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We calculate the Ehrenfest-time dependence of the leading quantum correction to the spectral form factor of
a ballistic chaotic cavity using periodic orbit theory. For the case of broken time-reversal symmetry, when the
quantum correction to the form factor involves two small-angle encounters of classical trajectories, our result
differs from that previously obtained using field-theoretic methods �Tian and Larkin, Phys. Rev. B 70, 035305
�2004��. While we believe that the existing field-theoretic calculation is technically flawed, the question
whether the field theoretic and periodic-orbit approaches agree when more than one small-angle encounter of
classical orbits is involved remains unanswered.
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From a statistical point of view, the spectra of a quantum
particle confined to a cavity with disorder or confined to a
cavity with ballistic and chaotic classical dynamics are re-
markably similar �1�. In both cases, the spectral statistics are
independent of system specifics and follow the predictions of
random matrix theory �RMT� on energy scales comparable to
the mean spacing between energy levels � or, equivalently,
on time scales comparable to the Heisenberg time tH
=2�� /� �2,3�, provided that the latter is much larger than
the time �erg needed for ergodic exploration of the phase
space. Calculations of the spectral statistics have been the
theoretical vehicle through which the profound correspon-
dence between RMT, impurity diagrammatic perturbation
theory, periodic-orbit theory, and the field-theoretic zero-
dimensional � model has been demonstrated �2,4–7�.

In the last decade, it has been understood that chaotic
quantum systems are characterized by a time scale interme-
diate between �erg and �H that does not have its counterpart in
diffusive systems. This time scale is the “Ehrenfest time” �E
�8–11�. The Ehrenfest time is the time required for two clas-
sical trajectories initially a quantum distance �wavelength�
apart to diverge and reach a classical separation �system
size�. It is expressed in terms of the Lyapunov exponent � of
the corresponding classical dynamics as �E=�−1 ln�c2 / � �,
where c2 is a classical �action� scale. The existence of the
Ehrenfest time does not affect the universality of the spectral
statistics. However, it is responsible for differences between
otherwise universal properties of chaotic and disordered
quantum systems for energies �� /�E, which is well inside
the universal range if � /c2→0 �5,11–15�. In this article we
address the spectral statistics at this energy scale.

Most of the literature on spectral statistics considers the
spectral form factor K�t�, which is the Fourier transform of
the two-point correlation function of the level density ����,

K�t� = � �� d	ei	t��� + � 	/2���� − � 	/2��
c

. �1�

Here the brackets 	¯
c denote the connected average ob-
tained by varying the center energy � and/or other param-

eters in the system. For �erg� t
 tH, the RMT predicts that
K�t� is dominated by a perturbative expansion in t / tH

�1,16,17�

K�t� =
t

���
+ �K��t� , �2�

where �=1 �2� in the presence �absence� of time-reversal
symmetry and

�K1�t� = −
t

��
� t

tH
−

t2

tH
2 + ¯ � ,

�K2�t� = 0. �3�

For times t tH the perturbative expansion in t / tH breaks
down and K�t� is governed by nonperturbative contributions
�16�.

The presence of the Ehrenfest time does not affect the
leading contribution to K�t�, but it does impact �K. The lead-
ing �E dependence of �K1 in the perturbative regime, which
already occurs to order �t / tH�2, was first considered by
Aleiner and Larkin �12�, using a field-theoretic approach.
Recently, Tian and Larkin used the field-theoretic approach
to calculate the leading �E dependence of �K2 �5�, which
appears to order �t / tH�3 and causes the perturbative quantum
correction �K2 no longer to be strictly zero. Their result is

�K1�t� = −
t2

� � tH
��t − 2�E� + ¯ , �4�

�K2�t� = −
t2

2� � tH
2 ���t − 3�E� − ��t − 4�E�� + ¯ , �5�

where ��x�=1 if x�0 and ��x�=0 otherwise, ��x�
=0

xdx���x��=x��x�, and the ellipses refer to terms of higher
order in t / tH that were not considered in the calculation.
�Tian and Larkin also considered the �E dependence of non-
perturbative contributions to the spectral form factor, but
these will not be considered here.�

In a parallel development, the full perturbation expansion
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for K�t� was derived from periodic-orbit theory �6,7,18�. The
connection between K�t�, which is a quantum-mechanical
object, and classical periodic orbits follows from Gutzwill-
er’s trace formula, which expresses K�t� as a double sum
over periodic orbits � and �� �17,19�,

K�t� =��
�,��

A�A��
* ei�S�−S���/���t −

T� + T��

2
�� . �6�

Here A�, S�, and T� are the stability amplitude, classical
action, and period of �, respectively. While the leading con-
tribution to K�t� comes from the diagonal terms �=�� �up to
time reversal, if �=1� �17�, off-diagonal contributions are
responsible for �K�t�. Sieber and Richter �6� and Heusler et
al. �7,18� succeeded in classifying the relevant off-diagonal
orbit pairs and calculated their contribution to �K�t� in the
limit �E / tH→0.

