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We present a combined experimental and numerical investigation of the coiling of a liquid “rope” falling on
a solid surface, focusing on three little-explored aspects of the phenomenon: The time dependence of “inertio-
gravitational” coiling, the systematic dependence of the radii of the coil and the rope on the experimental
parameters, and the “secondary buckling” of the columnar structure generated by high-frequency coiling.
Inertio-gravitational coiling is characterized by oscillations between states with different frequencies, and
we present experimental observations of four distinct branches of such states in the frequency-fall height
space. The transitions between coexisting states have no characteristic period, may take place with or without
a change in the sense of rotation, and usually �but not always� occur via an intermediate “figure of eight” state.
We present extensive laboratory measurements of the radii of the coil and of the rope within it, and show
that they agree well with the predictions of a “slender-rope” numerical model. Finally, we use dimensional
analysis to reveal a systematic variation of the critical column height for secondary buckling as a function of
�dimensionless� flow rate and surface tension parameters.
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I. INTRODUCTION

A thin stream of honey poured from a sufficient height
onto toast forms a regular helical corkscrew or “coil.” This
instability was first investigated experimentally by Barnes
and Woodcock �1�, who called it “liquid rope coiling” by
analogy to the coiling of an elastic rope. However, elastic
rope coiling is difficult to study experimentally, both because
the frictional contact of the rope with a solid surface is hard
to control and because the natural �unstressed� state of most
elastic ropes is not perfectly straight. This is probably why
no experiments on elastic rope coiling have �to our knowl-
edge� been published, while many have been reported for the
coiling of liquid ropes �1–5,7–10�. The first theoretical study
of liquid rope coiling was undertaken by Taylor �11�, who
suggested that the instability is similar to the buckling insta-
bility of an elastic rod �or solid rope� under an applied com-
pressive stress. Subsequent theoretical studies based on lin-
ear stability analysis determined the critical fall height and
frequency of incipient coiling �12,13�. More recently, Ma-
hadevan et al. �8� experimentally measured coiling frequen-
cies in the high frequency or “inertial” limit, and showed
�14� that they obey a scaling law involving a balance

between rotational inertia and the viscous forces that resist
the bending of the rope.

This behavior however is just one among several that are
possible for liquid ropes. Ribe �15� proposed a numerical
model for coiling based on an asymptotic “slender rope”
theory, and solved the resulting equations using a numerical
continuation method. The solutions showed that three dis-
tinct coiling regimes �viscous, gravitational, and inertial� can
exist depending on the relative magnitudes of the viscous,
gravitational, and inertial forces acting on the rope, and that
the coiling frequency can be multivalued at a fixed fall
height within a certain range. Maleki et al. �9� reported ex-
perimental measurements of the coiling frequency of differ-
ent silicone oils in all three regimes that agreed quantita-
tively with the numerical predictions, including the
multivaluedness. The multivalued regime was subsequently
investigated in more detail by Ribe et al. �10� using both
laboratory experiments and the slender-rope numerical
model. They found that multivalued coiling corresponds to a
distinct “inertio-gravitational” regime in which the rope be-
haves as a distributed pendulum with a discrete spectrum of
eigenfrequencies. Comparison of the numerics with experi-
mental measurements showed that some of the numerically
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predicted branches of the curve of coiling frequency vs
height are experimentally accessible while others are not,
thereby accounting for the experimental observation of
abrupt transitions between different coiling frequencies �9�.

Here we present a more complete laboratory investigation
of liquid rope coiling, focusing on three aspects of the phe-
nomenon that have not previously been studied. First, we
examine in detail the time dependence of multivalued
�inertio-gravitational� coiling. For a given set of experimen-
tal conditions, we observe four distinct branches in the curve
of frequency vs height, in agreement with the numerical pre-
dictions. We further find that transitions between low- and
high-frequency branches occur chaotically, without any char-
acteristic frequency and with changes in the sense of rotation
that appear to be random. Second, we present extensive mea-
surements of the radii of the rope within the coil and of the
coil itself as functions of the flow rate, the fluid viscosity,
and the fall height, and compare these with the predictions of
the slender-rope model. Finally, we explore the “secondary
buckling” instability that occurs when the coil formed by
high-frequency �inertial� coiling buckles under its own
weight upon exceeding a critical height. We use dimensional
analysis to document the systematic dependence of the criti-
cal height on the flow rate and on the surface tension of the
fluid.

