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We introduce a one-dimensional phenomenological model of a nonlocal medium featuring focusing cubic
and defocusing quintic nonlocal optical nonlinearities. By means of numerical methods, we find families of
solitons of two types, even-parity �fundamental� and dipole-mode �odd-parity� ones. Stability of the solitons is
explored by means of computation of eigenvalues associated with modes of small perturbations, and tested in
direct simulations. We find that the stability of the fundamental solitons strictly follows the Vakhitov-
Kolokolov criterion, whereas the dipole solitons can be destabilized through a Hamiltonian-Hopf bifurcation.
The solitons of both types may be stable in the nonlocal model with only quintic self-attractive nonlinearity, in
contrast with the instability of all solitons in the local version of the quintic model.
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I. INTRODUCTION

Optical solitons, i.e., localized waves maintaining their
profile in nonlinear optical media due to the balance between
the group-velocity dispersion, diffraction, and nonlinear self-
phase modulation, have been in the focus of experimental
and theoretical studies in the last decade �1–5�. However,
solitons in media with the cubic ���3�� self-focusing nonlin-
earity, obeying the cubic nonlinear Schrödinger �NLS� equa-
tion, are unstable in two and three dimensions �2D and 3D�,
due to the possibility of collapse �blowup of the wave
packet� in the same dimension �6�. In fact, the �critical� col-
lapse occurs in the one-dimensional �1D� NLS equation with
the self-focusing quintic term too �7�.

On the other hand, the collapse does not occur in multi-
dimensional media with the nonlocal ��3� nonlinearity �8,9�,
therefore such media may give rise to stable solitons, see,
e.g., a recent comprehensive review in Ref. �10�. 2D spatial
solitons stabilized by nonlocal nonlinearities were observed
in vapors �11� and lead glasses featuring strong thermal non-
linearity �12�; in the latter case, elliptic and vortex-ring soli-
tons were reported. Optical 1D solitons supported by a non-
local ��3� nonlinearity were also created in liquid crystals
�13,14�. Further, such issues as self-focusing in photorefrac-
tive media �15�, periodic lattices �16�, vortices �17�, spatial
solitons in soft matter �18�, attraction between dark solitons
�19�, dependence of the stability domain of 2D solitons on
the spatial profile of the nonlocal-response function �20�, and
3D spatiotemporal solitons �21�, were all considered in the
context of nonlocality.

Another natural physical setting supporting stable multi-
dimensional solitons is provided by competing nonlineari-
ties, such as ones represented by combinations of cubic-
quintic �CQ� �22–24� and quadratic-cubic types �25–27�. In
most cases �22,23,27–29�, the competing nonlinearities were
considered in the context of the stabilization of spinning soli-
tons �alias vortex rings or vortex tori, in the 2D and 3D
cases, respectively�: while fundamental �zero-vorticity� mul-

tidimensional solitons are stable in quadratic media without
the addition of cubic nonlinearity, their spinning counterparts
are unstable in the same case �30� �see also Ref. �31��. Com-
peting cubic and quintic nonlinearities stabilize 2D �32� and
3D �33� dissipative spinning solitons too, which has been
demonstrated in the framework of the complex CQ
Ginzburg-Landau equation. In addition, studied in some de-
tail was also the stabilization by dint of competing nonlin-
earities of necklace-shaped soliton clusters carrying angular
momentum �34�. In the framework of discrete models, it has
been demonstrated that the CQ nonlinearity supports a great
variety of stable solitons �including asymmetric ones� in the
1D lattice model �35�.

The aim of this work is to study the effect of competition
between self-focusing cubic and self-defocusing quintic non-
local nonlinearities on the existence and stability of even-
parity �fundamental� solitons and their dipole-mode �odd-
parity� counterparts. While the solitons of the former type are
supported by local nonlinearities as well, the odd-parity ones
may only exist in the presence of a nonlocal nonlinear re-
sponse of the medium.

