
pose interpolation polynomials that incorporate this informa-
tion.

1. Geometric conditions

A number of conditions on F̄ are dictated by geometry.
Although Eq. �11� is no longer valid for h�−��2− �� /2�2

when ��� /2, we show in Appendix A that F̄�� ,h� and its
first derivative with respect to h are continuous at h=

−��2− �� /2�2, providing two exact conditions on F̄ �analo-

FIG. 2. F̄�� ,h� plotted for �=� /2 and ��3=0.3, 0.5, and 0.6.

Positive values of F̄�� ,h� indicate that the force exerted by the
solvent on the cavity is directed toward the wall �attraction�, nega-
tive values indicate that the cavity is pulled away from the wall
�repulsion�. Note that each maximum occurs for h�0, i.e., before
the cavity is hemispherical at h=0. Beyond h=� /2, the cavity no
longer intersects the z=0 plane.

FIG. 3. Reversible work of cavity insertion, W�� ,h�, calculated
for �=� /2 and ��3=0.3, 0.5, and 0.6. The solid lines are the I-SPT

predictions generated by integrating F̄�� ,h� in Fig. 2. The solid
circles represent Monte Carlo simulation results.
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gous to the two continuity conditions on G��� and Ḡ�� ,h�
�1��. We also demonstrate in Appendix A that �2F̄ /�h2→
−� as h→−��2− �� /2�2 from above. Enforcement of this
additional exact condition does not appear to be necessary,
and so is not included in the interpolation scheme discussed
below.

A third condition is available from our previous version of
I-SPT for hemispherical cavities �1�. Because the reversible
work of cavity formation is path independent, the work of
“growing” a hemispherical cavity of radius � at h=0 must
equal the work of “pushing” a cavity at fixed radius � to h
=0. Hence, using Eqs. �2� and �7�, we require that

�2�
−�

0

F̄��,z�dz = �
0

�

Ḡ�r�r2dr . �15�

The above is a formally exact integral condition on F̄. Ḡ���
is not known exactly beyond �=� /2, however, so the appli-
cation of Eq. �15� relies upon the accuracy of the chosen

interpolation of Ḡ���. Reference �1� showed that the work

predictions obtained by representing Ḡ��� via a simple inter-
polation function were very accurate up to moderate bulk
densities, but deviated somewhat from simulation results at
high densities ���3�0.9�. Appendix A describes a needed

modification to the interpolation scheme for Ḡ��� that im-
proves the predictions of the hemispherical work function at
high density. With this interpolation, we may consider Eq.
�15� to be, in practice, nearly exact for all densities. �Similar

to F̄, we show in Appendix A that �2Ḡ /��2 is divergent for
�→� /2 from above, a result speculated upon, but not

proven, in Ref. �1�. Unlike F̄, however, incorporating the

divergence of �2Ḡ /��2 into an interpolation scheme is cru-
cial for improving the predictions of the work of growing
hemispherical cavities at high densities.�

2. Thermodynamic conditions

The above geometric conditions constrain the form of F̄

only for h�0. In light of Fig. 2, where F̄ is shown to be a
nonmonotonic function of h, conditions for h�0 are re-

quired if F̄ is to be predicted with sufficient accuracy up to
h=�. Preliminary investigations revealed that information

about F̄ is particularly needed for �−��h��, a range of h

spanning both positive and negative values of F̄. Note that
h=�−� corresponds to the distance at which the surface of
the equivalent solute contacts the hard wall �located at z=
−� /2� and represents a physically relevant configuration,
while h=� corresponds to the distance at which the cavity no
longer intersects the z=0 plane. Most importantly, the inter-

polation of F̄ required a condition that located the value of

h�0 where F̄ vanishes, or F̄�� ,h�=0.

Although F̄ is not known in general for h�0, all values

of F̄ between �−��h�� can be determined from the den-
sity profile, ��z�, for �=�, when the cavity is equivalent to
another hard-sphere solvent particle. Since the potential-
distribution theory of Widom requires that �26,27�

��z�
�

= exp�−
�W��,h = z� − W��,h → ���

kT
� , �16�

we find with Eq. �7� that

F̄��,h� = −
1

2���2	d ln ��z�
dz

	
z=h

. �17�

In addition, information about F̄ can be obtained in the limit
of �→�. For example, if we introduce the following three
functions:

fc1��� = �F̄��,� − �� , �18�

fc2��� = � − h0��� , �19�

where h0��� is defined such that F̄�� ,h0����=0, and

fc3��� = �F̄��,�� , �20�

we show in Appendix B that each of the above approaches an
asymptotic value given by

fc1��� =
p� + 2��

�kT
, �21�

fc2��� =
− 2��

p
, �22�

fc3��� =
2��

�kT
, �23�

in which �� is the planar surface �or more properly the
boundary� tension of the hard-sphere fluid �3�. Since ���0,
fc3��� is negative, indicating a net repulsive force on a cavity
centered at h=� in the limit of infinite radius. The sign of
fc1��� is not as readily apparent. Using the pressure p from
the Carnahan-Starling equation of state �CS-EOS��28� and an
expression for �� that is consistent with the CS-EOS �see
Refs. �22,29��, we find that fc1����0 for all fluid densities
below the hard-sphere freezing transition ���3�0.943
�30–32��. Hence, the force on a cavity or equivalent solute
centered at h=�−� is always attractive in the infinite limit.
The opposite signs of fc1��� and fc3��� are also consistent
with the positive values obtained for fc2���. Again using p
and �� for the CS-EOS, we find that 0� fc2����� for all
densities below the freezing transition, implying that �−�
�h0�����. Thus, in the limit as the solute becomes of mac-
roscopic size, the force on the solute vanishes �i.e., the deple-
tion force is zero� for a surface to wall separation that is
always less than � �which follows from the force being at-
tractive at h=�−� and repulsive at h=��. Interestingly,
−2�� / p emerges as a relevant length scale for this inhomo-
geneous system.

The values of fc1, fc2 and fc3 can also be determined for
�=� via Eq. �17�, where, for example, fc2 corresponds to the
first minimum of ��z�. Except for a specific range of small
cavity radii, these functions are not known at other �finite�
values of �. To generate information in between these known
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radii, thereby obtaining needed conditions on F̄ at any cho-
sen �, we represent each fci by the following asymptotic
function:

fci��� = �0i��� +
�1i���

�
+

�2i���
�2 +

�3i���
�3 . �24�

The fitting coefficients � ji��� are determined from knowl-
edge of fci at �=� and �→�, and from the exact value of
the function and its first derivative at either �=5� /8 for fc1
or �=� /2 for both fc2 and fc3 �see Appendix B�. As shown in
Appendix B, simulation results for fci are in very good agree-
ment with Eq. �24�. While fc1 and fc2 always increase toward
their asymptotic values, fc3 exhibits interesting behavior at
high density. For ��3�0.8, fc3 does not remain negative for
all �. At these densities, fc3, after starting off negative, be-
gins to increase until it becomes positive around �=�, before
finally becoming negative again as it approaches its
asymptotic value of fc3��� �0. Consequently, the force on a
cavity of radius �
� centered at h=� will be attractive,
instead of repulsive, at these high densities. Since fc1 is al-
ways positive �attractive force at contact with the wall�, and
an intermediate repulsive interval is still exhibited, solutes
with cavity radii around � exhibit at these high densities two
locations at which the force acting upon them vanishes. The
origin of this high density behavior stems from the appear-
ance of another point of zero force in the solvent density
profile, ��z�, where a maximum develops before z=� �which
translates to a positive slope for fc3 at the exact limit of �
=� /2 along with fc3����0, as required by Eq. �17��. Note
that fc2 only describes the location of the minimum, and not
the subsequent maximum, and so is unaware of the second

vanishing of F̄. Our chosen representation of fc3 is very ac-
curate for low to moderate densities for �=� /2 to �
� and
for large cavity sizes at all densities, but becomes less accu-
rate at high densities for those intermediate cavity radii over
which fc3 becomes positive �see Appendix B�. Nevertheless,

our later interpolation of F̄ is ensured to be highly accurate if

we focus on lower densities and/or large solutes �as in the
colloidal limit�, where fc3 is either always negative or very
close to its asymptotic value, respectively �where the behav-
ior of fc3 at intermediate cavity radii is irrelevant�.