II. EXPERIMENTAL PROCEDURE

We used two different experimental setups for low-
frequency and high-frequency experiments. In both cases,
silicone oil with density �=0.97 g cm−3, surface tension co-
efficient �=21.5 dyn cm−1, and �variable� kinematic viscos-
ity � was injected at a volumetric rate Q from a hole of
diameter d�2a0 and subsequently fell a distance H onto a
glass plate. Movies of the coiling experiments are available
�6�.

Figure 1 shows the setup for low-frequency coiling, in
which silicone oils with �=125, 300, or 1000 cm2 s−1 were
extruded from a syringe by a piston driven by a computer-
controlled stepper motor. This arrangement allowed access to
the very low flow rates required to observe both low-
frequency “viscous” coiling and multivalued “inertio-
gravitational” coiling with more than two distinct branches.
The flow rate was measured to within 10−4 ml s−1 by record-
ing the volume of fluid in the syringe as a function of time. A
CCD camera operating at 25 frames s−1 was used to make
movies, from which the coiling frequency was measured by
frame counting. The radius of the rope and the fall height
�especially for small fall heights� were measured on the still
images to within 0.02 and 0.2 mm, respectively. For large
heights we used a ruler to determine H to within 1 mm.

In the setup used to study high-frequency coiling �Fig. 2�,
silicone oil with viscosity �=300 cm2 s−1 fell freely from a
hole of radius a0=0.25 cm at the bottom of a reservoir. To
maintain a constant flow rate Q, the reservoir was made to
overflow continually by the addition of silicone oil from a
second beaker. Three series of experiments were performed
with flow rates Q=0.085, 0.094, and 0.104 cm3 s−1 and fall
heights 2.0 cm�H�49.4 cm. The coiling frequency was

measured by frame counting on movies taken with a high
speed camera operating at 125–1000 frames s−1, depending
on the temporal resolution required. The flow rate was mea-
sured to within 1% by weighing the amount of oil on the
plate as a function of time during the experiment. The radius
a1 of the rope just above the coil was measured from still
pictures taken with a high resolution Nikon digital camera

FIG. 1. �Color online� Experimental setup for low
frequencies.
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with a macro objective and a flash to avoid motion blur.
For both setups, the fall height H was varied using a me-

chanical jack. The values of H reported below are all effec-
tive values, measured from the orifice down to the point
where the rope first comes into contact with a previously
extruded portion of itself. The effective fall height H is thus
the total orifice-to-plate distance less the height of the previ-
ously extruded fluid that has piled up beneath the falling
rope.

III. STEADY COILING REGIMES

To set the stage for our investigation, we summarize
briefly here the four regimes of steady coiling �viscous,
gravitational, inertial, and inertio-gravitational� and the ex-
perimental evidence for their existence. For convenience, we
denote these regimes by the symbols V, G, I, and IG.

The first three regimes �V, G, and I� are defined by the
relative magnitudes off the viscous, gravitational, and inertial
forces acting on the “coil” portion of the rope, where defor-

mation occurs primarily by bending and twisting �as opposed
to stretching�. The total viscous �FV�, gravitational �FG�, and
inertial �FI� forces per unit length of the rope are �14,15�

FV � ��a1
4U1R−4, FG � �ga1

2, FI � �a1
2U1

2R−1, �1�

where a1 is the radius of the rope in the coil, R is the radius
of the coil itself, U1�Q /�a1

2 is the axial velocity of the fluid
within the coil, and g is the gravitational acceleration.

In the viscous �V� regime, both gravity and inertia are
negligible �FG ,FI�FV�, and coiling is driven entirely by
fluid extrusion, like the coiling of toothpaste squeezed from a
tube. To within a multiplicative constant, the frequency of V
coiling is �15�

�V =
Q

Ha1
2 , �2�

which is independent of viscosity because the velocity of the
rope is fully determined kinematically by the imposed injec-
tion rate. In the gravitational regime, the viscous forces that
resist bending are balanced by gravity with negligible inertia
�FG�FV�FI�, and the coiling frequency scale is �15�

�G = �gQ3

�a1
8 	1/4

. �3�

In the inertial regime, gravity is negligible and the
viscous forces are balanced by inertia �FI�FV�FG�. The
corresponding scale for the coiling frequency is �14�

�I = � Q4

�a1
10	1/3

. �4�

The frequency scales �2�–�4� all depend strongly on the ra-
dius a1 of the rope within the coil, which in the G and I
regimes is much less than the injected radius a0 because of
gravity-induced stretching. Because the parameter a1 plays
such a central role in setting the coiling frequency, we have
measured it in all our experiments.