The paper is organized as follows: after introducing a gen-
eral phenomenological model describing nonlocal media
with the competing CQ nonlinearities in Sec. II, we present
basic numerical results that demonstrate the existence of
even- and odd-parity soliton families in Sec. III. In the same
section, their stability borders are accurately delineated. Di-
rect numerical simulations of the evolution of perturbed so-
lutions are shown to be in full accordance with the calcula-
tions of instability eigenvalues. The paper is concluded by
Sec. IV.

II. THE MODEL

The 1D phenomenological model of a nonlocal medium
with competing CQ nonlinearities is based on the following
scaled equation for the amplitude q of the electromagnetic
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field propagating along coordinate � and diffracting in the
transverse direction �,

iq� + �1/2�q�� + qn = 0, �1�

where the local perturbation of the refractive index, n, is
determined by the integral expressions

n = �3�
−�

+�

G3�� − ���q��,���2d�

+ �5�
−�

+�

G5�� − ���q��,���4d� . �2�

Here the Green functions G3,5 account for the response func-
tions of the nonlinear material. Typically, the response func-
tions are either exponential ones �as in liquid crystals�, or
Gaussians �10�. Below, we assume the latter, by setting

G3,5�� − �� = ��d3,5�−1/2exp�− �� − ��2/d3,5� , �3�

where the coefficients d3 and d5 determine the corresponding
nonlocality ranges of the cubic and quintic nonlinearities,
while the coefficients in front of the Gaussians follow from
the normalization conditions, �−�

+�G3,5���d�=1. The strength
of the cubic nonlinearity may be scaled to set �3=1 in Eq.
�2�, and, as mentioned above, we consider the case of the
competition between the cubic and quintic nonlinearities,
that is, �5�0 �implying the saturation of the nonlinear re-
sponse�. A dynamical invariant of the system �1� is the beam
power,

U = �
−�

+�

�q�2d� . �4�

For d3=d5=0, which corresponds to the local CQ me-
dium, with G3 and G5 being 	 functions, Eqs. �2� and �3�
yield n=�3 �q�2+�5 �q�4, hence Eq. �1� reduces to the usual
local CQ model,

iq� + �1/2�q�� + �3�q�2q + �5�q�4q = 0. �5�

A family of stable exact soliton solutions to Eq. �5� with an
arbitrary wave number b, is well known for �5�0 �36�,

q��,�� = 2� b

�3v���
exp�ib�� ,

v��� = 1 +�1 +
16�5b

3�3
2 cosh�2�2b�� , �6�

provided that 1+ �16�5b� / �3�3
2�
0. Recently, this family

was also extended to the case of �5
0 �37�; in that case, the
family is stable too, despite the above-mentioned possibility
of the collapse in the 1D model with �5
0.

In the particular case of �3=0, the quintic NLS equation,
with �5=1, yields another known exact solution,

qQ��,�� =
�3b�1/4

�cosh�2�2b��
exp�ib�� , �7�

which is unstable, unlike solitons �6�. The integral power of
solution �7� does not depend on b, UQ= �� /2��3/2	1.924,

which is explained by the fact that this soliton plays the role
of the separatrix between collapsing solutions, with U

UQ, and decaying ones, with U�UQ �6,7�.

III. NUMERICAL SOLUTIONS FOR EVEN- AND ODD-
PARITY SOLITONS AND THEIR STABILITY

ANALYSIS

We look for stationary solutions of Eqs. �1� and �2� in the
form q�� ,��=w���exp�ib��, where the real function w���
obeys the following equations:

w�� + 2wn − 2bw = 0, �8�

n��� = �3�
−�

+�

G3�� − ��w2���d� + �5�
−�

+�

G5�� − ��w4���d� .

�9�

We have numerically found families of localized solutions to
these equations, treating the corresponding two-point
boundary-value problem with the standard band-matrix algo-
rithm.

To analyze the linear stability of solitons, we have
searched for perturbed solutions to Eqs. �1� and �2� as

q��,�� = 
w��� + �u��� + iv����e���exp�ib�� , �10�

where a perturbation eigenmode with real and imaginary
parts u�� ,�� and v�� ,�� can grow with a complex rate, �
=Re���+ i Im���. Linearization of the equations around a
stationary solution yields a system of equations from which
� can be found numerically.