With the above three functions, fci, we may now add three

more conditions on F̄�� ,h�. These conditions, however, are
not the only conditions that could be generated for �−�
�h��. In fact, we could introduce other functions fci that

incorporate information about F̄ again at �=�, via Eq. �17�,
and �→� �see Appendix B� for �−��h��. The selection
of h=�−�, where the cavity is equivalent to a solute in
contact with the wall, h=�, where the cavity no longer inter-
sects the z=0 plane, and h0���, the location at which the

force vanishes, provide conditions on F̄ at values of h that
were found to be particularly important. Other conditions
may be incorporated, but this serves to increase the complex-

ity of the interpolation scheme used to represent F̄ without
generating significantly more accurate results. It is also pos-
sible that replacing the three chosen values of h with three
others within �−��h�� may lead to acceptable predic-

tions of F̄, a route we did not explore in great detail.

C. Interpolation scheme

The exact plots of F̄�� ,h� in Fig. 2 suggest that F̄�� ,h�
beyond the exact limit may be well approximated by a poly-
nomial, instead of an asymptotic series, that incorporates a
number of exact or pseudoexact conditions. Since we cur-

rently have six conditions on F̄, as provided in the preceding

two sections, we first attempted to represent F̄ by a single
sixth-order polynomial in h. This interpolation polynomial

could not, however, adequately describe the shape of F̄ over
the entire h domain for a wide range of cavity radii and fluid

densities. We then considered representing F̄ by two separate
polynomials linked together at a well-chosen value of h. The
interpolation scheme we ultimately selected for ��� ap-

proximates F̄�� ,h� by

F̄��,h� = ��10��,�� + �11��,��h + �12��,��h2 + �13��,��h3 −��2 − ��

2
�2

� h � � − � ,

�20��,�� + �21��,��h + �22��,��h2 + �23��,��h3 � − � � h � � ,
� �25�

in which �ij�� ,�� are the adjustable parameters of the inter-
polation, with i identifying the interpolation polynomial �1 or
2� and j indicating that the coefficient is multiplied by hj.
The two polynomials are joined at h=�−�, a position where

a matching condition fixes F̄ �see the preceding section�.
Although arbitrary, this particular h value was chosen since it
corresponds to the first physical location of the correspond-
ing solute �whose surface is in contact with the wall� and led
to good agreement with simulation results when ���. Link-

ing the two polynomials at h=�−� when ��� �so that h
=�−��0� did not yield an overall good representation of
F̄�� ,h� for these small cavities. In this case, the two polyno-
mials were instead linked at h=0 �leading to much better
agreement with simulation results�. In what follows, we fo-
cus our attention on cavities for which ���, and only con-
sider results obtained with Eq. �25�.

The eight fitting coefficients appearing in Eq. �25� are
obtained by imposing the six matching conditions discussed
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in the preceding subsections, along with two conditions of
continuity at h=�−�. As a review, the six geometric and
thermodynamic constraints are

�1� F̄�� ,−��2− �� /2�2� computed exactly by Eq. �11�
�2� 
�F̄ /�h
h=−��2−�� / 2�2 computed exactly by a derivative

of Eq. �11� with respect to h,

�3� �2�−�
0 F̄�� ,z�dz=�0

�Ḡ�r�r2dr

�4� F̄�� ,�−��= fc1��� /�,

�5� F̄�� ,�− fc2����=0,

�6� F̄�� ,��= fc3��� /�.

In addition, we also require that F̄ and �F̄ /�h be continu-
ous across h=�−�, the point where the two polynomials are

linked together. �The continuity of F̄ at h=�−� is implied by
condition 4, which is invoked separately by each fitting poly-

nomial.� Hence, the final two conditions on F̄ are

�7� F̄�� ,h� is continuous at h=�−� �required by condi-
tion �4��,

�8� �F̄ /�h is continuous at h=�−�.

With eight matching conditions identified, each �ij can now
be obtained by straightforward solution of the resulting lin-
ear equations. By entering the resulting interpolation polyno-

mials for F̄�� ,h� into Eq. �7�, we can then calculate W�� ,h�.
In the following sections, we present the results of our cho-
sen interpolation scheme for ��� at various fluid densities,
and compare them to molecular simulation predictions.

IV. SIMULATION METHOD

The comparison of our I-SPT predictions of W�� ,h� with
simulation results requires that both W�� ,h� and ��z� be de-
termined computationally. �Although analytic approxima-
tions for the density profile of a hard-sphere solvent at a hard
wall are available in the literature, e.g., Refs. �33,34�, these
approximations show significant deviations from simulation
at moderate to high packing fractions. Thus, to eliminate this
potential source of error in our theory, we chose to use den-
sity profiles generated by simulation.� All simulations were
performed using a Monte Carlo �MC� algorithm for the
isothermal-isobaric �constant N, p, T� ensemble with hard
walls �35,36�. All variables were scaled using the character-
istic values for hard sphere systems. Hard walls were im-
posed at the z limits of the simulation cell and periodic
boundary conditions were applied in the x and y directions.
The number of particles used in each simulation was ad-
justed to ensure that a uniform fluid phase with the appropri-
ate bulk properties developed in the center of the simulation
cell, ranging from 500 to 3000 depending on the chosen
pressure. Each simulation was run for a target density in the
center of the simulation cell, with the imposed pressure be-
ing calculated from the CS-EOS to ensure consistency be-
tween the interior density �, the density profile, ��z�, and the
wall contact density ��0�= p /kT. The x and y dimensions of
the simulation cell were chosen large enough to prevent a
cavity from “sensing” its periodic image. As a rule of thumb,

these dimensions were at least 4�max, where �max is the larg-
est cavity radius probed by the simulation. The simulations
were allowed to equilibrate before recording results for a
sufficient number of cycles, typically 3
104 to 105, where
each cycle included N particle translations and one volume
adjustment. Volume moves were accomplished by adjusting
only the length of the simulation cell in the z direction
�35,36� and accepted according to standard NpT acceptance
criteria �37�, while translational moves were accomplished
by randomly moving particles and looking for particle over-
lap. Simulation density profiles were generated by measuring
the local density as a function of z and averaging each z bin
over the length of the simulation. Results were collected over
a production run of 106 to 5
106 cycles.

The reversible work of cavity formation for different �
and h was calculated from the probability of observing cavi-
ties along the hard wall. A point along the wall was randomly
selected and the corresponding h positions for cavities of a
given radius � were determined. To determine W�� ,h� for
large cavity sizes �generally ��1.5��, an umbrella sampling
technique �37� was employed in which windows of progres-
sively larger values of h, for a given fixed cavity radius were
probed. An additional MC step was added, in which the cav-
ity was allowed to change its z coordinate, on average, once
per MC cycle. The translation of the cavity was controlled
according to a biasing potential, ��h�. Good statistics are
achieved when ��h�=−W�� ,h�, so a third-order polynomial
regression of the previously collected cavity work profile
was used to extrapolate ��h� into the next window �38�. Af-
ter completing a window, the probability histogram was nor-
malized according to the biasing potential and linked with
the previously collected work data to obtain the updated cav-
ity work profile. With this method, work profiles for cavity
radii around 3� �or less� were obtained. Determination of
W�� ,h� beyond these sizes, at least for moderate to high
densities, becomes too computationally expensive because of
the large system sizes and number of windows required.