Unlike the first three regimes, the frequency of IG coiling
is determined by the balance of forces acting on the long
“tail” portion of the rope above the coil, which behaves like
a whirling “viscous string” that deforms primarily by stretch-
ing. Gravity, centrifugal inertia, and the viscous forces that
resist stretching are all important here. Coiling at a fixed
height can occur with different frequencies, each of which is
proportional to the familiar pendulum frequency

�IG = � g

H
	1/2

, �5�

with constants of proportionality that depend weakly on the
dimensionless parameter gd2H2 /�Q �10�.

Figure 3 shows experimental evidence for the existence of
the four coiling regimes discussed above. The V and G re-
gimes appear clearly in Fig. 3�a�, which shows the coiling
frequency � �circles� measured as a function of height in an
experiment with Q=0.0038 cm3 s−1 performed using the
low-frequency setup �Fig. 1�. The frequency decreases
strongly as a function of height for 0.25 cm	H	0.8 cm,
and then becomes constant or increases slightly thereafter.

FIG. 2. �Color online� Experimental setup for high
frequencies.
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Because gravitational stretching of the rope is negligible
�a1�a0� for 0.25 cm	H	0.8 cm, the scaling law �2� for V
coiling implies

�V 
 H−1. �6�

The scaling law �6� is shown by the dashed line in Fig. 3�a�,
and agrees well with the experimental measurements for
0.25 cm	H	0.8. For comparison, the solid line shows the
coiling frequency predicted numerically for the parameters
of the experiment, including the effect of surface tension.
The trends of the numerical curve and of the experimental
data are in good agreement, although the latter are 15–20 %
lower on average for unknown reasons. The rapid increase of
frequency with height predicted by the numerical model for

H	0.25 cm corresponds to coiling states in which the rope
is strongly compressed against the plate. We were unable to
observe such states because the rope coalesced rapidly with
the pool of previously extruded fluid flowing away from it.

The G, I, and IG regimes appear in Fig. 3�b�, which
show measurements of coiling frequency vs height in an
experiment with �=300 cm2 s−1 and and Q=0.094 cm3 s−1

performed using the high-frequency setup �Fig. 2�. As the
height is increased, the coiling regime evolves from G
�4 cm	H	6 cm� through IG �6 cm	H	8 cm; multival-
ued� to I �H�8 cm�. The slope of the curve ��H�
for 9 cm	H	20 cm can be understood using a simple scal-
ing argument. In this height range, inertia is important in the
coil but not in the tail of the rope, where gravity is balanced
by the viscous forces that resist stretching. In the limit
a1�a0 corresponding to strong stretching, this force balance
implies �15�

a1 � �Q�/g�1/2H−1, �7�

which when combined with Eq. �4� yields

�I � H10/3. �8�

The scaling law �8� is shown by the dashed line in Fig. 3�b�
and is in reasonably good agreement with the experimental
measurements. The latter agree still more closely with the
full numerical solution �solid line�, which includes additional
effects such as surface tension that were neglected in the
simple scaling analysis leading to Eq. �8�. The steady de-
crease in the slope of ��H� for H�20 cm is due to the
increasing effect of inertia in the tail of the rope, which in-
hibits gravitational stretching and increases a1 relative to the
value predicted by Eq. �7�.

IV. TIME DEPENDENCE OF INERTIO-GRAVITATIONAL
COILING

In the laboratory, coiling in the IG regime is inherently
time dependent, taking the form of an aperiodic oscillation
between two quasisteady states with different frequencies for
a given fall height. Such an oscillation occurs, e.g., at
H�7 cm in the experiment of Fig. 3�b�. The typical appear-
ances of the two quasisteady states are shown �for a different
experiment� in Fig. 4. Note first that the coil radius
R�U1 /� is always smaller for the state with the higher
frequency, because the axial velocity U1 of the rope being
laid down �which depends only on the fall height� is nearly
the same for both states. Moreover, the total height of the
fluid “pile” beneath the coiling rope is greater for the high-

FIG. 3. Curves of angular coiling frequency vs fall height show-
ing the existence of four distinct coiling regimes: Viscous �V�,
gravitational �G�, inertio-gravitational �IG�, and inertial �I�. Experi-
mental measurements are denoted by circles and numerical calcu-
lations based on slender-rope theory �15� by solid lines. Error bars
on the experimental measurements of � and H are smaller than the
diameter of the circles in most cases. The typical appearance of the
coiling rope in the V, G, and I regimes is shown by the inset pho-
tographs. �a� Slow �inertia-free� coiling with
�=100 cm2 s−1, a0=0.068 cm, and Q=0.0038 cm3 s−1. The dashed
line shows the simplified viscous coiling scaling law �6�. �b�
Higher-frequency coiling with �=300 cm2 s−1, a0=0.25 cm, and
Q=0.094 cm3 s−1. The dashed line shows the inertial coiling scaling
law �8�.

