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Leading order Lyapunov exponents and their corresponding eigenvectors have been computed numerically
for small aspect ratio, three-dimensional Rayleigh-Benard convection cells with no-slip boundary conditions.
The parameters are the same as those used by Ahlers and Behringer �Phys. Rev. Lett. 40, 712 �1978�� and
Gollub and Benson �J. Fluid Mech. 100, 449 �1980�� in their work on a periodic time dependence in Rayleigh-
Benard convection cells. Our work confirms that the dynamics in these cells truly are chaotic as defined by a
positive Lyapunov exponent. The time evolution of the leading order Lyapunov eigenvector in the chaotic
regime will also be discussed. In addition we study the contributions to the leading order Lyapunov exponent
for both time periodic and aperiodic states and find that while repeated dynamical events such as dislocation
creation/annihilation and roll compression do contribute to the short time Lyapunov exponent dynamics, they
do not contribute to the long time Lyapunov exponent. We find instead that nonrepeated events provide the
most significant contribution to the long time leading order Lyapunov exponent.
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I. INTRODUCTION

Spatiotemporal chaos in Rayleigh-Bénard convection was
discovered by Ahlers and Behringer �1�, Maurer and Libch-
aber �2�, and Gollub and Benson �3�. In 1978, Ahlers and
Behringer reported that as a control parameter was increased
�here the temperature difference between the top and bottom
plates�, they found a transition to aperiodic time dependence
in heat transport measurements of cylindrical Rayleigh-
Bénard convection cells for a variety of aspect ratios. They
also noted that as the aspect ratio � �defined in Eq. �4�� was
increased, the critical value of the control parameter for this
transition decreased. Maurer and Libchaber studied rectangu-
lar convection cells and discovered frequency locking fol-
lowed by a period doubling cascade to chaos, as the same
control parameter was increased. They also observed hyster-
esis in these systems. Gollub and Benson performed visual-
izations on rectangular convection cells and found many of
the signatures of chaos, including period-doubling bifurca-
tions, entrainment, and intermittency. These three works pro-
vided strong evidence that Rayleigh-Bénard convection sys-
tems were chaotic for certain parameters. However, the
Lyapunov exponents for experimentally realistic systems
have never been computed. We will show that these systems
are indeed chaotic in the sense of having a positive
Lyapunov exponent.

We also test if the claims in the Egolf et al. �4� study can
be generalized. Egolf et al. computed the Lyapunov spectral
density for large aspect ratio Rayleigh-Bénard systems which
exhibit spiral defect chaos �SDC�. They demonstrated that
the Lyapunov spectral density was extensive in that it scaled
with system size. However, they used periodic boundary
conditions. Lyapunov exponents have never been computed
for realistic boundary conditions or for any other Rayleigh-
Bénard convection system.

The Egolf paper also looked at visualizations of the
perturbation field corresponding to the largest Lyapunov

exponent �this perturbation field is also known as the
Lyapunov eigenvector�, and demonstrated that the regions
where the perturbation grows are relatively localized and are
correlated with dynamical events such as roll breaking or
reconnection. They also found that these dynamical events
were correlated with large spikes in the short-time dynamics
of the leading order Lyapunov exponent. The Egolf paper
makes the conclusion that the mechanism for generating
chaotic dynamics in SDC is roll breaking or reconnection.

We will focus here on the experiments by Ahlers and
Behringer �1,5–7� for small aspect ratio cylindrical cells
��=2.08 and 4.72� in addition to the experiments performed
by Gollub and Benson �3� for small rectangular cells �dimen-
sion 3.50�2.08�. We have published our results for larger
aspect ratio �10���40� elsewhere �8�, since we used the
larger aspect ratio simulations to study rotating Rayleigh-
Bénard convection. However, the larger aspect ratio systems
show incredibly complicated spatiotemporal dynamics with
numerous defects and domain walls. We wanted to focus
here on smaller aspect ratio cells, where the creation and
annihilation of defects are more isolated, to see if the claim
about the mechanism of chaos is true in general.