V. INTERPOLATED RESULTS

Once the density profile, ��z�, and bulk pressure are

known, both F̄�� ,h� and W�� ,h� for ��� can be deter-
mined for −��h�� by combining the exact results over
−��h�−��2− �� /2�2 �see Eq. �11�� with the interpolated

values of F̄�� ,h� obtained from Eq. �25�. Since we are com-
paring our predictions to the results of NpT MC simulations
based upon the pressure of the CS-EOS, all matching condi-
tions that require an equation of state and an expression for
�� are also based on the CS-EOS. �The previous I-SPT in-

terpolation for Ḡ��� �1� was based on a thermodynamically
consistent adaptation of SPT to the CS-EOS �labelled CS-
SPT� �22�, which yielded a prediction of �� that was not in
agreement with the simulation results of Refs. �39,40�. Since
then a modified form of CS-SPT has been developed by us
�29� that now generates values of �� in excellent agreement
with simulation results and the semiempirical expression of
Henderson and Plischke �41�. Here, we make use of �� ob-
tained from our modified version of CS-SPT.�
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To begin, we present our predictions of F̄ and W for �
=�, when the cavity is equivalent to a hard-sphere solvent
particle, in which both are known exactly for −��h�

−�3� /2. F̄�� ,h� is provided in Fig. 4 for the bulk densities

��3=0.3, 0.5, and 0.6. As imposed by the interpolation, F̄
exhibits a maximum at h�0 and equals zero at some posi-
tive value of h, becoming negative thereafter. The absolute

value of F̄ increases �not linearly� with an increase in density
only for h�0 and for locations close to h=�. For values of

h around 0.5�, F̄ exhibits more complicated behavior with
respect to changes in density. The corresponding W�� ,h�
profiles obtained from each F̄ given in Fig. 4 is provided in
Fig. 5. The I-SPT predictions of W agree quite well with the
simulation results, although there are some minor differences
at ��3=0.6 in the vicinity of the maximum of W. Neverthe-

less, the maximum deviation between theory and simulation
is about 0.14kT, a difference of only 2.5%. This small error
can be attributed to the interpolation scheme, since we have
imposed, via ��z�, three exact matching conditions on F̄
based on formally exact knowledge of a cavity with �=�.
Although our predictions of W are quite accurate, we may
still conclude that our chosen interpolation polynomials do
not truly describe the correct behavior of F̄ over all relevant
values of h. �Figure 5 and later plots do indicate that the first
polynomial over h��−� provides a highly accurate repre-

sentation of F̄ as long as h=�−� is not too close to the
maximum in W. In fact, the largest deviations between I-SPT
and simulation always arises around this maximum, which
suggests that a single polynomial beyond h=�−�, though
still good for our present purposes, does not completely cap-

ture the somewhat more complicated behavior of F̄ in this
region. One straightforward modification, which we did not
investigate, is to add a third polynomial, such that two fitting
polynomials are utilized between �−��h��. Additional
matching conditions can be generated by introducing more
of the functions fci, which are known exactly over �−�
�h�� for small cavity radii, �=� and �→�.�

To examine the accuracy of the F̄ interpolation for larger
�, we compare in Fig. 6 the I-SPT and simulation predictions
of W for �=3� and the same densities shown in Fig. 5. Here,

F̄ and W are known exactly only for −3��h�−2.96�, a
much smaller interval than for �=�. Nevertheless, W ob-
tained from I-SPT is in excellent agreement with simulation
over the entire range of h �even around the maxima�. The
largest error observed is only 3.1kT, a difference of 1.3%. In
light of Fig. 4, the improvement of the work predictions,
particularly around the maxima, as the cavity radius was in-

creased suggests that the interpolation of F̄ yields more ac-

curate results at larger radii. The improved accuracy of F̄ is

also encouraging, given that domain of h over which F̄ is

FIG. 4. F̄�� ,h� versus h for �=� and ��3=0.3, 0.5, and 0.6. F̄
is known exactly for −1�h /��−�3/2.

FIG. 5. Reversible work of cavity insertion, W�� ,h�, versus h,

for �=� calculated from F̄�� ,h� provided in Fig. 4. Solid lines
represent the I-SPT predictions, while the solid circles are the MC
simulation results.

FIG. 6. Reversible work of cavity insertion, W�� ,h�, versus h
for �=3� and the same densities shown in Fig. 4. Solid lines rep-
resent the I-SPT predictions, while the solid circles are the MC
simulation results.
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known exactly has become quite small. Consequently, the

representation of F̄ relies primarily on the chosen interpola-

tion between the imposed matching conditions on F̄, and yet
still yields a highly accurate prediction of the work of cavity
insertion.

Finally, we provide a more rigorous test of our I-SPT
predictions in Fig. 7, which displays W for �=2� and ��3

=0.914, a density very near to the freezing transition. At this
high density, fc3��� is positive rather than negative, which

modifies the shape of F̄ near h=�, as compared to the pre-
vious lower density examples. Nevertheless, the agreement
between I-SPT predictions and simulation is still very good.
The largest observed difference is about 2.7kT, which com-
pared to the work of insertion around 172kT corresponds to a
fractional error of only 1.6%. Overall, our chosen interpola-

tion scheme describing F̄ is quite robust, yielding accurate
predictions of W up to high densities and a wide range of
cavity radii.

VI. DEPLETION FORCE CALCULATION BY I-SPT

Given an expression for F̄, the depletion, or entropic,
force between a hard-sphere colloid and a wall can be
straightforwardly determined for separation distances inclu-
sive of h=�−�, when the colloid is in contact with the wall,
and h=�, when the equivalent cavity of the solute no longer
intersects the z=0 plane. If the hard-sphere diameter of the
solute is �s, the equivalent cavity is, as mentioned before,
�= ��s+�� /2. As a simplification, we define a distance pa-
rameter, z*=h−�+�, which denotes the distance between
the actual hard wall and the surface of the hard-sphere solute,

where 0�z*��. In terms of �s, z* and the I-SPT function F̄,
the force, F�z*�, on the solute is equal to �see Eq. �6��

F�z*� = − 2��kT��s + �

2
�2

F̄��s + �

2
,z* −

�s − �

2
� ,

�26�

in which F̄ is computed in the same manner as discussed
before.

Figures 8 and 9 display the I-SPT predictions for the en-
tropic force between a hard-sphere colloid and a wall for
diameters of �s=5� and �s=10�, respectively, for packing
fractions �=0.1, 0.2, 0.3, and 0.4 ��=���3 /6�. Both figures
compare the I-SPT results to the MC simulation results of
Dickman et al. �24� and depletion force predictions obtained
using the bulk SPT-based method introduced previously by
Corti and Reiss �18�. Also included are the forces calculated
using the Asakura-Oosawa �AO� approximation �4�, which is
a limiting case of our method and can be obtained by setting
G�� ,	 ,h�=1 in Eq. �5�. As can be seen in the figures, the AO
approximation always yields a negative entropic force that
vanishes at z*=�. As anticipated from our previous discus-

sions of the behavior of F̄�� ,h�, the depletion force is ini-
tially negative �attractive� and then becomes positive �repul-
sive� as z* nears �. The agreement between the I-SPT
predictions and the MC simulation data of Dickman et al.
�24� is excellent, particularly for �s=5�. Some discrepancies
appear at �s=10�, though our predictions may still lie within
the error bars of the simulation results. The I-SPT results are
quite consistent with the bulk SPT-based method for �
�0.2, though the SPT approach begins to overpredict F�z*�
for z*→� at higher densities. Unlike the SPT-based method,
I-SPT is aware of the high density appearance of a second
attractive regime at intermediate solute diameters, which
serves to decrease the repulsive force for larger solutes �see
Appendix B�. �We do note, though, that as �→� the two
methods recover identical asymptotic limits.� The vast im-
provement seen for �=0.3 and, presumably, �=0.4 demon-
strates the advantage that I-SPT has over the bulk SPT
method. This confirms that the line tension of the three-phase
�cavity-wall-solvent� interface is a quantity that cannot be
overlooked, especially in the vicinity of z*�� and at high
packing fractions.