Below, we show that periodic-orbit theory can also be
used to calculate the Ehrenfest-time dependence of �K�t�.
Interestingly, while we confirm the field-theoretic result for
the O�t2� term in �K1�t� �5,20�, our result for the leading
O�t3� contribution to �K2�t� differs from that of Ref. �5�,

�K2�t� =
3t2

2� � tH
2 ���t − 2�E� − 2��t − 3�E� + ��t − 4�E�� .

�7�

In particular, we find that the minimum duration of off-
diagonal pairs of orbits that contribute to �K2 is 2�E, not 3�E.
We also find that there are no �E-dependent corrections for
t�4�E, in contrast to Ref. �5�, where the �E dependent cor-
rections to �K2 persist up to t� tH. �However, our leading-
order perturbative calculation does not answer the question
whether such �E insensitivity at long times persist to the
higher order terms in t / tH.�

Instead of calculating K�t� directly, it is more convenient
to calculate the Laplace transform

K��� = ��
�,��

A�A��
* ei�S�−S���/�−��T�+T���/2� . �8�

The leading diagonal contribution to K can be calculated
using the sum rule of Hannay and Ozorio de Almeida �21�

��
�

�A��2e−�T�� =
1

2� � �2 , �9�

so that

K��� =
1

� � �2�
+ �K��� . �10�

The inverse Laplace transform of the first term in Eq. �10�
reproduces the leading term in Eq. �2� above.

The leading O�t2� quantum correction for K��� exists in
the presence of time-reversal symmetry only. The relevant
pairs of periodic orbits � and �� are shown in Fig. 1�a�. The
existence of such pairs was pointed out by Sieber and Rich-
ter �6�; an equivalent configuration of classical trajectories
appears in the field-theoretic formulation �5,12,20� and in the
diagrammatic calculation of the form factor for disordered

cavities �4�. The periodic orbit � in Fig. 1 has a small-angle
self-intersection. There are two loops of duration T1 and T2
through which � returns to the self-intersection. The trajec-
tory �� is equal to � in one of these loops, whereas �� is the
time reversal of � in the other loop. Following Refs. �7,18�,
we perform the sum over such periodic orbits with the help
of a Poincaré surface of section taken at an arbitrary point
during the self-intersection. The Poincaré surface of section
is parametrized using stable and unstable phase space coor-
dinates s and u, normalized such that dsdu is the cross-
sectional area element. Denoting the coordinate differences
between the two points, where � pierces the Poincaré surface
of section by s and u, the action difference S�−S��=su
�22,23�. The duration tenc of the self-encounter is defined as
the time during which the two stretches of � are within a
phase space distance c, where c is a classical scale below
which the classical dynamics can be linearized. The periodic-
orbit sum is then expressed in terms of an integral over s, u,
T1, and T2 �7,18�,

�K1��� =� dT1dT2�
−c

c

dsdu
�T1 + T2 + 2tenc�2

�2� � �2tHtenc

� cos�su/ � �e−��T1+T2+2tenc�

=
�2

��2

1

�2�
−c

c

dsdu
cos�su/ � �e−2�tenc

�2� � �2tHtenc
, �11�

where

FIG. 1. Schematic drawing of a pair of orbits �shown solid and
dashed� contributing to the leading interference correction to the
spectral form factor in the presence of time-reversal symmetry �a�
and in the absence of time-reversal symmetry �b�, �c�, �d�. The true
orbits are piecewise straight, with specular reflection off the cavity’s
boundaries. The small-angle self-encounters are shown thick. Pan-
els �a� and �b� also show the definitions of various durations used in
the text.
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tenc = �1/��ln�c2/�su�� , �12�

� being the Lyapunov exponent of the classical dynamics in
the cavity. The factor tenc in the denominator cancels an un-
wanted contribution from the freedom to choose the Poincaré
surface of section anywhere inside the encounter region.
Whereas Refs. �7,18� calculate the remaining integral in the
limit ��E→0, we need to consider the effect of a finite
Ehrenfest time. Such integrals have been considered in the
context of quantum transport and we will be able to obtain
the remaining integral in Eq. �11� as well as all other neces-
sary integrals from the literature. The integral needed here
has been calculated in Ref. �24� and gives

�K1��� = −
1

� � tH

�2

��2

e−2��E

�
, �13�

where

�E =
1

�
ln

c2

�
. �14�

This result is in agreement with the �E dependence of �K1
calculated by Tian and Larkin �5�. Its inverse Laplace trans-
form is Eq. �4� above.