We show the results of our detailed investigation of the
contribution of dislocation creation and annihilation events
to the leading order Lyapunov exponent �1. While we do find
that dislocation events are highly correlated with the short
time dynamics of �1, we find that not all dislocation events
are associated with contributions to the long time average of
�1. We will also discuss the quantity S�, the running sum of
the logarithm of the stretching, which we find is more useful
for understanding the chaotic dynamics than either the short-
time Lyapunov exponent or the long-time average Lyapunov
exponent. We find the short-time Lyapunov exponent can
be somewhat misleading, since it can fluctuate wildly
even when the overall average Lyapunov exponent is either
zero or negative. Blindly computing the long-time average
Lyapunov exponent can also be misleading, since transient
dynamics can make a significant contribution to the
exponent, or require much longer evolution times for
convergence.*Electronic address: jscheel@caltech.edu
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II. NUMERICAL METHODS

A. Boussinesq equations

The system is modeled by the Boussinesq equations �9�,
which consist of a modified Navier-Stokes equation �1�, the
heat equation �2�, and incompressibility �3�. The equations
are

�−1��t + u · ��u = − �P + �2u + �ẑ , �1�

��t + u · ��� = �2� + Rw , �2�

� · u = 0. �3�

The variables are nondimensionalized by specifying the
length in terms of the cell height d, the temperature in terms
of temperature difference between the top and bottom plate
	T, and the time in units of the vertical thermal diffusion
time 
v=d2 /�, where � is the thermal diffusivity. The vari-

able u�r , t� is the velocity field, P�r , t� is the pressure, and
��r , t� is the temperature deviation from the linear conduc-
tion profile. The symbol �t indicates time differentiation and
ẑ is a unit vector in the vertical direction. The Prandtl num-
ber �=� /�, where � is the kinematic viscosity. The Rayleigh
number R=
g	Td3 /��, where 
 is the thermal expansion
coefficient and g is the acceleration of gravity.

The aspect ratio for cylindrical regions is defined as

� =
radius

depth
. �4�

The control parameter � is defined as

� =
R − Rc

Rc
, �5�

where Rc is the critical Rayleigh number at which conduction
gives way to convection.

We use no-slip velocity boundary conditions along the
walls �as written in a cylindrical coordinate system�

ur = u� = uz = 0 at r = �, and z = 0,1. �6�

For our temperature boundary conditions, we use constant
values along the top and bottom plates

� = 0, at z = 0,1. �7�

For the sidewalls we use either conducting

� = 0 at r = � �8�

or insulating thermal boundary conditions

�r� = 0 at r = � . �9�

To solve the Boussinesq equations, we have used the code
Nek5000, a highly efficient, parallel, spectral element code
developed to solve the Navier-Stokes equation. The details of
the code are described elsewhere �10–13�.

Ahlers and Behringer �1� measured heat transport using
the Nusselt number, defined as the ratio of the total heat
transported across the cell divided by the heat transported via
conduction only. Hence if the Nusselt number is one, there is
only conduction, and if the Nusselt number is greater than 1,
there is convection as well. To allow for a simpler compari-
son, the reduced Nusselt number N is studied: this is the
Nusselt number minus one, which goes through zero at the
onset of convection.

B. Computation of Lyapunov exponents

The leading order Lyapunov exponent is defined as the
measure of the exponential stretching of the nearby trajecto-
ries y�t� and y�t�+�y�t�. We define y�t�= �u ,�� as the
�4�N�-dimensional array describing the state of the N fluid
elements as a function of time and �y�t�= ��u�t� ,���t�� as
the corresponding perturbation field. The leading order
Lyapunov exponent is then found by averaging over the en-
tire fluid volume, as described below. The pressure P can be
determined from y and the perturbation pressure �P can be
determined from �y.

