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We study the nonequilibrium phase transition in a model for epidemic spreading on scale-free networks. The
model consists of two particle species A and B, and the coupling between them is taken to be asymmetric; A
induces B while B suppresses A. This model describes the spreading of an epidemic on networks equipped with
a reactive immune system. We present analytic results on the phase diagram and the critical behavior, which
depends on the degree exponent � of the underlying scale-free networks. Numerical simulation results that
support the analytic results are also presented.
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Network concept has been emerging as a useful tool for
the study of complex interconnected systems �1–3�. It allows
us to study structure and dynamics of those systems in vari-
ous disciplines in a simple unified manner. Many networks in
nature share an intriguing property of the power-law degree
distribution P�k��k−� with the degree exponent �, where
P�k� is the probability of a node having k links. A network
with this property is called a scale-free �SF� network �1�,
examples of which include the world-wide web �4�, the In-
ternet �5�, and the human sexual contact network �6�, and so
on.

The broad degree distribution of the SF network brings
about various interesting phenomena. Particularly we are in-
terested in epidemic spreading. Networked systems are sus-
ceptible to epidemics, which may be computer viruses in
computer networks or infectious diseases in social contact
networks of individuals. Robustness against the epidemic
spreading is one of the key elements for a proper function of
networks. Researchers have studied the characteristic feature
of the epidemic spreading in the SF network and the efficient
immunization strategy suitable for the SF network �7–12�.

There are hubs with a large number of links in the SF
network. This structure makes it vulnerable to an epidemic
since it can spread easily through those hubs. It is found that
an epidemic even with an extremely small spreading rate
never ceases spreading in the SF networks with ��3 �7,8�.
In those networks, the random immunization where all nodes
are immunized or vaccinated with an equal but finite prob-
ability becomes inefficient. Instead, the targeted immuniza-
tion where hubs are immunized preferentially proves to be
efficient �9–11�.

In the study of the epidemic spreading, one usually con-
siders the dynamics of malicious agents on bare or immu-
nized networks. On the other hand, the following examples
show that the competing spreading dynamics between mali-
cious agents and immunizing agents are also important. Re-
cently, the worm “Code Red” almost paralyzed the whole
Internet by flooding it with lots of useless packets �13�. After

the outbreak, there appeared the so-called worm-killer worm
“Code Green” which was meant to seek out and kill the
malicious worm �14�. Although it also flooded the network
and did more harm than good, it hinted a possibility of con-
tagious vaccination. The competing dynamics is also ob-
served inside living organisms. When pathogens invade and
spread, immune cells are stimulated. The awaken immune
cells then replicate themselves and get rid of the pathogens
�15�. The phenomenon of cross immunity between competing
pathogens is another example �12�. If populations are ex-
posed to a certain disease, then they become immune to the
other for certain pairs of diseases, e.g., Hansen’s disease and
tuberculosis �16�.

In this work, we introduce a model that mimics the com-
peting spreading dynamics and study the phase transition it
displays on SF networks. The model consists of two species
�A and B� particles, one of which infects nodes and the other
of which heals the infection. They may represent worms �A�
and worm-killer worms �B� in computer networks or mali-
cious pathogens �A� and immune cells �B� in living organ-
isms.

At each time step particles evolve according to the fol-
lowing dynamic rule: An A particle either annihilates spon-
taneously with the probability pA, or creates a particle at each
neighboring node with the probability qA=1− pA. The frac-
tion 1−� ��� of the created particles are of species A �B�. A
B particle either annihilates spontaneously with the probabil-
ity pB, or creates another B particle at one of the neighboring
nodes selected randomly with the probability qB=1− pB. The
creation attempt is rejected if a target node is already occu-
pied by the same species particle. When two particles of
different species become to occupy the same node, the A
particle is removed with the probability �.