We conclude this section by considering the depletion
forces that develop for �s /�
1 at high solvent densities. As
discussed previously and in Appendix B, fc3, and therefore
F, becomes positive for 0.64����1.37� at ��3=0.914.
Consequently, the depletion force again becomes attractive at
z*=� for colloidal diameters within 0.28���s�1.74�, ex-
hibiting two values of z*�� at which the entropic force
vanishes. Although the full force profile is known to exhibit
oscillations between negative and positive values of F �e.g.,
Ref. �24��, attention has focused on large solutes where F
vanishes for a second time only for z*��. Here we see at
high densities and small solute diameters that the full force
profile oscillates more rapidly than at lower densities and
larger solute diameters. As discussed earlier, the appearance
of a second attractive interval within z*�� arises because of
the appearance of a maximum in the solvent-wall density
profile, ��z�, for z��. Though one may expect solutes
smaller than the solvent particles ��s��� to be strongly in-

FIG. 7. Reversible work of cavity insertion, W�� ,h�, versus h
for �=2� and ��3=0.914. The solid line represents the I-SPT pre-
dictions, while the solid circles are the MC simulation results.
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fluenced by ��z�, thereby exhibiting a second point at which
F=0, such a conclusion may not have been fully anticipated
for solute diameters exceeding �, at least for diameters as
large as 1.74�.

In Fig. 10, the reversible work of cavity insertion for �s
=1.2� ��=1.1�� and ��3=0.914 as obtained by I-SPT and
MC simulation is presented. As expected, W exhibits both a
maximum and a minimum for z*��. Up to z*�0.5�, the
agreement between I-SPT and simulation is reasonably good.
Large deviations between the two appear for z*�0.5�. Nev-
ertheless, I-SPT still qualitatively captures the correct trends,
yielding predictions for the two locations of F=0 �or
dW /dh=0� that are close to the simulation results. The quan-
titative disagreement for z*→� is not unexpected for these
intermediate solute diameters since the accuracy of our pre-
dictions near z*=� depends upon the accuracy of fc3. As
shown in Appendix B, discrepancies between fc3 and simu-
lation appear for solute diameters between � /2 and � �fc3 by
definition matches simulation at �� and slightly greater than
�. Although improvements at these diameters could be made

by altering the chosen interpolation function for fc3 �as dis-
cussed in Appendix B�, most depletion force profiles of in-
terest are for larger solutes, where our I-SPT predictions al-
ready yield excellent agreement with simulation.

VII. FEATURES OF F̄„� ,h…: THE ROLE OF GEOMETRY

While the overall behavior of the exact and interpolated

plots of F̄�� ,h� was anticipated from geometric and physical

arguments, certain aspects of F̄ were, however, unexpected.

In particular, F̄ was always found to exhibit a maximum for
h�0, before the solvent particles were able to access por-
tions of the cavity surface at 	�� /2 and counteract the
force exerted by particles situated at 	�� /2. How the local
density of hard spheres around the cavity, or �G�� ,	 ,h�,
varies with h provides an explanation for this trend, albeit an
incomplete one. The geometry of the cavity configuration
plays an important role that cannot be overlooked. Geometry
is also important in fully understanding the location at which

FIG. 8. Entropic force, F�z*�, between a hard-sphere solute of diameter �s=5� and a hard, flat wall at various packing fractions �. z*

specifies the distance between the wall and the surface of the solute. Solid lines represent the I-SPT results, the dashed-dotted lines are the
predictions of Corti and Reiss �18�, the dashed lines are the AO approximations �4�, and the closed circles are the simulation results of
Dickman et al. �24�. Clockwise from left, �=0.1, �=0.2, �=0.4, and �=0.3.
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F̄ vanishes for h�0. By providing more detailed analyses of

these two aspects of F̄, we highlight the interesting interplay
between geometry and the anisotropic density profile that
develops about the cavity, a not too widely appreciated effect
that is important for developing a proper understanding of
entropic forces in colloidal systems.

Although G�� ,	 ,h� is not known in general, we consider
its exact form for ��� /2, many features of which also ap-
pear at other values of � and h �2�. As shown in Ref. �2�,
where an I-SPT-based integral equation for the local density
about a cavity was derived, G�� ,	 ,h� for ��� /2 is exactly
given by

G��,	,h� =
��� cos 	 + h�

�

1

P0��,h�
, �27�

where ��� cos 	+h� is the local density of hard spheres at
z=� cos 	+h �without a cavity present� and P0�� ,h� is the
same as provided in Eq. �10�. �Although Eq. �27� was de-
rived in Ref. �2� only for h�0, the above relation is also
valid for h�0 �42�.� Since P0�� ,h��1, Eq. �27� requires

that �G�� ,	 ,h����� cos 	+h� for ��� /2, i.e., the local
density at a particular point on the cavity surface is enhanced
above that of the local solvent density �in the absence of the
cavity� at the same location. For example, at 	c=cos−1�
−h /��, corresponding to the intersection of the cavity surface
and the z=0 plane, the local density exceeds ��0�= p /kT, the
density of the hard-sphere solvent in contact with the z=0
plane �far from the cavity�. The local density enhancement at
	c increases with an increase in h �for fixed �� since P0

decreases with h. Upon geometric grounds, due to the even
greater imbalance of collisions that result upon a particle
approaching 	c, one expects the density enhancement to be
highest at 	c and to increase as h increases �particularly for
values of h at which 	c exceeds � /2, when a cusplike region
forms from the intersection of the z=0 plane and the cavity
surface, see Fig. 1�. In contrast, �G�� ,	=0,h�, although al-
ways exceeding ���+h�, may be smaller or larger than the
bulk density �, since the density profile, ���+h�, may be
smaller or larger than �, depending upon the values of � and
h.

FIG. 9. Entropic force, F�z*�, between a hard-sphere solute of diameter �s=10� and a hard, flat wall at various packing fractions �.
Clockwise from left, �=0.1, �=0.2, �=0.4, and �=0.3. Data sources are identical to those in Fig. 8.
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A. Location of �F̄ /�h=0

Considering that a large density enhancement develops at
	c�� /2, which may yield a density several times greater
than �, one might initially expect that the integral over

G�� ,	 ,h�, and thus F̄, to increase for h�0 as the upper
integration bound, 	c, increases with h. Consequently, the

appearance of a maximum value, where �F̄ /�h=0, at h�0 is
somewhat surprising. Although the expectation of a large
density enhancement at 	c is based on correct geometric ar-
guments, the normal force exerted on the cavity that follows
from the weighting of G�� ,	 ,h� by sin 	 cos 	 in Eq. �5�
cannot be neglected. So while the density enhancement at 	c
continues to increase as 	c approaches � /2, the normal com-
ponent of the force exerted by the solvent continues to de-
crease. When the cavity is hemispherical �h=0�, the solvent
located at 	c=� /2, regardless of the density enhancement,
offers no resistance to the further translation of the cavity in
the z direction since cos 	c=0. With sin 	 cos 	 increasing
from zero at 	=0 to its maximum value at 	=� /4 before
decreasing back to zero again at 	=�, the overall behavior of

F̄ arises from a competition between the density enhance-
ment at 	c, the potentially large density abatement that de-
velops around 	=0 and the value of sin 	 cos 	.