FIG. 4. Coexisting coiling states in an experiment with �
=300 cm2 s−1, Q=0.041 cm3 s−1, d=0.15 cm, and H=4.5. �a� Low-
frequency state; �b� high-frequency state.
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frequency state. This is because the pile height is controlled
by a steady-state balance between two effects: Addition of
fluid �the coiling rope� at the top, and removal of fluid at the
bottom by gravity-driven coalescence of the pile into the
pool of fluid spreading on the plate. Now the coalescence
rate increases linearly with the pile height and the rate at
which fluid addition builds up the pile ��Q /4�Ra1� is
greater for the high-frequency state. The height of the pile
must therefore also be greater for this state.

Paradoxically, the origin of the time dependence of IG
coiling is revealed by the curves of ��H� for steady coiling.
These curves are multivalued in the height range correspond-
ing to the IG regime, implying that two or more steady states

can exist at a fixed fall height �e.g., 6 cm	H	8 cm in Fig.
3�b��. Maleki et al. �9� demonstrated that the �numerically
predicted� frequencies of these steady states are in fact iden-
tical to the frequencies of the two quasisteady states
observed in the laboratory.

Here we investigate the time dependence of IG coiling in
more detail, focusing on the multiplicity of the coexisting
states and the fine structure of the transitions between them.
We begin by noting that the multivaluedness of a given curve
��H� can be conveniently characterized by the number N of
turning �fold� points it contains. Here we define turning
points as points where d� /dH=� and d2� /dH2�0; thus
N=2 for the solid curve in Fig. 3�b�. Ribe et al. �16� showed
numerically that N is controlled primarily by the value of the
dimensionless parameter


1 = � �5

gQ3	1/5

, �9�

scaling as N�
1
5/32 in the limit 
1→�. The experiment of

Fig. 3�b� has 
1=313, which is not large enough for the

FIG. 5. �Color online� Rescaled coiling frequency as a function
of the rescaled fall height, for an experiment performed using the
low-frequency setup �Fig. 1� with �=1000 cm2 s−1, d=0.068 cm,
and Q=0.00258 cm3 s−1. Symbols: Experimental measurements ob-
tained with the fall height increasing �squares� and decreasing �tri-
angles�. Solid line: Prediction of the slender-rope numerical model.

FIG. 6. Intermediate “figure of eight” state for an experiment
with �=5000 cm3 s−1, Q=0.00145 cm3 s−1, d=0.068 cm, and
H=16.5 cm.

FIG. 7. �Color online� Coiling frequency as a function of time for the experiment of Fig. 5 and H=8.55 cm. The experimental
measurements are shown by circles and the numerically predicted frequencies for the fall height in question are represented by the horizontal
portions of the solid line. The symbol “8” indicates the appearance of an intermediate “figure of eight” state, as described in the text. The
“�” and “�” signs indicate counterclockwise and clockwise rotation, respectively. The oscillation shown is between the two lowest “steps”
in Fig. 5.
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multivalued character of ��H� to appear with full clarity.
Accordingly, we used our low-frequency setup �Fig. 1� to
perform an experiment with �=1000 cm2 s−1 and a very low
flow rate Q=0.00258 cm3 s−1, corresponding to 
1=8490.
The numerically predicted ��H� �Fig. 5, solid line� now has
N=6, with up to seven distinct steady states possible at a

fixed fall height �H /d�170�. The experimental measure-
ments �solid symbols in Fig. 5� group themselves along four
distinct branches or “steps” that agree remarkably well with
the numerical predictions, except for a small offset at the
highest step. To our knowledge, this is the first experimental
observation of four distinct steps in IG coiling �three were

FIG. 8. �Color online� Coil ra-
dius R as a function of height for
eight experiments with different
values of �
1 ,
2�. �a� �297, 2.8�;
�b� �465, 2.35�; �c� �1200, 2.08�;
�d� �1742, 2.99�; �e� �3695, 2.19�;
�f� �7143, 3.67�; �g� �9011, 3.33�;
�h� �10052, 3.18�. The circles and
the solid line show the experimen-
tal measurements and the predic-
tions of the slender-rope numeri-
cal model, respectively.
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seen by �10��. We did not observe any coiling states along
the backward-sloping portions of the ��H� connecting the
steps, probably because these states are unstable to small
perturbations �16�.