Each node may be empty, occupied by a particle A, or
occupied by a particle B. Such a node can be interpreted as a
healthy or susceptible, infected, or immunized individual, re-
spectively. Then the process with pA and qA�1−�� corre-
sponds to spontaneous healing and infection, respectively.
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The process with qA� corresponds to activation of an im-
mune system. The spontaneous annihilation of B particles
takes account of the fact that immunization may not be per-
manent. The parameter � describes the efficiency of the im-
mune system in healing the infection.

Note that the particles A and B have different branching
rules. A particle A branches offsprings to all neighboring
nodes as in the susceptible-infected-susceptible �SIS� model
�7�, while a particle B branches an offspring to one of the
neighboring nodes as in the contact process �CP� �17�. This
difference can be negligible in networks with the narrow
degree distribution, but it makes a big difference in SF net-
works �17�. We adopt the less-reproductive CP dynamics for
the particle B since it would be costly to activate an immune
system in real systems. The model was studied in networks
with a narrow degree distribution �18�. As we will see, the
model shows much richer properties in SF networks.

The model displays three stationary state phases denoted
by �0,0�, �0,B�, and �A ,B�. They are distinguished with the
stationary state density of each particle species. Both species
are inactive with zero density in the �0, 0� phase. In the �0,B�
phase, the A particles are inactive while the B particles are
active with a nonzero density. Both species are active with
nonzero densities in the �A ,B� phase. Due to the asymmetric
nature of the interaction, one does not have a phase in which
the A particles are active and the B particles are inactive. All
nodes are healthy in the �0, 0� and �0,B� phases. The healthy
state requires that the B particles are active in the �0,B�
phase, which is not the case in the �0, 0� phase. In this sense,
the �0,0� phase is the ideal one since the remnant B particles
would cost system resources.

We will study the phase transitions and the critical behav-
iors in SF networks by adopting the rate equation approach
which proves useful for a single species or multispecies par-
ticle systems �7,19�. It is assumed that the particle density at
a node is given by a function of its degree only. Let ak and bk
be the density of A and B particles on nodes with degree k,
respectively. Then, it is straightforward to show that they
satisfy the coupled rate equations

ȧk = − pAak + qA�1 − ��k�1 − ak��A�k� − �kak�B�k� ,
�1�

ḃk = − pBbk + qBk�1 − bk��B�k� + qA�k�1 − bk��A�k� ,

where �A�k� ��B�k�� denotes the probability that a node with
degree k is infected by a particle A �B� from each of its
neighboring nodes. They are given by �A�k�
=�k�ak�P�k� �k� and �B�k�=�k�bk�P�k� �k� /k�, respectively.
Here P�k� �k� is the conditional probability that a node at one
end of a link have the degree k� under the condition that the
other end of the link has the degree k. The different form of
�A and �B is due to the different spreading dynamics of the
two particle species. The conditional probability can take
care of a degree correlation �20�. In this work, we only con-
sider networks with no degree correlation, that is, P�k� �k�
=k�P�k�� / �k	 with the degree distribution P�k��k−� and the
mean degree �k	 �20�. Then, one obtains that

�A =
1

�k	�k

kakP�k�, �B =
1

�k	�k

bkP�k� . �2�

They are related to the particle density and will be used as
the order parameter.

In the stationary state �ȧk= ḃk=0�, the order parameter sat-
isfies the coupled self-consistency equations

�A = f��A,�B� 

1

�k	�k

q̃A�Ak2P�k�
1 + �q̃A�A + �̃�B�k

, �3a�

�B = g��A,�B� 

1

�k	�k

��̃�A + q̃B�B�kP�k�

1 + ��̃�A + q̃B�B�k
, �3b�

where q̃A

qA

pA
�1−��, �̃
 �

pA
, �̃


qA

pB
�, and q̃B


qB

pB
. Note that,

without the interaction ��̃= �̃=0�, the self-consistency equa-
tions are decoupled, each of which has been studied sepa-
rately �9,17�.