Figure 11 displays G�� ,	 ,h�sin 	 cos 	 as a function of 	
for �=� /2, ��3=0.5 and several values of h, in which the

area under each curve is simply equal to F̄�� ,h�. F̄�� ,h�
initially increases with an increase in h as the density en-
hancement around 	c is still strongly weighted. Beyond h=
−0.135� �not shown in figure�, the total area under each
curve begins to decrease because sin 	 cos 	 is now able to
reach the sufficiently small values needed to counteract the
continuing increase in the local density at 	c. In addition, the
local density around 	=0 has been drastically reduced and is
weighted by a sin 	 cos 	 term that is nearly zero. In other
words, the collision of particle centers with the cavity surface
becomes both concentrated at angles which contribute very

little to the net force in the z direction and reduced at angles
that have a larger normal contribution but smaller surface
area, resulting in a reduction in the net force. The identical
effect of the interplay between the local density variations
and geometry is observed for smaller radii and, as suggested
by our interpolation results and previous simulation studies
�2�, continues for larger radii. �Note that the emergence of
negative G�� ,	 ,h�sin 	 cos 	 values for 	�� /2 does not by

itself explain why the maximum in F̄ resides at h�0. Al-
though these negative values of the integrand serve to de-

crease F̄, the positive values of G�� ,	 ,h�sin 	 cos 	 for 	
�� /2 must either remain constant or decrease in order to

see a net decrease in F̄. If G�� ,	 ,h�sin 	 cos 	 for 	�� /2

began to increase, a maximum in F̄ is not necessarily guar-
anteed to appear.�

B. Location of F̄„� ,h…=0

The eventual decrease of F̄ toward negative values at h
�0 indicates that the depletion force between the solute and
the wall eventually becomes repulsive, a result not predicted
by the original Asakura-Oosawa-Vrij model of depletion
forces �4,5�. As suggested by Dickman et al. �24�, a net re-
pulsive force between a hard-sphere colloid and a hard wall
develops when the local density at 	�� /2 begins to out-
weigh the �attractively directed� collisions occurring at 	
�� /2. Although necessary, the density enhancement for 	
�� /2 is not a sufficient condition since geometry again

plays an important role. The value of h for which F̄=0, in-
dicating a balance of repulsive and attractive forces, arises
because collisions with the cavity surface finally become
concentrated at angles exceeding � /2 with normal contribu-
tions large enough to counteract the lesser collisions occur-
ring at 	�� /2 with smaller surface area contributions.

FIG. 10. Work of solute insertion, W�z*�, for �s /�=1.2� and
��3=0.914. The closed circles represent points generated by simu-
lation and I-SPT calculations are plotted with the solid line.

FIG. 11. The integrand of F̄�� ,h�, or G�� ,	 ,h�sin 	 cos 	, plot-
ted as a function of 	 for ��3=0.5 and �=� /2. Labels indicate the

value of h for each line. F̄�� ,h� is the area under each curve.

F̄�� ,h� initially increases with h before decreasing at an h between
−0.2� and 0. The actual maximum occurs at h=−0.135�.
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Interestingly, the role of geometry is reversed here, as

compared to its affect on the location of �F̄ /�h=0 at h�0.
As seen in Fig. 11, when 	 exceeds � /2 for h�0,
G sin 	 cos 	 becomes negative. As h increases, the local
density at 	c continues to increase while being weighted
more heavily �in the negative direction� by sin 	 cos 	 �note
this weighting eventually decreases since sin 	 cos 	→0 as
	→��. In contrast, the local density at 	�� /2 decreases
further, such that positive values of G sin 	 cos 	 become

less important. Eventually, the area under each curve, or F̄,

becomes negative. Therefore, the vanishing of F̄ requires
that the normal component of the local density behind the
cavity be large enough to overcome the normal component in
front of the cavity. If we identify the value of 	c associated

with h=h0��� �i.e., F̄=0� as 	c
0�cos−1�−h0��� /��, we see

that 	c
0 /�=2.8/4 or h=0.29� for �=� /2 and ��3=0.5 �see

Fig. 2� and 	c
0 /�→1 or h0→� as �→� at a fixed density.

For macroscopic cavities, the local density along the cavity
surface is constant, except for a small region near 	c. Al-
though a density enhancement is still present at 	c, since that
portion of the surface area of the cavity exposed to the den-
sity enhancement is becoming relatively smaller �as com-
pared to the full cavity surface area� for �→�, an ever
greater magnitude of cos 	 is needed to counteract the colli-
sions for 	�� /2, so that 	c

0 /�→1 in the macroscopic limit.
�Interestingly, the location of zero force is still found at a
value of z*, the distance between the wall and the surface of
the solute, that is less than �.� Finally, 	c

0 is found to decrease
with an increase in density, for a given �, since the enhance-
ment of the local density around 	c

0 increases with bulk den-
sity such that, in general, a smaller cos 	 �or smaller h� is
needed to balance the opposing collisions for 	�� /2.

Additional complications arise for intermediate cavity

sizes, where F̄=0 at two values of h�0. The appearance of
a second zero point suggests that the local density enhance-
ment behind the cavity, despite its normal component be-
coming ever stronger, is no longer able to overcome the in-
creasing strength of the collisions that occur in front of the
cavity, is connected to the appearance of a local maximum in
��z� for z��, which corresponds to an increase in the local
density of solvent particles for 	�� /2 at �
�. Although
letting h→� generates, as before, a sharp cusp and large
density enhancement at 	c, the corresponding small value of
sin 	c now yields for intermediate cavity radii repulsive con-
tributions that cannot overcome the density increase that de-
velops for 	�� /2 �while the cavity still intersects the z=0
plane�. Clearly, a complete understanding of depletion inter-
actions in hard colloid systems requires a detailed analysis of
the complicated interplay between density variations and ge-
ometry.

VIII. CONCLUSIONS

A modified version of an inhomogeneous scaled particle
theory allowing for the calculation of the reversible work of
inserting a cavity that intersects a hard wall has been pre-

sented. In so doing, a new function, F̄�� ,h�, was introduced,

which is proportional to the net force experienced by the
cavity in the direction normal to the wall. F̄ is known exactly
for certain cavity sizes and locations and is approximated
beyond these limits via a set of interpolation polynomials.
Predictions for the reversible work of cavity insertion are in
very good agreement with simulation at all densities. Devia-
tions from the simulation results do arise at high density for
intermediate cavity sizes, in which the equivalent solutes
have diameters close to that of the hard-sphere solvent, and
are attributed to minor discrepancies that develop at these
solute sizes for one of the matching conditions used within
the chosen interpolation scheme.

Our new version of I-SPT can also be used to estimate the
depletion force between a hard-sphere colloid and a hard,
structureless wall. I-SPT predictions of the depletion force of
large diameter colloids are in excellent agreement with simu-
lation results, exhibiting regions of both attractive and repul-
sive force. Hence, I-SPT improves upon a previous bulk
SPT-based method �18�, which tended to overpredict the
magnitude of the repulsive depletion force at high densities
of the solvent.

Due to its reliance upon physical and geometric argu-
ments, I-SPT yields important insights into the various fea-

tures of F̄. In particular, I-SPT clearly demonstrates that the
transition between attractive and repulsive entropic forces is
strongly influenced by the interplay between geometry and
the variations of the local density around the cavity. Conse-
quently, the entropic force for all solute sizes always van-
ishes for surface to wall separations that are less than the
diameter of a hard-sphere solvent particle. At intermediate
solute diameters, the effects of geometry and the variations
in the local density serve to give rise to a second location at
which the entropic force disappears, again within this same
separation distance.

This current version of I-SPT is also extendable to the
confined two-dimensional hard disk fluid. An exact expres-

sion for the two-dimensional version of F̄ can be straightfor-
wardly obtained, and is similar to the three-dimensional re-
sult presented here �the reduced dimensionality does,
however, introduce some minor changes �42��. Beyond its

exact limit, an interpolation of F̄ is again needed, though a
set of simple functions that adequately describes the two-

dimensional version of F̄ over its entire domain has yet to be
identified.