We turn now from the coexisting states themselves to the
transitions between them. These occur spontaneously, and

appear to be initiated by small irregularities in the pile of
fluid already laid down beneath the coiling rope. In most �but
not all� cases, the transition occurs via an intermediate “fig-
ure of eight” state, an example of which is shown in Fig. 6.
During, e.g., a low- to high-frequency transition, the initially
circular coil first changes to a “figure of eight” whose largest

FIG. 9. �Color online� Rope
radius a1 within the coil as a func-
tion of height, for the same ex-
periments as in Fig. 8.
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dimension is nearly the same as the diameter of the starting
coil. The new, high-frequency coil then forms over one of the
loops of the “figure of eight.” If the new coil forms over the
loop of the “eight” that was laid down first, the sense of
rotation �clockwise or counterclockwise� of the new coil is
the same as that of the old. If, however, the new coil forms
over the second loop, the sense of rotation changes.

Further understanding of the transition can be gained by
measuring the coiling frequency and the sense of rotation as
a function of time �Fig. 7�. The experimental measurements
�circles� show a clear oscillation between two states whose
frequencies agree closely with the numerically predicted fre-
quencies of steady coiling at the fall height in question �hori-
zontal portions of the solid line�. The oscillation is irregular,
with no evident characteristic period, in keeping with the
hypothesis that transitions are initiated by irregularities in the
fluid pile. The only clear trend we were able to observe was
that the low-frequency state tends to be preferred when the
coiling occurs close to the G regime �i.e., for lower heights�,
while the high-frequency state is preferred near the I regime
�greater heights�. The sense of rotation �indicated by the
symbols “�” or “�” in Fig. 7� usually changes during the
transition, but not always. All the transitions in Fig. 7 occur
via an intermediate “figure of eight” state �indicated by the
symbol “8”�, but in other experiments we have observed the
“figure of eight” without any transition, as well as transitions
that occur without any “figure of eight.”

V. RADIUS OF THE COIL AND THE ROPE

The expressions �1� show that the forces per unit length
acting on the rope depend critically on the radius R of the
coil and the radius a1 of the rope within the coil. Here we
present a systematic series of laboratory measurements of R
and a1, and compare them with the predictions of the
slender-rope numerical model �15�. Most previous experi-
mental studies of liquid rope coiling have focused on mea-
suring the coiling frequency. Only a few �8,9� have measured
the radius a1 in addition, and none �to our knowledge� has
presented measurements of the coil radius R.

The measurements we present here were obtained in eight
experiments with different values of �, d, and Q. For conve-
nience, we characterize each of these experiments by its as-
sociated values of the dimensionless parameters 
1 and 
2,
where 
1 is defined by Eq. �9� and


2 = � �Q

gd4	1/4

. �10�

Figure 8 shows the coil radius R as a function of the height
for the eight experiments. The agreement between the mea-
sured values and the numerics �with no adjustable param-
eters� is very good overall. The coil radius is roughly con-
stant in the G regime, which is represented by the relatively
flat portions of the numerical curves at the left of panels �b�,
�c�, �d�, �e�, �g�, and �h�. The subsequent rapid increase of the
coil radius with height corresponds to the beginning of the
IG regime. At greater heights within the IG regime, the coil

radius exhibits a multivalued character similar to the one we
have already seen for the frequency �e.g., Fig. 5�.

The structure of the curves a1�H� �Fig. 9� is much simpler,
exhibiting in most cases a monotonic decrease as a function
of height that reflects the increasing intensity of gravitational
stretching of the falling rope. The only significant departures
from the simple structure are the rapid decrease of a1 as a
function of H in the V regime �leftmost portions of panels �f�
and �g�� and a small degree of multivaluedness in the IG
regime. The agreement between the measured values and the
numerics is good, although the latter tend to be somewhat
lower than the former on average.

VI. SECONDARY BUCKLING

In the high-frequency inertial regime, the rapidly coiling
rope can pile up to a great height, forming a hollow fluid
column whose length greatly exceeds the rope diameter.
When the height of the column exceeds a critical value Hc, it
collapses under its own weight �Fig. 10�, and the process
then repeats itself with a well-defined period that greatly ex-
ceeds the coiling period. We call this phenomenon “second-
ary buckling,” as opposed to the “primary” buckling that is
responsible for coiling in the first place.