In Figs. 1�a� and 1�b� we display the power U vs propa-
gation constant b for families of even-parity �fundamental�
solitons for the model with both equal and unequal nonlocal-
ity ranges, d3 and d5, of the competing cubic and quintic
nonlinearities. For numerical calculations, we have fixed the
strengths of the nonlinear terms in Eq. �2� to be �3=1, and
�5=−0.2. We see that, as in the case of local media for which
d3=d5=0 �see the lower curve in Fig. 1�a��, the power U
increases monotonically with the propagation constant b.
Thus, the fundamental solitons in the nonlocal CQ media
may be stable, as they satisfy the Vakhitov-Kolokolov (VK)
criterion, dU /db
0, which is a necessary �but, generally,
not sufficient� stability condition for the fundamental soliton
family in equations of the NLS type �6,38�. Through numeri-
cal computation of the instability eigenvalues for this family,
we have checked that the VK criterion is actually a sufficient
condition for the stability for the fundamental solitons.

In Fig. 1�c�, we display the dependence U=U�b� for the
nonlocal medium with the purely quintic nonlinearity ��3
=0, �5=1�. The particular case of unstable solitons �7� in the
local quintic medium is represented by the lower curve in
Fig. 1�c�; as said above, in this case the total power U�b�
=UQ	1.924 does not depend on the wave number b, and,
accordingly, they are marginally stable solutions in terms of
the VK stability criterion. In fact, as is common to separatrix
solutions in the case of the critical collapse �6,39�, solitons
�7� are subject to a subexponential instability, that is why the
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VK criterion predicts a zero critical eigenvalue for them.
However, in the nonlocal model with the purely quintic non-
linearity the fundamental solitons are stable, in precise
agreement with the prediction of the VK criterion �see Fig.
1�c��, which has been corroborated by numerical computa-
tion of the full set of the stability eigenvalues for this soliton
family.

We see from Figs. 1�a� and 1�b� that, in the case of the
nonlocal CQ medium, the lower �cutoff� value of the propa-
gation constant is b=0, and the power U increases monotoni-
cally until the propagation constant reaches a maximum
value bmax. However, in the case of the nonlocal quintic me-
dium ��3=0�, bmax=�, see Fig. 1�c�. Typical stationary soli-
ton’s profiles for values of the propagation constant near the
maximum value bmax are shown in Fig. 1�d�, for several sets
of values of d3 and d5. We see that, depending on the specific
values of nonlocality parameters d3 and d5, the field profile
may be well localized or, on the contrary, it may display a
flat-top profile �recall that, in the case of the local CQ me-
dium, the soliton’s shape is a flat-top-like one for values of
the propagation constants near the maximum value�.

In Fig. 2�a� we plot the total power U vs propagation
constant b for odd-parity �dipole-mode� solitons, in the non-
local CQ medium with d3=d5=10. We see that the U
=U�b� dependence is, generally, not monotonous, displaying
a characteristic loop; accordingly, the propagation constant,
b, is bounded to a certain interval of variation, between a
minimum �cutoff� value, which is different from zero, and a
maximum one. In a certain interval of variation of b, three
different solutions are found for a given value of the propa-

gation constant, which correspond to different soliton’s pro-
files, and different values of total power U. We found also
that while the dependence U=U�b� remains qualitatively
similar when we decrease the nonlocality range of the cubic
nonlinearity d3, the domain of existence for dipole solitons
quickly shrinks. Thus, already for d3=8 at d5=10 the domain
of existence shrinks to 0.6174�b�0.727 03. Stability
analysis reveals that dipole solitons are stable on the entire
lower branch of curve U=U�b� and even on a small part of
upper branch of U=U�b� curve corresponding to negative
value of dU /db. Thus, two different stable dipole solitons
having equal propagation constants can coexist in a certain
interval of variation of the propagation constant b in the
model that we consider. Notice, that the black curves in Figs.
2�a� and 2�b� denote stable soliton branches, whereas the red
ones depict unstable soliton branches. The interval of stabil-
ity for the dipole solitons in Fig. 2�a� corresponding to d3
=d5=10 is given by 0.4496�b�0.6750, while when we de-
crease the nonlocality range of the cubic nonlinearity from
d3=10 to d3=8 the stability interval shrinks to 0.6174�b
�0.7245.