Overall, I-SPT is a promising theoretical tool for analyz-
ing the growth of cavities near a hard wall. Our current ap-
proach utilizes more exact information than any previous
version of I-SPT, resulting in more accurate predictions as
well as increased physical insight into the behavior of non-
homogeneous hard-particle fluids. While I-SPT has so far
been specifically tailored to describe hard-particle fluids con-
fined by hard, structureless walls, the methods presented here
are readily extendable to nonplanar geometries, such as
curved surfaces or surfaces with patterned microstructures.
The equations may not be superficially simple, but SPT does
offer advantages over other methods when analyzing these
more complex surface geometries. Finally, when an expres-
sion for the line tension of cavities intersecting various sur-
faces is derived, I-SPT will provide the key information
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needed to calculate highly accurate estimates of this impor-
tant thermodynamic property.
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APPENDIX A: DIVERGENT BEHAVIOR OF �2F̄ /�h2 AND

�2Ḡ /��2 AT THEIR EXACT LIMITS

Using the coordinate system shown in Fig 1, consider that
P0�� ,h�, the probability of observing a cavity of radius of at
least � centered at z=h, is equivalent to the probability of
finding a point on the z=h plane that is a distance of at least
� from every hard-sphere center in the fluid. Hence, we may
introduce spheres of radius � centered about each hard

sphere and consider their intersections with the z=h plane.
Now, the spheres of radius � that intersect the z=h plane
project circles onto this plane, enclosing the area excluded to
the center of a cavity of radius �. Dividing the area not
contained within these projected circles by the area of the z
=h plane yields P0�� ,h�. Since the total area of the z=h
plane excluded to cavities is comprised of the area of over-
lapping circles, P0 may be written in general as �3�

P0��,h� = 1 − �
m=1

�

�− 1�mFm��,h� , �A1�

where Fm�� ,h� is the fraction of the area on the z=h plane
enclosed within the mutual overlap of m circles projected on
the plane by the spheres of radius �. By analogy to Eq. �3.16�
of Ref. �3�, Fm is given by

Fm��,h� =
1

Atotal · m!
�

Vtotal

¯� ��m��R1,R2, . . . ,Rm��m�R1,R2, . . . ,Rm,�,h�dR1 ¯ dRm, �A2�

in which �m�R1 ,R2, . . . ,Rm ,� ,h� is the area on the z=h
plane enclosed within the mutual overlap of circles projected
on the plane by m spheres of radius � at positions
�R1 ,R2, . . . ,Rm� ,��m��R1 ,R2, . . . ,Rm�dR1¯dRm is the prob-
ability of observing m hard spheres at the same positions and
Atotal is the total area of the z=h plane. The ensemble average
is obtained by integrating over Vtotal, the total volume occu-
pied by the hard-sphere fluid.

Let us restrict our attention to the insertion of cavities
centered at h�0. Now, two spheres of radius � concentric
with two hard spheres will always have nonoverlapping pro-
jected circles on the z=h plane when �2�h2+ �� /2�2. In this
case, Fm�� ,h�=0 for m�2, and we need only consider
F1�� ,h�, where

F1��,h� =
1

Atotal
�

Vtotal

��1��R1��1�R1,�,h�dR1.

Since the fluid is symmetric in the directions parallel to the
hard wall, �1 and ��1� depend only on z, where ��1��R1�

=��z� and �1�R1 ,� ,h�=���2− �z−h�2�, the area projected
onto the z=h plane by the sphere of radius �. With �1=0 for
z�h+�, and noting that dR1=Atotaldz, F1 reduces to

F1��,h� = ��
0

h+�

��z���2 − �z − h�2�dz , �A3�

so that

P0��,h� = 1 − ��
0

h+�

��z���2 − �z − h�2�dz . �A4�

The above relation is identical to Eq. �10�, which was ob-
tained via a different interpretation of P0.

Two projected circles may overlap when h2+ �� /2�2��2

�h2+ �� /�3�2, so that F2�� ,h� must be included in P0 �Fm

=0 for m�3�, where

F2��,h� =
1

Atotal · 2!
� �

Vtotal

��2��R1,R2��2�R1,R2,�,h�dR1dR2. �A5�

Letting z1 and z2 be the z-directional distances of hard-spheres 1 and 2, respectively, and r the distance between their centers
parallel to the hard wall, Eq. �A5� can be rewritten as

F2��,h� = ��
0

h+�

dz1�
0

h+�

dz2�
0

rmax

��2��z1,z2,r��2�z1,z2,r,�,h�rdr , �A6�

in which rmax=��2− �z1−h�2+��2− �z2−h�2, the value of r for a given z1 and z2 at which �2 vanishes. For our present
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purposes, the above expression can be simplified. We note
that for h2+ �� /2�2��2�h2+ �� /2�2+�, where � is an ex-
ceedingly small quantity, the only configurations that gener-
ate a nonzero �2 are those for which z1=z2=0. Thus, in the
limit of �→0, F2 reduces to

F2��,h� = ��
�

2��2−h2

�IP
�2��0,r��2�0,0,r,�,h�rdr , �A7�

where �IP
�2��z ,r� is the two-dimensional �2D� probability den-

sity of finding two hard-sphere particles separated by a dis-
tance r given that both centers are located in the plane at z.
Since �IP

�2��z ,r�=0 for r��, the lower limit of the integral
has been set to �. Equation �A7� is analogous to the F2���
term that appears in the P0 expansion for the 2D hard-disk
fluid �43�, and so we expect F2�� ,h� to behave in a similar
manner.

1. Discontinuous second derivative of F̄„� ,h…

Following from Eq. �9�, the ith derivative of F̄ �with re-
spect to h� is related to the �i+1�th and lower derivatives of
P0 or, from Eq. �A1�, the �i+1�th and lower derivatives of
each Fm. Thus, the behavior of the various derivatives of

F̄�� ,h� evaluated at the limit of h=−��2− �� /2�2, henceforth
denoted hmax, can be determined by examining each Fm and
its derivatives at the same limit. Beginning with Eq. �A3�, we
see that F1 and all of its derivatives with respect to h are well
behaved, i.e., continuous at h=hmax, provided ��z� remains
differentiable �which is an implicit assumption in our analy-
sis�. For larger h, specifically h=hmax+�, where � is an ex-
ceedingly small quantity, we must also consider the behavior
of F2 �higher-order terms are still zero at this h value�. For
�→0, we may examine the two-dimensional form of F2 pro-
vided in Eq. �A7�. For the case of z1=z2=0, the area of
intersection of the two circles projected on the z=h plane is
given by

�2�0,0,r,�,h� = �2 cos−1� r

2��2 − h2�
−

r��2 − h2 − � r

2
�2

�2 − h2 ���2 − h2� .

�A8�

Substituting the above into Eq. �A7�, one can show that

F2��,hmax� = 0, 	 �F2

�h
	

h=hmax

= 0, �A9�

which, along with the continuity of F1 and its derivatives,

imply that F̄ is continuous at h=hmax.
If F2 is differentiated twice with respect to h, the term

which remains upon letting �→0 is

�2F2

�h2 = ��
�

2��2−h2

�IP
�2��0,r�

�2�2�0,0,r,�,h�
�h2 rdr .

�A10�

Now, �2�2 /�h2→� at r=2��2−hmax
2 =�, so it is not readily

apparent if the above integral vanishes. To proceed further,
we instead return to Eq. �A7� and replace �IP

�2��0,r� with a
series expansion whose first term is given by �IP

�2��0,��, the
contact value of this 2D pair correlation function. Integration
then yields

F2��,h� =
��IP

�2��0,��
8 ��

4
��2 − h2 −

�2

4
�2�2 − 2h2 + �2�

+ ��2 − h2���2 − h2 − �2�cos−1� �

2��2 − h2��
+ ¯ , �A11�

where, for the present analysis, we need only consider the
lowest order terms. The first derivative of the above, as pre-
viously mentioned, vanishes at h=hmax. Performing two ad-
ditional derivatives reveals that

	 �2F2

�h2 	
h=hmax

= 0, 	 �3F2

�h3 	
h→hmax

→ � , �A12�

implying that

	 �2F̄

�h2	
h→hmax

→ − � . �A13�

While �F̄ /�h is continuous at hmax, �2F̄ /�h2 diverges to −�

as hmax is approached from above �from below, �2F̄ /�h2 ap-

proaches a finite value; all higher-order derivatives of F̄ be-
have in a similar manner�. Although the divergence of

�2F̄ /�h2 could be incorporated into an interpolation scheme,
this information does not appear to be needed to accurately
compute W, even at high densities. Given that hmax, particu-
larly for large �, is close to the lower limit of h=−�, the

influence of the discontinuous and divergent curvature of F̄
should be relatively short ranged, considering the importance

of the many other conditions on F̄ that are invoked over 0
�h��.