FIG. 1. Snapshot of temperature deviation � at the midplane, for
�=2.08, �=0.78 and �a� R=10 000, t=20, �b� R=10 000, t=66.2,
�c� R=18 800, t=29.3. Lateral temperature boundary conditions are
insulating. The gray denotes the conduction value ��=0�, and the
lighter and darker shades give the values above and below this.
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If two states of the fluid differed initially by the small
amount �y�0�, then we can track the evolution of the
perturbation by the linearized equations

d�y

dt
= J�y�t���y , �10�

where J is the Jacobian of the system. If we define the full
field evolution equations �1�–�3� as dy�t� /dt=F�y� then
J=�F /�y. In our case, the specific equations are

�−1���t + u · ���u + ��u · ��u� = − ��P + �2�u + ��ẑ ,

��t + u · ���� + ��u · ��� = �2�� + R�w ,

� · �u = 0. �11�

The leading Lyapunov exponent �1 is then defined as
�14–18�

�1 = lim
t→�

1

t
ln� ��y�t��

��y�0��� , �12�

where the normalization is defined over the interior volume
V as

��y�t�� =�1

V
	

V

�Rc�u�t�2 + ����t�2�dV . �13�

We have chosen the above normalization to be consistent
with the inner product used by Cross �19� in his analytical
work.

Likewise, the instantaneous leading Lyapunov exponent is
defined as �4,8�

�1
inst =

d

dt
ln� ��y�t��

��y�0��� . �14�

The above quantity is useful for studying how �1 varies over
short time intervals.

Another useful quantity is S�, which we define as

S� = ln� ��y�t��
��y�0��� . �15�

The slope of S� versus time gives an approximate value for
�1 and the derivative of S� versus time is �1

inst.
We find �1 and �1

inst by numerically integrating the full
fields �1�–�3� concurrently with the perturbation fields �11�.
We start the initial conditions for the full fields as small,
random values, and for the perturbation field as random val-
ues as well �about 100 times smaller�. We find it useful to
renormalize the perturbation fields after a certain amount of
time, to avoid overflow errors. Then we compute S� from the
normalization factors �20�.

III. RESULTS

The results shown here use the same parameters as the
experiments by Ahlers and Behringer �1� and Gollub and

FIG. 2. Same as Fig. 1 but for a rectangular cell of dimensions
3.50�2.08, �=2.5 and �a� R=42 500, t=25.78, �b� R=52 110,
t=54.2, �c� R=56 000, t=24.1. Lateral temperature boundary con-
ditions are insulating. The power spectral density of these states is
shown in Fig. 3.

FIG. 3. The power spectral density of the Nusselt number as a
function of frequency for the states shown in Fig. 2.

LYAPUNOV EXPONENTS FOR SMALL ASPECT RATIO... PHYSICAL REVIEW E 74, 066301 �2006�

066301-3



Benson �3�. For the experiments by Ahlers and Behringer, we
use a Prandtl number � of 0.78 and investigate aspect ratios
� � 2.08 and 4.72. We use a time resolution dt of 0.001 and
a spatial resolution dx of 0.1 for �=4.72, and a dt of 0.0001
and dx of 0.05 for �=2.08. For the experiments by Gollub
and Benson we use a rectangular cell of dimensions
3.50�2.08, a � of 2.5, insulating boundary conditions, a dt
of 0.0001, and a dx of 0.08.

We verified convergence both with respect to spatial and
temporal resolutions. We also verified that our results were
independent of the initial perturbation field �see Ref. �11� for
details�. We chose our resolution to give us an accuracy of
1�10−3 for the evolution of our fluid elements �this
achieved the best balance between accuracy and integration
time�. Note that the error in the Lyapunov exponent will be
somewhat larger since it requires an average over long evo-
lution times and the convergence can be rather noisy. We

needed a finer resolution for the smaller aspect ratios, since
the Rayleigh numbers required for chaos were much larger,
as shown in Fig. 9.