The self-consistency equations allow us to determine the
phase diagram, whose schematic plot is shown in Fig. 1. Let
us summarize the result first: For ��3 �Fig. 1�a��, we find
that the system exhibits the three phases �0, 0�, �0,B�, and
�A ,B�. Across the line MR, A particles remain inactive and B
particles become active. Across the line QM, both particles
become active simultaneously. Across the line MP, B par-
ticles are already active and the A particles become active.
The three phase transition lines merge into the multicritical
point M.

On the other hand, the system exhibits the only two
phases �0,B� and �A ,B� for ��3 �Fig. 1�b��. Without the B
species, the A species would always be in the active phase
for ��3 �7�. The existence of the phase �0,B� implies that
one can prevent an epidemic from spreading even in the SF
networks with ��3. The nonexistence of the phase �0, 0�,
however, implies that the immunization is possible only
when the species B is kept to be in the active state, which
may cost system resources.

Now we sketch briefly the way the phase diagram is ob-
tained, details of which will be presented elsewhere �21�. It is
obvious that �A=�B=0 is a solution of the self-consistency
equation. One can obtain the boundary of the phase �0, 0�

FIG. 1. The schematic phase diagram in SF networks with �
�3 in �a� and ��3 in �b�. The phase boundary MP changes its
shape as � varies. In �a�, it is tangential to MR for ��4 �solid line�
and nontangential to MR or MQ for ��4 �dashed line�. In �b�, it is
parallel to pA axis at M for ��5/2 �solid line�, and to pB axis near
M for ��5/2 �dashed line�.
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from the condition for the existence of nonzero solutions for
�A or �B. From Eq. �3a�, we find that f�0,0�=0 and
f��A ,0��1 and �2f��A ,0� /��A

2 �0 for all �A. So a nonzero
solution for �A exists when �f�0,0� /��A= q̃A�k2	 / �k	�1
with �k2	 the second moment of the degree. This gives the
phase boundary QM at q̃A= �k	 / �k2	 or at pA= pA

c with

pA
c =

�1 − ���k2	/�k	
1 + �1 − ���k2	/�k	

. �4�

Similarly, a nonzero solution for �B exists when
�g�0,0� /��B= q̃B�1, which gives the phase boundary MR
at q̃B=1 or at pB= pB

c =1/2. For ��3, �k2	 is infinite, pA
c =1,

and the phase �0, 0� vanishes.
At the phase boundary MP, �A=0 and �B has a nonzero

value �B
* satisfying �B

* =g�0,�B
*�. We also have that

�f�0,�B
*� /��A=1 since �A begins to deviate from zero at

that line. These two equations define the phase boundary
MP. Near the point M, the phase boundary is given by

	B ��	A
1/min�1,�−3�, � � 3,

	A
��−2�/�3−��, � � 3,

� �5�

for small 	A= pA
c − pA and 	B= pB

c − pB �21�.
We also studied the critical behavior of the order param-

eter near the phase transitions by analyzing the property of
the functions f and g at small values of �A and �B. We
found that the order parameter shows the power-law scaling

�A,B � 	
A,B �6�

with the � dependent critical exponents 
A and 
B for �
�3. The critical exponents have different values at different
critical lines. The results are summarized in Table I. The
model displays interesting multicritical behaviors at the mul-
ticritical point M, which will be discussed elsewhere �21�.

It is noteworthy that the model displays the peculiar criti-
cal behaviors at �=3. Let us take the degree distribution as
P�k�=ck−3 for k0�k with a normalization constant c and a
degree cutoff k0. With the continuum k approximation in Eq.