In Fig. 2�b� we plot the total power U vs propagation
constant b for the dipole-mode �odd-parity� solitons in the
nonlocal quintic model with d5=10. Here, too, stable and
unstable solution branches are displayed as black and red
lines, respectively. The cutoff value of b is bco=0.440 783,
and the critical point separating stable and unstable solitons
is located at bcr=1.7338. Note that, in the quintic model, all
characteristic values of b scale with the nonlocality param-
eter d5, as 1 /d5. We stress again that the very fact of the
existence of stable solitons �this time, of the dipole type� in
the model with a purely quintic self-focusing nonlinearity is
remarkable, as in the local limit this model gives rise solely
to unstable solitons.

In Fig. 3�a�, we display typical profiles of the stationary
odd-parity solitons for the nonlocal CQ model with d3=d5
=10. Here, as before, the black lines �curve 2� denote the
stable solitons, and the red ones �dark gray, in the black-and-
white version� stand for unstable ones �curves 1 and 3�. Typi-
cal profiles of the odd-parity solitons in the nonlocal quintic
model with d5=10 are displayed in Fig. 3�b�. We see that the
two humps of the unstable dipole solitons are much farther
separated in comparison to their stable counterparts. This

FIG. 1. The power U, see Eq. �4�, versus propagation constant b
for even-parity �fundamental� soliton families with different nonlo-
cality ranges in the nonlocal cubic-quintic model, �a� and �b�, and in
the nonlocal quintic model �c�. In �a� and �b�, �3=1 and �5=−0.2,
whereas in �c� �3=0 and �5= +1. �d� Typical stationary field pro-
files for propagation constants near the maximum value bmax. The
other parameters are: d3=d5=10 �curve 1�, d3=1, d5=10 �curve 2�,
and d3=1, d5=0.5 �curve 3�. The same values, �3=1, �5=−0.2, and
�3=0, �5= +1, are adopted in all other examples of solitons in the
cubic-quintic and pure quintic model, respectively, which are dis-
played below.

FIG. 2. �Color online� Power U vs propagation constant b for
the odd-parity �dipole-mode� solitons in the nonlocal cubic-quintic
model with d3=d5=10 �a� and in the quintic nonlocal model, with
d5=10 �b�. Circles indicate the transition points between stable
�marked by label s� and unstable �marked by label u� soliton
branches. Stable branches are shown by black lines, whereas un-
stable ones are shown by red �dark gray� lines.
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feature results in two generic instability scenarios: the two
humps of the unstable soliton either fuse into a stable funda-
mental �even-parity� soliton, or they split into two out-of-
phase stable even-mode solitons �see below�.

In Fig. 4, by red �dark gray� and black curves we plot the
real and imaginary parts of the critical instability eigenvalues
�ones that determine the �in�stability�, �1 and �2, vs propa-
gation constant b of the unperturbed solution for the odd-
parity solitons in the nonlocal CQ and quintic models �panels
Figs. 4�a�–4�d�, respectively�. The parameters are the same
as in cases displayed in Fig. 2. Stable are those solitons for
which Re���=0, see Eq. �10� �only the neutral stability is
possible in the conservative systems�. The two critical points
located at bcr=0.4496 and bcr=0.6750 are clearly seen in
Figs. 4�a� and 4�b�. Note that Fig. 4�c� shows the relevant
instability eigenvalues corresponding to the unstable branch
�see the lower red �dark gray� line marked by label u in Fig.
2�a�� that is very close to the lower stable branch in Fig. 2�a�
marked by label s.