We will explore a variety of Rayleigh numbers R both
before and after the transition to aperiodic time dynamics.
We use insulating thermal sidewall boundary conditions for
the �=2.08 and rectangular cases, which most closely re-
sembles the experiments �7,11�. We use conducting boundary
conditions for the �=4.72 case to be consistent with Ref.
�21�, but the boundaries should matter less in the larger
aspect ratio system.

A. Visualizations

Ahlers and Behringer did not perform any visualizations
of their cells, so we have provided a few pictures of the
smallest aspect ratio cells. A plethora of different states exists
in these tiny cells as shown in Fig. 1. Note that Figs. 1�a� and
1�b� correspond to the same R, but occur at different times.
The three states have also been seen in recent experimental
visualizations by Hof et al. �22�, and computed by Borońska
and Tuckerman �23� along with a variety of other planforms.

In Fig. 2 we show visualizations of the rectangular cells.
The two-roll system shown in Figs. 2�a� and 2�b� are similar
to those observed by Gollub and Benson. The noisy dynam-
ics in Fig. 2�c� was not visualized by Gollub and Benson. It
is interesting to note that the roll orientation has switched
from Fig. 2�b� to 2�c�. The power spectral density of the
Nusselt number is reported in Fig. 3 for the corresponding
Rayleigh numbers in Fig. 2. We find a periodic state for R
=42 500 as evidenced by the single frequency in Fig. 3�a�
�and its harmonics�. We find a quasiperiodic state at R
=52110, since two incommensurate frequencies are present
in Fig. 3�b�. Finally we see a very broad power spectrum for
the chaotic state at R=56000 as shown in Fig. 3�c�. Similar
power spectra were also observed by Gollub and Benson.

We have also found it productive to visualize the tempera-
ture perturbation field. When we looked at stationary systems
we found the perturbation field to be extended, asymmetric
and stationary. In contrast, we found that the perturbation
field for systems with time dependence in the Nusselt num-
ber �either periodic or aperiodic� is characterized by local-
ized bursts associated with some type of dynamical event
such as defect creation or roll compression. This has also
been seen by Egolf et al. �4� for larger aspect ratio �but using
periodic boundary conditions�, and for the parameter regime
where SDC exists.

In Fig. 4 we have plotted an overlay of a grayscale density
plot of the temperature perturbation field �� and a contour
plot of the full temperature field �. We plot an overlay to
determine if localized activity in the perturbation field corre-
sponds to certain features in the full field. For the parameters
in Fig. 4, the system is undergoing oscillatory dynamics �24�.
It oscillates between the state in Fig. 4�a� to its reflection in
Fig. 4�c� and then back to a state which is similar to Fig.
4�a�. The associated perturbation field shows a small, local-
ized region of activity near the center whenever the system
switches from one orientation to its inverted orientation. This
can be seen in Fig. 4�b�. This behavior is somewhat dwarfed

FIG. 4. Overlay of a grayscale density plot of the midplane
temperature perturbation field �� �same color scheme as in Fig. 1�
and a contour plot of the midplane full temperature field �. The
parameters are �=2.08, �=0.78, R=18 800, �a� t=29.36, �b� 29.39,
�c� 29.43. Lateral temperature boundary conditions are insulating. A
visualization of the temperature field is given in Fig. 1�c�.
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by the extremely large activity near the edge of the cell. We
do not have an explanation for the source of this activity.

In Fig. 5 we show a similar overlay plot for a �=4.72
cell. This time sequence shows that the creation of a dislo-
cation pair is accompanied by a rather large spike in the
perturbation field exactly where and when the defects are
created.

Finally in Fig. 6 we show an overlay plot for the periodic
state of the rectangular cell shown in Fig. 2�a�. This periodic
sequence starts with the two-roll state shown in Fig. 6�a�.
Then a “bubble” forms in the middle of the cell as shown in
Fig. 6�b�. Then this bubble climbs until it dissipates as shown
in Fig. 6�c�. Then the sequence repeats. Notice that there is a
large region of activity in the perturbation field when the
bubble is formed in Fig. 6�b�. We also see activity along the
sidewalls which is associated with the roll distortion that
occurs there. In all cases �Figs. 4–6�, the increase in the
perturbation field activity is associated with a spike in �1

inst.