�3�, the functions f and g are given by f =
cq̃A�A

�k	 ln� 1+k0X

k0X
� and

g=Y − c
�k	Y

2 ln� 1+k0Y

k0Y
� with X
 q̃A�A+ �̃�B and Y 
 �̃�A

+ q̃B�B. The logarithmic dependence leads to the following
peculiar behaviors �21�: Let 	A=1− pA and 	B=1/2− pB be
the deviation from M at pA=1 and pB=1/2. The phase
boundary MP is given by

	B �
1

	A
e−d/	A �7�

with a constant d for small 	A and 	B. When one approaches
M from the phase �A ,B�, the order parameter exhibits a path
dependent critical behavior. Along the path with 	B=0 that is
tangential to MP, we find that

�A �
1

	A
2 e−2d/	A, �B � e−d/	A. �8�

Along nontangential paths with finite 	A / �	B�, we find that

�A � �B � e−d/	A. �9�

In contrast to the power-law scaling at ��3, the order pa-
rameter as well as the phase boundary has the essential sin-
gularity at �=3. The order parameter also has the essential

FIG. 2. Density decay at �=3.5. In �a� �A is
plotted at pB=0.9, and in �b� �B is plotted at pA

=0.99.

TABLE I. The exponents 
A and 
B associated with each phase
transition line. For ��3, the phase �0,0� denotes the line with pA

=1 and pB� pB
c .

�0,0�→
�A ,B�

�0,0�→
�0,B�

�0,B�→
�A ,B�

��4 
A 1 1


B 1 1

3���4 
A 1

�−3
1


B 1

�−3
1

2���3 
A �−2

3−�

1


B 1

3−�

1

�−2

�=3 �A �e−d/	A /	A 1

�B �e−d/	A 1
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singularity near the line with pA=1 and pB� pB
c �see Table I�.

That is, the transition is the infinite order transition. The
infinite order transition was reported recently in the percola-
tion problem and the equilibrium Ising model on growing
networks �22,23�.

In order to confirm the phase diagram, we performed nu-
merical simulations on SF networks generated by using the
so-called static model �24�. Initially networks are filled with
the particles, and the density �A and �B of each particle spe-
cies is measured and averaged over at least 2000 simulations
and 10 network realizations. All simulations were performed
with �=�=0.5. All numerical data presented below were
obtained on the static model networks with N=64�104

nodes and the mean degree �k	=12.
We present the numerical data from the SF networks with

�=3.5 in Figs. 2�a� and 2�b�. They show the signature of the
phase transition from �0, 0� to �A ,B� at pA

c 
0.915 and �0, 0�
to �0,B� at pB

c 
0.478, respectively. These numerical data
confirms the existence of the three phases for ��3.

At �=2.75, we performed the simulations at pB=0.3 and
for several values of pA in order to examine the existence of
the �0,B� phase. The numerical data presented in Fig. 3
clearly show that the A species is in the active phase at pA

=0.7 and in the inactive phase at pA=0.9. Although it is hard
to locate the critical point accurately, the numerical data sup-
ports the analytic prediction that the A species can be inac-
tive even for ��3 in our model. At �=2.75, we also per-
formed the simulations at pB=0.9 and at several values of pA
close to 1 in order to examine whether the phase �0, 0� exists
or not. Numerical data obtained on the networks of sizes up
to N=64�104 nodes indicate that the A species is in the
active phase at least up to pA=0.99 and that the A species
become more active as N increases �21�. So we conclude that
the phase �0, 0� does not exist in the asymptotic N→
 limit.

In summary, we have studied the two-species epidemic
model on SF networks. The two species A and B are coupled
asymmetrically in that the former induces the latter whereas
the latter suppresses the former. Our model is aimed at de-
scribing the spreading dynamics of competing malicious
pathogens �A particles� and reactive immunizing agents �B
particles� on complex SF networks. The model is shown to
have the different phase diagram depending on whether �
�3 or ��3 �see Fig. 1�. Our results show that one can
prevent the epidemic from prevailing even in SF networks
with ��3. That is, cross immunization �12� and contagious
vaccination �13� strategy using competing spreading dynam-
ics can be applied successfully for epidemic control even in
very inhomogeneous networks. The results also show that it
requires that the immunizing agents should be kept in the
active phase for ��3, which is not necessary for ��3. We
have also investigated the critical behaviors associated with
the phase transitions. Especially, when �=3, the phase tran-
sitions are infinite order transitions with the essential singu-
larity in the order parameters.
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