2. Discontinuous second derivative of Ḡ„� ,h…

We now examine the derivatives of Ḡ�� ,h� at the limit of

�=�h2+ �� /2�2, denoted by �max. As shown in Ref. �1�, Ḡ is
related to P0 according to

�Ḡ��,h� =
− 1

2���2 + �h�
� ln P0

��
, �A14�

so that the ith derivative of Ḡ with respect to �i+1�th and
lower derivatives of each Fm appearing in Eq. �A1�. Similar

to the above analysis of F̄, all derivatives of F1 with respect
to � are well behaved at �max �again provided that ��z� is
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differentiable�. Next, we consider the various derivatives of
F2 with respect to �. For �=�max+�, we again begin with
Eq. �A11�, which upon differentiation and letting �→0
yields

F2��max,h� = 0, 	 �F2

��
	

�=�max

= 0,

	 �2F2

��2 	
�=�max

= 0, 	 �3F2

��3 	
�→�max

→ � . �A15�

Therefore, Ḡ and �Ḡ /�� are continuous at �max, while

	 �2Ḡ

��2 	
�→�max

→ − � . �A16�

Since �2Ḡ /��2 is discontinuous and diverges as �max is ap-

proached from above �from below, �2Ḡ /��2 approaches a
finite value�, all higher derivatives at �max will diverge in a
similar manner.

3. Improved interpolation of Ḡ„�…

Last, we introduce an updated version of our approximate

form of Ḡ for h=0 and ��� /2, which now includes the

divergence of �2Ḡ /��2 as �→� /2 �Ḡ is still computed ex-
actly for ��� /2 via Eq. �20� of Ref. �1��. Owing to the
differences between the simulation and I-SPT predictions of
W for a hemispherical cavity at high density �1�, along with

the importance of an accurate Ḡ through its use in providing

a condition on F̄, we were motivated to incorporate addi-

tional information on Ḡ to improve our calculation of W for

h=0. Unlike the other exact conditions on Ḡ �1�, one may

not simply choose �2Ḡ /��2=−� at a particular �; this diver-
gence must be explicitly included in the functional form of
the chosen interpolation scheme �44�.

To incorporate properly the known divergence, we begin
with Eq. �A7�, where we approximate the unknown function
�IP

�2��0,r�, by

�IP
�2��0,r� = �IP

�2��0,��exp�− a�r − ���, r � � , �A17�

in which a is a positive decay constant. With the above,
F2��� becomes

F2��� = ��
�

2�

exp�− a�r − ����2�0,0,r,��rdr ,

�A18�

where � is another density-dependent adjustable parameter
��=��IP

�2��0,���0, where �IP
�2��0,�� is not known in gen-

eral�. Using Eq. �A1�, we now represent P0 for � /2��
��m with

P0��� = 1 − ��
0

�

��z���2 − z2�dz

+ ��
�

2�

exp�− a�r − ����2�0,0,r,��rdr,

�

2
� � � �m. �A19�

For ���m, Ḡ is again interpolated via the following Laurent
series expansion

Ḡ��� = �0��� +
�1���

�
+

�2���
�2 +

�4���
�4 , � � �m.

�A20�

Given the above expression for P0, �2Ḡ /��2 is ensured to
diverge towards −� in the required manner as �→� /2 �as

well as ensuring that Ḡ and �Ḡ /�� are continuous at �
=� /2�. As before, matching conditions are needed to identify
the various interpolation parameters, in this case a, �, and
the four �i���. Two conditions are imposed by thermody-
namics: �0���= p /�kT and �1���=�� /�kT. �The condition
on �1 was not originally invoked in Ref. �1�. Just as the
density in contact with the surface of the hemispherical cav-
ity should approach p /kT in the planar limit, �→�, so
should the leader order area term in the resulting macro-
scopic work expression be related to the planar boundary
tension ��. In the bulk SPT interpolation function, this area
term is related to 2��, which for a full spherical cavity is
simply 2 times the hemispherical result.� The other four

matching conditions are chosen to be the continuity of Ḡ and
its first two derivatives at �m and the condition on W��� as
provided by Eq. �23� of Ref. �1�. �m is still to be determined,
though it must fall between � /2 and � /�3 �so that P0 is only
expressed by F1 and F2� and yield positive values of a and �.
The interpolation parameters were obtained by preselecting
�m, and then solving numerically via an iterative Newton-
Raphson algorithm with a residual tolerance of 10−6. When a
and � are both positive, a valid solution was found. In ex-
amining various valid solutions, we found that the resulting
values of W were not greatly sensitive to �m. At low densities
only �for example, ��3=0.3�, the new approximation did not
always yield a solution �solutions were always found for
��3�0.6�. In this case, the old interpolation scheme was
used, which was already shown to be extremely accurate �1�.

Table I displays W��� for ��3=0.6 and 0.914 as calcu-
lated by simulation, the previous I-SPT interpolation method,
and the improved approximation. For ��3=0.6, the improved
interpolation does not greatly modify W for any �. At ��3

=0.914, where the older I-SPT interpolation significantly un-
derpredicted W, we find that the new interpolation approxi-

mation of Ḡ significantly improves the I-SPT predictions of
W, reducing the error to 1.21% at �=3� �most likely within
the error bars of the simulation results�.
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APPENDIX B: DERIVATION OF THERMODYNAMIC

CONDITIONS ON F̄„� ,h…

In this appendix, we derive a number of conditions on the

I-SPT function F̄�� ,h� that are employed in the proposed

interpolation scheme for F̄. These conditions are generated
by invoking the surface thermodynamics of macroscopic
cavities and are valid only for macroscopic cavities that in-
tersect the z=0 plane.

1. A general thermodynamic condition on F̄„� ,h…

We begin by introducing the following macroscopic ex-
pression for the differential work of growing a cavity that
intersects the z=0 plane,

dW = pdV + d��rA� − ��dAwall + d��L� . �B1�

As shown above, the reversible work of cavity growth may
be divided into four separate terms: the pressure-volume
work �pdV�, the work required to create the curved surface
of the cavity �d��rA��, the work required to eliminate a por-
tion of the wall-fluid interface ���dAwall�, and the work re-
quired to create the linear interface �d��L�� where the fluid,
wall, and cavity converge. �r�0 is the surface �or boundary�
tension of the cavity �placed in the bulk fluid� based on a
dividing surface chosen coincident with the cavity radius �
and A is that portion of the surface area of the cavity residing
to the right of the z=0 plane. ���0 is the surface tension in
the planar limit and Awall is the area of the z=0 plane that is
overlapped by the cavity. Finally, � is the line tension �45,46�
of the linear interface of length L. For the cavity geometry
shown in Fig. 1, Eq. �B1� implies that

dW

dh
= 2��kT�2F̄��,h� = �p��2 − h2� + 2���r + 2�h��

+
���L�

�h
, �B2�

where dW /dh is related to F̄ by Eqs. �4� and �6�. �In Eq. �B2�
we have allowed �L to vary with h, although this dependence
is unknown at present. How �L depends upon h will become
inconsequential, however, since with the plausible assump-
tion that �L and its derivative are finite and represent lower
order contributions than the surface and volume terms,
���L� /�h will become insignificant, relatively speaking, as
�→�.� Next, let h=�−�, where � is a positive value less
than � but on the order of �, which upon substitution into
Eq. �B2� yields

�F̄��,� − �� =
p�

�kT
−

p�2

2�kT�
+

�r

�kT
+

��

�kT
−

���

�kT�

+
1

2��kT�

���L�
�h

. �B3�

Taking the limit as �→�, we find that

lim
�→�

��F̄��,� − ��� =
p� + 2��

�kT
, �B4�

where �r→��. Equation �B4� represents a generalized con-

dition on F̄ in the limit of �→�, in which there is a free
parameter ���, and is identical to the well-known Der-
jaguin limit for the force between a colloid and a flat wall
�47�. The following sections make use of this generalized

condition on F̄ to develop a number of more specific condi-
tions.