We now consider the Ehrenfest-time dependent correction
�K2�t� to the spectral form factor in the absence of time-
reversal symmetry. There are three classes of periodic orbits
that give a contribution to �K2�t� to order t3. These are
shown in Figs. 1�b�–1�d�. Now, the classical orbit � has two
small-angle self encounters. Its partner orbit �� follows �
between the encounters, but connects the ends of the encoun-
ters in a different way. Figure 1�b� shows two separate en-
counters. Figure 1�c� shows a “three-encounter,” which
arises when the two small-angle encounters of Fig. 1�b� are
merged along one of the connecting stretches �while keeping
the duration of the other stretches finite�. The orbit � of Fig.
1�c� goes through three loops between returns to the encoun-
ter region. Finally, Fig. 1�d� shows a periodic orbit for which
the self-encounter fully extends along one of these loops
�25�. Note that the encounter region cannot simultaneously
extend along two or more of the loops, because then these
loops and, hence, the trajectories � and �� would be equal.

The configurations of Fig. 1�b� and 1�c� were also consid-
ered by Heusler et al. �7,18�. These two contributions cancel
in the limit ��E→0, so that one finds �K2=0 in that limit.
The contribution of the trajectories shown Fig. 1�d� vanishes
in the limit ��E→0, which is why it was not considered in
Refs. �7,18�. However, as we will show below, it is needed to
be taken into account when calculating �E-dependent correc-
tions. The field-theoretic calculation of Ref. �5� also has two
contributions to �K2 only, but these cannot a priori be iden-
tified with any one of the three contributions shown in Figs.
1�b�–1�d�.

The contribution �K2b of the two separate encounters for
the periodic-orbit pair in Fig. 1�b� factorizes. Taking a
Poincaré surface of section at each of the encounters and
proceeding as in the calculation of �K1, one finds

�K2b��� =
1

8��

�2

��2

1

�4��
−c

c

dsdu
cos�su/ � �e−2�tenc

2� � tHtenc
�2

=
1

2� � tH
2

�2

��2

e−4��E

�2 , �15�

where we included a combinatorial factor 1 /4 to account for
permutations of the 2�2 passages of � through the two en-
counters �7,18�.

For the calculation of the contribution of the trajectory of
Fig. 1�c� one needs only one Poincaré surface of section,
taken at a point where all three stretches of � are within a
phase space distance c. Labeling the phase space coordinates
of the three piercings of � through the surface of section as
�si ,ui�, i=1,2 ,3, the action difference is �7,18�

S� − S�� = su + s�u�, �16�

where s=s1−s3, s�=s1−s5, u=u1−u3, and u�=u1−u5. Inte-
grating over the durations of the three stretches of � that
connect the three-encounter to itself, we find

�K2c��� =
1

3

�2

��2

1

�2 � dsds�dudu�

�
cos��su + s�u��/ � �e−��2tenc+tenc� �

�2� � �3tH
2 tenc�

, �17�

where tenc is the duration of the encounter

tenc =
1

�
ln

c2

min��s�, �s��, �s − s���min��u�, �u��, �u + u���

and tenc� is the time that all three trajectories involved in the
encounter are within a phase space distance c,

tenc� =
1

�
ln

c2

max��s�, �s��, �s − s���max��u�, �u��, �u + u���
.

The prefactor 1 /3 in Eq. �17� accounts for permutations of
the three passages of � through the three encounter. The
integration domain in Eq. �17� is max��u � , �u� � , �u+u� � � ,
max��s � , �s� � , �s−s� � �
c. The exponential factor contains the
total time 2tenc+ tenc� that the orbit � spends in the encounter
region. Taking the remaining integral over s, s�, u, and u�
from Ref. �26�, we find