B. Positive leading order Lyapunov exponents

We computed the quantity �1 �12� for a variety of param-
eters, and found it to be positive in the régimes where Ahlers
and Behringer and Gollub and Benson detected an aperiodic
time dependence in N. For example, in Fig. 7 we have plot-
ted S� �15� versus time for �=2.08, �=0.78, R=18 800 and
insulating boundary conditions �solid line�. We see a general
upward trend to S� as a function of time, and the long time
average slope is �1=0.71±0.09. This system shows chaotic
behavior to at least 54 vertical diffusion times, which is quite
long considering a horizontal diffusion time is equal to
�2
4 for this case. The horizontal diffusion time is approxi-
mately the time it takes for a fluid particle to diffuse across
the cell. We determined our error in �1 by dividing the time
series S� into approximately 6–8 equal parts, finding the
slope, and hence �1 associated with each smaller time series.
The mean of these values is close to the �1found from the
slope of the entire time series and the error is determined by
finding the standard deviation of these values �divided by the
square root of the number of values�.

We also computed �1 for the larger aspect ratio case
�=4.72, �=0.78, R=6950 and with conducting boundary

FIG. 5. Same type of plot as in Fig. 4 but for the following
parameters: �=4.72, �=0.78, R=2800, �a� t=427.8, �b� 438, �c�
448.2. Lateral temperature boundary conditions are conducting.

FIG. 6. Same type of plot as in Fig. 4 but for a rectangular cell
of dimensions 3.50�2.08, �=2.5, R=42500, and �a�t=25.77, �b�
25.78, �c� 25.79. Lateral temperature boundary conditions are
insulating. A visualization of the temperature field is given in Fig.
2�a�.
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conditions as shown in the dashed line of Fig. 7. Again
we see a long time upward trend, and the slope is
�1=0.62±0.06. Finally we computed �1 for the chaotic state
of the rectangular cell of dimensions 3.50�2.08, �=2.5,
R=56 000, and insulating boundary conditions. We find a
very steady, very large long time upwards trend as shown in
Fig. 8. The slope gives a �1=7.3±0.3, indicating the chaos is
much stronger in this system. These positive exponents
prove that these aperiodic systems are truly chaotic in the
sense of exponential divergence of nearby trajectories.

We have plotted the �1 values for variety of � values in
Figs. 9 and 10. We see similar behavior for all three of our
convection cells. We find that �1 is zero when the cells ex-
hibit periodic or quasiperiodic behavior �or at least zero
within our limit of accuracy�. We find �1 is positive, and
increases with � when the cells exhibit nonperiodic behavior.
Note that the first data point in Fig. 9�a� does correspond to
the steady state shown in Fig. 15 for t�50. However, all of
the other data points correspond to either periodic or aperi-
odic dynamics. For the �=2.08 cell �Fig. 9�a��, we find pe-
riodic behavior for 4.8���8.8, and a transition to chaos
somewhere between 8.8���9.4. Likewise for �=4.72 �Fig.
9�b��, we find periodic behavior for 0.6���1.56 and
a transition to chaotic behavior for 1.56���1.64. These
results are consistent with the results of Ahlers and Behringer
who found a transition to chaos for ��10 for the �=2.08
cell and ��1 for the �=4.72 cell. Finally for our rectangular
system �Fig. 9�c�� we find periodic behavior for
21���26 and a transition to chaos for 26���27. Like-
wise these results are consistent with Gollub and Benson
who found a transition to chaos for �=27.

Although we have computed a �1 value equal to zero for
all periodic states, we find negative �1 values associated with
steady states near threshhold, as is plotted in Fig. 10 for our
rectangular cells. We also see a peak in the �1 as we go
through thershhold, as is expected for a bifurcation �18�.