TABLE I. Work of hemispherical cavity insertion, W��� /kT, computed by MC simulation �marked Sim.�, the original I-SPT �1�, and the
improved I-SPT approximation �marked Imp. I-SPT�. The row above each data set identifies the reduced density, ��3, far from the wall and
�m used for the I-SPT approximation. This row also displays the fitting parameters � and a. The columns marked Error list the error of the
adjacent I-SPT calculation relative to MC simulation.

��3=0.6 �m=0.5075� �=0.28/�4 a=6.65/�

� /� Sim �1� I-SPT �1� % Error Imp. I-SPT % Error

0.75 1.47 1.49 1.40% 1.49 1.38%

1.0 3.81 3.87 1.61% 3.87 1.61%

1.5 14.50 14.50 0.06% 14.51 0.08%

2.0 36.29 36.34 0.13% 36.35 0.15%

3.0 129.48 129.77 0.22% 129.80 0.25%

��3=0.914 �m=0.515� �=4.15/�4 a=16.77/�

� /� Sim �1� I-SPT �1� % Error Imp. I-SPT % Error

0.75 4.32 4.47 3.63% 4.29 −0.54%

1.0 12.40 12.37 −0.25% 12.37 −0.24%

1.5 50.95 47.92 −5.95% 50.87 −0.16%

2.0 131.65 122.73 −6.77% 132.70 0.80%

3.0 485.30 454.22 −6.40% 491.19 1.21%
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2. Condition for h=�−�

The first thermodynamic condition on F̄ is developed by
selecting �=�, so that Eq. �B4� becomes

lim
�→�

��F̄��,� − ��� =
p� + 2��

�kT
, �B5�

which constrains F̄ at h=�−� in the macroscopic limit and

is an exact condition on the quantity �F̄�� ,�−��. Since F̄ is

known exactly for −��h�−��2− �� /2�2, fc1���=�F̄�� ,�
−�� is also known exactly for ��5� /8. Following from

arguments presented in Appendix A regarding F̄ and �F̄ /��,
fc1 and dfc1 /d� are also continuous at �=5� /8. �This exact
limit is identified by inserting h=�−� into the inequality h
�−��2− �� /2�2, which defines the upper bound of the exact
domain of h. After replacing h with �−� and some manipu-
lation, one finds that h=�−� falls in the exact domain of h
for ��5� /8.�

3. Condition for F̄†� ,h0„�…‡=0

A second condition on F̄ is identified by defining h0���
such that F̄�� ,h0����=0. Introducing �=�−h0��� into Eq.

�B4� yields upon setting F̄�� ,�−��=0,

0 = 	 p�� − h0���� + 2��

�kT
	

�→�

, �B6�

which requires that

lim
�→�

�� − h0���� =
− 2��

p
. �B7�

�This limiting value can also be derived directly from Eq.

�B3�.� As before, exact knowledge of F̄ enables us to deter-

mine h0 for ��� /2. To obtain h0�� /2�, we set

F̄�� /2 ,h0�� /2��=0, which upon using Eq. �11� requires that

�
0

h0��/2�+�/2

��z��z − h0��/2��dz = 0. �B8�

Solution for h0�� /2� is accomplished by trial and error. Fur-

thermore, exact knowledge of F̄ also provides information
regarding the derivative of h0 at �=� /2. Taking a derivative

of F̄�� ,h0����=0, as based upon Eq. �11�, with respect to �
and setting �=� /2, yields upon further arrangement

	 �h0���
��

	
�=�/2

=

����

2
+ h0��

2
��

2�
0

h0��/2�+�/2

��z�dz − ����

2
+ h0��

2
�� .

�B9�

4. Condition for h=�

The final condition is obtained for h=�, i.e., �=0. With
this choice of �, Eq. �B4� becomes

lim
�→�

��F̄��,��� =
2��

�kT
. �B10�

Again through knowledge of F̄ up to �=� /2, F̄�� ,�� is
known exactly up to �=� /2 �rather than 5� /8�.

5. Validation of thermodynamic conditions

To test the validity of the interpolation functions, fci, pro-
posed in Sec. III B 2, which incorporate both the macro-
scopic and small cavity conditions derived above �as well as

FIG. 12. The three interpolation functions, fc1, fc2, and fc3 plot-
ted as a function of cavity radius � for ��3=0.6. Solid lines are
I-SPT predictions, while the filled circles, open squares, and filled
diamonds represent MC simulation results for fc1, fc2, and fc3,
respectively.

FIG. 13. The three interpolation functions, fc1, fc2, and fc3 plot-
ted as a function of cavity radius � for ��3=0.914. Data sources
and identification are identical to those in Fig. 12. fc3�0 for
0.64����1.37�, which is in contrast to its behavior at lower
densities ���3�0.8� where fc3�0 for all �.
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other information for �=��, we compare the predictions of
Eq. �24� with the results of molecular simulation. As dis-
cussed previously, all thermodynamic properties of the hard-
sphere fluid, such as p and ��, were computed using the
Carnahan-Starling equation of state �CS-EOS �28��, where
we utilize an adaptation of SPT to the CS-EOS �22,29� to
compute �� �which yields results in good agreement with
both a semiempirical expression �41� and other simulation
predictions �39,40��. Polynomial fits of the simulation-
generated density profiles were used to compute the needed
derivatives of ��z� for the small cavity conditions on fci. See
Sec. III B 2 for a detailed discussion of all the information
that was used to solve for the various coefficients utilized in
Eq. �24�.

Figure 12 displays all three interpolation functions, fc1,
fc2, and fc3, plotted versus � for ��3=0.6. As expected, fc1
�0, fc2�0, and fc3�0 at this moderate fluid density. For

��� /2, fc1=0, which is expected since F̄�� ,h�=0 for h
��. All three conditions begin at zero, and then increase or
decrease to their asymptotic limit �the three macroscopic
limits derived above�. At this density, fc3 exhibits a small
change in shape for � slightly larger than � /2, a result of an
abrupt change in curvature. The change in curvature is not
present at a lower density, and is an anticipation of the
change that occurs at larger densities where fc3�0 around
���. The other functions do not exhibit complex behavior;

fc1 and fc2 are always positive, and show monotonic behav-
ior, at all densities. Our I-SPT predictions match the simula-
tion results quite well.

To illustrate the complicated behavior exhibited by fc3 at
high densities, Figure 13 shows the same interpolation func-
tions for ��3=0.914. fc1 and fc2 are qualitatively identical to
the results seen in Fig. 12. In contrast, fc3 does not simply
decay to its infinite limit. While the initial slope of fc3 is
negative, a local minimum develops before �=� /2 in which
fc3��� becomes positive for 0.64����1.37� �and as such

F̄�� ,�� is positive instead of its usual negative value in this
range�. Beyond these radii, fc3 remains negative and de-
creases asymptotically to its final value, though much slower
than that in Fig. 12. The interpolation deviates somewhat
from the simulation results between �=� /2 and �, but ap-
pears to be accurate for ��� �note that fc3 is known exactly
for ��� /2 as well as �=��. This discrepancy for � /2��
�� may be related to a discontinuity in the second deriva-
tive of fc3��� at �=� /2, which apparently exhibits divergent

behavior at its exact limit, much like �2F̄ /��2 and �2Ḡ /��2

�see Appendix A�. The exact nature of this discontinuity is,
however, unclear at present, but once known could be incor-

porated into the interpolation method as was done for Ḡ in
Appendix A.
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