�K2c��� =
1

2� � tH
2

�2

��2

1

�2 �3e−3��E − 4e−4��E� . �18�

Finally, we have to calculate the contribution from trajec-
tories with a three-encounter, where the encounter region
fully wraps around one of the loops. In order to make opti-
mal use of the literature on the Ehrenfest-time dependence of
quantum transport, we calculate this contribution in an indi-
rect way: We again consider the case of two two-encounters,
but now allow the encounters to approach each other and
overlap along two preassigned stretches of �. This situation
is shown in Fig. 1�b� �again�, and we allow the encounters to
approach each other along the central loop in the figure. We
take a Poincaré surface of section at each encounter, and
measure the durations between the two surfaces of section
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along the central loop by T1� and T2�. Along the remaining
stretches �the outer loop in Fig. 1�b��, we still require non-
overlapping encounters in order to enforce ����. Hence, we
parametrize their duration using times T3 and T4 measured
between the ends of the encounters. Finally, tenc,1 and tenc,2
denote time that the inner and outer loops are within a phase
space distance c, and ts and tu are the durations of eventual
stretches that the two segments of the outer loop are within a
phase space distance c from each other but not from the inner
loop �24�. �The times ts and tu are zero except in the case of
overlapping encounters.� With this parametrization, the total
duration of � is

T� = T1� + T2� + T3 + T4 + tenc,1 + tenc,2 + 2ts + 2tu. �19�

We now consider the integral

I =� dT1�dT2�dT3dT4�
−c

c

ds1du1ds2du2

�
T�

2cos��u1s1 + u2s2�/ � �e−�T�

�2� � �3tH
2 tenc,1tenc,2

, �20�

where si and ui are phase space coordinates at the two
Poincaré surfaces of section, i=1,2. This integral contains
both the case that the two encounters are separate and the
case that the two encounters overlap. If the two encounters
are separate, which requires T1���−1ln��u1s2 � /c2� and T2�
��−1ln��u2s1 � /c2�, the two stretches in the outer loop are
never close to each other, hence ts= tu=0. One then recovers
the expression for �K2b, multiplied by 4 because of the com-
binatorial factor 1 /4 which is present in Eq. �15� but not in
Eq. �20�. If the two encounters overlap at one end but not at
the other end, one recovers the scenario for �K2c, multiplied
by three because of the combinatorial factor 1 /3 which is
present in Eq. �17� but not in Eq. �20�. �Note that in this case
the times ts and tu need not be zero.� If the encounters over-
lap at two ends, they span the reference loop. This scenario is
neither contained in �K2b nor in �K2c. Since there is no com-
binatorial factor in this case, this is precisely the contribution
�K2d corresponding to the trajectories of the type shown in
Fig. 1�d�. Hence

�K2d��� = I − 4�K2b��� − 3�K2c��� . �21�

From Sec. IV of Ref. �24�, where an integral similar to I was
calculated, we find

I =
1

2� � tH
2

�2

��2

1

�2 �3e−2��E − 2e−4��E� . �22�

Combining everything, we arrive at

�K2��� = �K2b��� + �K2c��� + �K2d���

=
3

2� � tH
2

�2

��2

e−2��E

�2 �1 − e−��E�2. �23�

The inverse Laplace transform of this result is Eq. �7� above.
The main difference between our result and that of Ref.

�5� is that, in contrast to Ref. �5�, in Eq. �7� universal quan-
tum corrections already appear after a time 2�E �27�. This
shortest-duration contribution to �K2 �which is labeled �K2d
in our calculation� stems from periodic orbit pairs which �for
a part of their duration� wind around another, shorter, peri-
odic orbit. Such orbits explained �24� the numerically ob-
served �E independence of conductance fluctuations in cha-
otic cavities �28,29�. However, even the remaining
contribution �K2b+�K2c differs from the field-theoretic cal-
culation of Ref. �5�. The orbit configurations contributing to
�K2b+�K2c are essential for the validity of the “effective
random matrix theory” �15� of the Ehrenfest-time depen-
dence of the spectral gap in a chaotic cavity coupled to a
superconductor �26�.

Previously, a difference between periodic-orbit theory and
the field theoretic approach appeared concerning the role of
repetitions of periodic orbits �30�, which were not treated
correctly in the ballistic nonlinear sigma model of Refs.
�31,32�. In that case, an amended field theory was eventually
reported �33�, the result of which agrees with periodic-orbit
theory. In our case, the difference between the two calcula-
tions should have a different origin. This follows, e.g., be-
cause the disagreement between the two calculations persists
even without inclusion of the contribution �K2d. Instead, we
attribute this discrepancy to the incorrect handling of mul-
tiple encounter regions in Ref. �5�, an issue that is closely
related to the implementation of the short-time regularization
procedure in the field theory. �Note that, in all cases where
calculations were reported for both approaches, the two ap-
proaches agree if only one small-angle encounter is in-
volved.� While, at least, the technical evaluation of products
of classical propagators connecting two encounter regions in
Ref. �5� is flawed �34�, the question of whether or not the
field theory—properly evaluated with the original regulariza-
tion of Ref. �12� or in later formulations that use a weaker
regularization �20,33�—and the periodic-orbit theory will
eventually agree must remain unanswered here.
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