We have also computed how �1 scales with � and � for
our larger aspect ratios and rotating Rayleigh-Bénard con-
vection �8�. We find that �1 scales linearly with � as pre-
dicted theoretically �25�. We found an unexpected noninten-
sive scaling of �1 with �. We have not explored the scaling
of �1 with � or � in any detail for our smaller aspect ratios,
since the dynamics is much more variable in the smaller
aspect ratios. For example, Hof �22� has shown that eight
different states coexist for ��2. It would be very difficult to

FIG. 7. The quantity S� versus time. The slope of each graph
converges to its respective �1, which is positive, indicating these
systems are chaotic. We used the following parameters. Solid line:
�=2.08, �=0.78, R=18 800, insulating boundaries. The associated
dotted line is the slope taken from seven vertical diffusion times and
up and gives �1=0.71±0.09 �a visualization of this state is shown in
Figs. 1�c� and 4�. Dashed line: �=4.72, �=0.78, R=6950, conduct-
ing boundaries. The slope �associated dotted line� is taken from 10
vertical diffusion times and up and gives �1=0.62±0.06.

FIG. 8. The same as Fig. 7 but for a rectangular cell of dimen-
sions 3.50�2.08, �=2.5, R=56 000, insulating boundaries. The
slope �associated dotted line� is taken from seven vertical diffusion
times and up and gives �1=7.3±0.3. A visualization of this state is
shown in Fig. 2�c�.

FIG. 9. The quantity �1 versus � for the following: �a� �=2.08,
�=0.78, Rc=1708, insulating boundaries, �b� �=4.72, �=0.78,
Rc=1708, conducting boundaries, �c� rectangle of dimensions
3.50�2.08, �=2.5, Rc=1930, insulating boundaries. In all cases
the computed �1 is the value corresponding to the state the system
converges to after a long period of time. Initial transient states and
the contribution they make to �1 were neglected.
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distinguish between trends as a result of a transition to a
different state versus trends due to an increase in R and � for
the same state. In addition, these systems often undergo tran-
sitions to different states after a long evolution time �see Fig.
15�, making such a comparison doubly difficult.

C. Short time dynamics of leading Lyapunov exponents

We would like to use the short time dynamics of �1 to
identify sources of chaos. It was suggested by Egolf et al.
�4�, who studied the SDC state of Rayleigh-Bénard convec-
tion, that roll breaking and reconnection events caused spikes
in the short time Lyapunov exponent �1

inst, which in turn
provided the most significant contributions to the long time
Lyapunov exponent �1. By looking at small aspect ratio
cells, we have determined that this claim is not true in
general.

We will analyze in detail a rather simple, almost periodic
state for �=4.72, �=0.78, and R=2800 �corresponding to
�=0.64�. These states have already been investigated by Paul
et al. �21� and the dynamics is shown in Fig. 11 for a long
time series. The first panel shows the reduced Nusselt num-
ber N as a function of time. One sees the pattern is almost
periodic after t=150 vertical diffusion times. There is a char-
acteristic pattern to the dislocation creation and annihilation
events. For example, the large dip in the first panel at
t=438.36 corresponds to the dislocation pair creation shown
in Fig. 5�b�, and is immediately followed by dislocation
climb to the opposite sides of the container shown in Fig.
5�c�. Then the dislocations slowly glide along the rim until
they are annihilated successively. The annihilation of the first
dislocation occurs at t=526, and the second dislocation is
annihilated at t=662, just before the next creation event at
t=675.76. Note that each dislocation event is associated with
a spike in S� �second panel�. However, after the sequence
occurs, there is little net rise in S� �26�. This can be seen in
the relatively flat regions of S� in the second panel, such as
400� t�700 and 1100� t�1400. This indicates that while
a dislocation creation/annihilation event is associated with a
localized stretching of phase space, it is not associated with
the long time Lyapunov exponent.