As a first step towards a physical understanding of sec-
ondary buckling, we apply dimensional analysis to measure-
ments of the critical height from 13 different laboratory ex-
periments. The critical buckling height Hc can depend on the
fluid density �, the kinematic viscosity �, the surface tension
coefficient �, the coil radius R, the rope diameter d1�2a1,
and the flow rate Q, or �equivalently� the effective velocity
U0�Q /2�d1R at which fluid is added to the top of the col-
umn. From these seven parameters four dimensionless
groups can be formed, which we take to be

G0 =
Hc

d1
, G1 =

�U0

gd1
2 , G2 =

�

�gd1
2 , G3 =

R

d1
. �11�

The groups G0, G1, and G2 are identical to those used by
Yarin and Tchavdarov �17� �henceforth YT96� in their study
of the onset of buckling in plane liquid sheets. Buckingham’s

-theorem now implies

Hc

d1
= f�G1,G2,G3� , �12�

where the functional dependence remains to be determined.

FIG. 10. Secondary buckling of the coil in the inertial regime, in
an experiment performed using the high-frequency setup �Fig. 2�
with �=125 cm2 s−1, d=0.15 cm, Q=0.072 cm3 s−1, H=14 cm, and
a1=0.7 mm. Time between two photographs is nearly 0.1 s.
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Figure 11 shows the measured values of Hc /d1 for our
thirteen experiments as functions of �a� G1, �b� G2, and �c�
G3. For comparison, Fig. 11�a� also shows the critical buck-
ling height for plane liquid sheets �17�, which is independent
of the surface tension for G1�20 when G2�0.9 �the largest
value of G2 considered by YT96�.

Figure 11�a� shows that the buckling height depends sys-
tematically on the dimensionless flow rate G1. The trend
of the data is roughly consistent with the slope
d�ln Hc� /d�ln 
1��0.2 for a planar film �solid line in Fig.
11�a��, although the heights we observed were about 25%
larger. Our observed heights also depend systematically on
the inverse Bond number G2 �Fig. 11�b��. This dependence
has no analog in the case of a planar film, for which the
predicted value of Hc at high flow rates is independent of the
surface tension �17�. Finally, our measurements show no sys-
tematic dependence on the coil radius R �Fig. 11�c��, al-
though we note that the total range of the parameter R /d1 is
less than a factor of 2 in our experiments.

The comparison of our measurements with YT96’s theo-
retical predictions for a planar film must be interpreted with
caution for several reasons. First, the geometries are quite
different: YT96’s steady basic state is a two-dimensional
sheet whose thickness becomes infinite at its point of contact
with the plate, whereas ours is a cylinder whose wall thick-
ness is everywhere finite. Moreover, the sheets studied by

YT96 are clamped at both ends, whereas the upper rim of our
cylinder is free to move. A further consequence of this dif-
ferent boundary condition is that surface tension acting on
the cylinder’s rim exerts an additional downward force that
has no analog in the problem studied by YT96. Finally, at
high flow rates the theoretical predictions of YT96 are not in
good agreement with the laboratory experiments of Cruicks-
hank �3,4�, which show that Hc is nearly independent of the
flow rate. Clearly, further theoretical work is required to un-
derstand the stability of a viscous cylinder with a free upper
rim. A study of this problem is currently underway and will
be reported separately.

VII. CONCLUSION

We have combined laboratory measurements with nu-
merical modeling to investigate three little-explored aspects
of liquid rope coiling: The time dependence of inertio-
gravitational coiling, the dependence of the radii of the coil
and the rope on the experimental parameters, and the “sec-
ondary buckling” of the columnar structure generated by in-
ertial coiling. In the IG regime, we have documented experi-
mentally the existence of four distinct branches of
quasisteady coiling states in the frequency-fall height space.
Moreover, detailed measurements of the coiling frequency as
a function of time demonstrate that the transitions between
coexisting states have no characteristic period, may take
place with or without a change in the sense of rotation, and
usually �but not always� occur via an intermediate “figure of
eight” state. We present extensive laboratory measurements
of the radii of the coil and of the rope within it and show that
they agree well with the predictions of a “slender-rope” nu-
merical model. Finally, we have shown that the critical col-
umn height for secondary buckling varies with the flow rate
in a way that is consistent with previous results for buckling
planar sheets, but that there is an additional dependence on
the surface tension that has no analog for a sheet.
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