Though we are dealing with odd-parity solitons, in the
case of the nonlocal CQ model we observe essentially the

same situation as one familiar for fundamental �even-parity�
solitons, where the relevant instability eigenvalues are either
real or pure imaginary. However, in the case of the nonlocal
quintic model, we get a typical oscillatory instability �40�,
which occur, for example, in the studies of spinning �23,24�
solitons, when the eigenvalues are complex, resulting in the
Hamiltonian-Hopf bifurcation, see Fig. 4�d�. It is relevant to
recall that, as said above, we have checked that the stability
regions of the fundamental �even-parity� solitons in the non-
local quintic model are precisely predicted by the VK crite-
rion, the corresponding eigenvalues being real.

Finally, the predictions of the linear stability analysis were
checked in direct simulations of Eqs. �1�, which were run by
means of the standard Crank-Nicholson scheme. First, we
have checked that all the even-parity �fundamental� solitons
that were predicted above to be stable, are stable indeed
against random perturbations. Next, we have explored the
evolution of odd �dipole-mode� solitons in the nonlocal CQ
model. Figure 5�a� displays an example of the self-healing
�relaxation to the unperturbed shape� of a stable low-power
odd-parity soliton under white-noise perturbations at the am-
plitude level of 10% �the parameters are the same as in Fig.
2�a��. Figures 5�b� and 5�c� show the typical instability sce-
narios of the dipole solitons with a higher power �which
correspond to the two upper branches in Fig. 2�a��. Thus,
depending on the value of their integral power and the dis-
tance between the two humps, the unstable odd-parity soliton
either fuses into a stable fundamental one �if the initial sepa-
ration between the two humps is small enough, see Fig.
5�b��, or splits into two distinct out-of-phase stable funda-
mental solitons, if the initial distance between its humps is
large, see Fig. 5�c�.

IV. CONCLUSIONS

We have introduced a general one-dimensional nonlocal
model with competing self-attractive cubic and self-repulsive

FIG. 3. �Color online� Typical profiles of odd-parity solitons in
the nonlocal cubic-quintic medium with d3=d5=10 �a� and in the
quintic medium, with d5=10 �b�. In panel �a�, b=0.449 37 �curve
1�, b=0.681 62 �curve 2�, and b=0.689 18 �curve 3�. In panel �b�,
b=0.4407 �curve 1� and b=1.75 �curve 2�.

FIG. 4. �Color online� Real and imaginary parts �shown by red
�dark gray� and black lines, respectively� of two eigenvalues re-
sponsible for the Hamiltonian-Hopf bifurcation of the odd-parity
solitons. In �a�, �b�, and �c�, we fix d3=d5=10, whereas in �d�,
which pertains to the quintic model, we set d5=10. In fact, panel �d�
also implies the presence of the symmetric branches of Im���, with
the opposite sign.

FIG. 5. Simulated evolution of stable �a� and unstable �b� and
�c� odd-parity solitons in the presence of white input noise. Here
d3=d5=10, b=0.6, and the input power is U=13.66 �a�, U=37.13
�b�, and U=14.55 �c�.
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quintic nonlinearity. Two types of solitons were constructed
in a numerical form, fundamental �even-parity� and dipole-
mode �odd-parity� ones, the latter type do not exist in the
local limit. The stability analysis, performed through the
computation of the growth rate for eigenmodes of small per-
turbations, and verified in direct simulations, demonstrates
that the stability of the fundamental solitons exactly obeys
the Vakhitov-Kolokolov criterion. For odd-parity solitons, in
the case of the nonlocal cubic-quintic model we have found
that the relevant instability eigenvalues are either real or pure
imaginary, whereas in the case of the nonlocal quintic model,
we got a typical oscillatory instability, when the eigenvalues
are complex, resulting in a Hamiltonian-Hopf bifurcation. A
noteworthy fact is that the solitons of both types have their

stability regions even in the nonlocal model with the purely
quintic attractive nonlinearity, in the local version of which
all solitons are unstable. The stable states predicted in this
work can be realized as spatial solitons in optical media fea-
turing nonlocal nonlinear response.
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