We have also plotted �1
inst as a function of time in the third

panel of Fig. 11. While each dislocation event does cause a
burst of activity in �1

inst, it is very difficult to tell from look-
ing at �1

inst which dislocation events contribute to the long-
time exponent �1, hence we prefer to look at S� versus time.
This is reinforced in the fourth panel where we show �1
versus time. The quantity �1�t� is found by evaluating Eq.

FIG. 10. The same as Fig. 9�c�, but very near threshhold.

FIG. 11. First panel: Reduced Nusselt number N as a function of
time t for �=4.72,�=0.78, R=2800, conducting boundaries. Sec-
ond panel: Corresponding S� as a function of time t. Third panel:
Corresponding �1

inst as a function of time t. Fourth panel: Corre-
sponding �1 as a function of time t. A visualization of this state is
shown in Fig. 5.

FIG. 12. Shifted S� versus shifted t to compare the events. Ap-
proximately 250 vertical diffusion time sections of the S� versus t
plot in Fig. 11 have been shifted horizontally and vertically to
coincide with the peak at t=202.92, corresponding to a dislocation
pair creation. The defect annihilation peaks are also highlighted as
“d1,” corresponding to the preceding first defect annihilation and
“d2,” corresponding to the second. Legend: thin solid line, peak
t=202.92, dashed line, peak t=438.36, dashed-dotted line, peak
t=675.76, thick solid line, peak t=1120, dotted line, peak
t=1349.2.
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�12� from some initial time tinit to the time t. Note that the
value of �1 remains positive, because of the large initial tran-
sients, including the one at t=300. It is much more accurate
to find �1 from evaluating the slope of S�, selecting the re-
gion where the transients have died out. When we do this, we
obtain �1=0.000±0.001 for the state shown in Fig. 11.

We focus in more detail on the dislocation/creation events
in Fig. 12, where successive time intervals of about 250 ver-
tical diffusion times have been shifted horizontally and ver-
tically to correspond to the dislocation pair creation peak at
t=202.92. One sees that the dislocation pair creation events
neatly overlap. One also sees a return to almost the exact
same S� value after the event. Hence one can conclude that
these repeated dislocation events are not associated with a
positive �1. If we compare the most regular cases,
t=675.76 �dashed-dotted line� and t=1329.2 �dotted line�,
we see that even the preceding first dislocation annihilation
events located near t�shifted��50 overlap. However, note
that the other preceding first dislocation annihilation events
do not overlap �look at the thick solid line, corresponding to
t=1120 and the dashed line corresponding to t=438.36�. Vi-
sualization of these regions show a different pattern to the
events at those times. It is precisely these regions where one
sees the largest rise in S�. The rise at t=300 does correspond
to an unusual roll pinch-off event, however the rise between
900� t�1100 only corresponds to a slower than average
first dislocation annihilation. Likewise, at t=800, the first
dislocation annihilation event is almost immediately
followed by the second dislocation annihilation and pair
creation events.

One sees further support for this by looking at other Ray-
leigh numbers. The results for R=4000 are plotted in Fig. 13.
Here the defect creation and annihilation events arrive at a
much higher frequency. We also see that after t=100 there is
an almost perfect periodicity to the pattern, hence one finds
no rise in S�, and possibly a very slight decline. Conversely,
for systems exhibiting non-repeated events in the Nusselt
number, one sees S� exhibiting an overall positive slope
�such as in Figs. 7 and 8�.

Finally we show the results for the periodic state of the
rectangular cell in Fig. 14. This state does not involve a
defect creation or annihilation event, but instead the roll
compression event described in Fig. 6. We have only shown
the last two vertical diffusion times, since the oscillation fre-
quency is so large in this system. However, the system was
run out from zero to 23 vertical diffusion times. We again see
that a periodic system gives us a zero �1, even though the
short time dynamics of �1 are very strong.

Hence we conclude that dynamical events such as dislo-
cation creation/annihilation and roll compression events are
not always associated with an overall net rise in S� and hence
�1. For all the cases we have studied �over twenty different
cases, each ran out to at least fifteen vertical diffusion times,
see Ref. �11� for details� we find that if the dynamical events

FIG. 13. Top panel: Reduced Nusselt number N as a function of
time t for �=4.72,�=0.78, R=4000, conducting boundaries.
Bottom panel: Corresponding S� as a function of time t.

FIG. 14. Top panel: Reduced nusselt number N as a function of
time t for a rectangular cell of dimensions 3.50�2.08,�=2.5,R
=42500, insulating boundaries. Bottom panel: Corresponding S� as
a function of time t. Visualizations of this state are given in Figs.
2�a� and 6.

FIG. 15. Top panel: Reduced Nusselt number as a function of
time t for �=2.08,�=0.78,R=10 000, insulating boundaries. Bot-
tom panel: Corresponding S� versus time. A visualization of the
temperature field is given in Figs. 1�a� and 1�b�.
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are repeated, they are not associated with a positive �1, and if
they are not repeated they are associated with a positive �1.

D. Lyapunov exponents and stationary states

We wanted to verify that our Lyapunov solver was work-
ing by studying �1 in the régime where a time-independent
state was observed by Ahlers and Behringer. We choose an R
value of 10 000, well within the region of stationary, con-
vecting states specified by Ahlers and Behringer. We first
evolved the system out to about 20 vertical diffusion times
and did observe N converging to a constant value, as shown
in the top panel of Fig. 15 for t�20. The system settles
down to the roll state shown in Fig. 1�a�. However, we were
surprised to find that the quantity S� had a positive slope as
shown in the bottom panel of Fig. 15 for t�20. This indi-
cated that the system was in a transient state. When we
evolved the system even longer, we found that this parallel
roll state evolved into a state with noisy dynamics, which
lasted for another 20 vertical diffusion times. Then the sys-
tem settled into another stationary state, this time the
Mercedes-like pattern shown in Fig. 1�b�. This state has a �1
that is very slightly negative. Since �1 is no longer positive,
we can be assured that the system is now in its stationary
state. Without the knowledge of �1, however, we would not
be assured that this state is transient without running the
system out for a much longer time.

IV. CONCLUSIONS

We have shown that systems with an aperiodic time de-
pendence, as observed by Ahlers and Behringer and Gollub
and Benson, have positive leading order Lyapunov
exponents, hence they are indeed chaotic as defined by the
exponential divergence of nearby trajectories.

We have also visualized the evolution of the perturbation
field. For cases associated with a time-dependent Nusselt
number, the perturbation field consists of localized regions of
disturbances which coincide with some dynamical event.
Conversely perturbation fields corresponding to stationary
systems are extended, asymmetric and stationary.

Finally we have compared the correlations between S�

and hence �1 with dynamical events such as defect creation/
annihilation and roll compression events. While repeated dy-

namical events are associated with a temporary change in the
stretching rate of phase space, we do not find there to be an
overall net increase in S� and hence a positive �1. We find
instead that nonrepeated events are associated with a positive
�1. Hence the suggestion by Egolf that roll breaking and
reconnection events contribute significantly to the largest
Lyapunov exponent is incorrect, at least in a general sense.
Merely looking at �1

inst is insufficient to determine chaotic
dynamics. It is more productive to instead look at the long
time evolution of S�.

It is possible that one could have chaotic/nonperiodic ro-
tations of a pattern in a circular cell that would not show up
in the volume averaged leading order Lyapunov exponents
computed in this paper. It would be very interesting to extend
the numerical techniques developed in this paper to compute
the other positive Lyapunov exponents.

In the future we would like to investigate the contribu-
tions to S� in more detail. We wish to determine what pre-
cisely causes S� to rise, such as a slow drift due to mean flow
or the timing between events or something else entirely.
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