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Phase transition in the collective migration of tissue cells: Experiment and model
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We have recorded the swarming-like collective migration of a large number of keratocytes (tissue cells
obtained from the scales of goldfish) using long-term videomicroscopy. By increasing the overall density of the
migrating cells, we have been able to demonstrate experimentally a kinetic phase transition from a disordered
into an ordered state. Near the critical density a complex picture emerges with interacting clusters of cells
moving in groups. Motivated by these experiments we have constructed a flocking model that exhibits a
continuous transition to the ordered phase, while assuming only short-range interactions and no explicit
information about the knowledge of the directions of motion of neighbors. Placing cells in microfabricated
arenas we found spectacular whirling behavior which we could also reproduce in simulations.
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I. INTRODUCTION

The collective motion of organisms is a spectacular phe-
nomenon sometimes involving huge schools of fish, thou-
sands of birds exhibiting complex aerial displays [1], herds
of quadrupeds and even bacteria producing fractal colonies
[2] or amoeba assembling into rotating aggregates [3]. Re-
cently, sperm cells were also demonstrated to form self-
organized vortices [4]. In addition to being a common
mechanism by which organisms self-organize, a deeper un-
derstanding of the simultaneous adjustment of the velocities
of many moving objects has important potential applications
ranging from the swarming of distributed robots exploring
new territories [5] to the healing of wounds related to the
coherent migration of epithelial cells [6].

Although widely observed in nature, collective motion is
less accessible for experimental investigations under labora-
tory conditions. Becco er al. [7] have presented interesting
but only qualitative results. A well controlled series of ex-
periments aimed at characterizing the nature of the transition
from a disordered to an ordered phase in velocity space is so
far lacking, even though such experiments would be useful
both in providing a quantitative reference for further experi-
mental studies and in prompting more realistic models for
group behavior. While laboratory observations have been
scarce, a number of models based on self-propelled particles
have been developed recently (see, e.g., Refs. [8-14]) to de-
scribe collective motion. In broad terms these models fall
into two categories, those which describe the onset of collec-
tive motion as a transition to an ordered state in a large noisy
system with simple interactions between the particles [8—10],
and those which employ more complicated—consequently
more realistic—interactions and focus on the emergent col-
lective dynamics of groups of finite size [11-14]. A model,
however, that combines simple short-ranged interactions, de-
tailed realistic dynamics and a well-defined kinetic transition
in a large noisy system has not been described so far.

In this paper we present experimental results concerning
the collective migration of a large number of tissue cells
(keratocytes) using long-term videomicroscopy. As the over-
all density of the migrating cells is increased, we observe a
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kinetic phase transition from a disordered (low density) state
into an ordered (high density) state, in which most of the
cells move in a direction approximately agreeing with their
average direction of motion. Just below the transition a com-
plex picture emerges with interacting groups of cells moving
in random directions. Motivated by these experimental re-
sults we develop a flocking model, which, in contrast to pre-
vious models, considers a minimal realistic interaction that
assumes no explicit averaging of the directions of motion,
while also exhibiting a transition to the ordered phase.
Numerical studies indicate that this transition is continuous
and belongs to the same universality class as the model of
Vicsek et al. [8]. These results compel us to imply that the
experimental transition described is continuous as well.

II. EXPERIMENTAL SETUP AND RESULTS

Our experimental setup, consisting of a home developed
fully computer-controlled time-lapse microscope [15] and a
custom made room temperature CO, mini-incubator allowed
us to carry out long-term videomicroscopy of keratocytes
together with a quantitative analysis of their motion. We col-
lected 2—4 fish scales from living goldfish (Carassius aura-
tus) with tweezers, and placed them external side up in a
35-mm circular Petri dish similarly to Ref. [16]. Scales were
kept in the incubator overnight to allow epidermal keratocyte
cells to migrate out from the scales. Before time-lapse mi-
croscopy scales were removed, and the cells remaining in the
Petri dish were treated with phosphate saline buffer and/or
trypsin to obtain cultures of varying density (both com-
pounds reversibly weaken cell-cell and cell-substrate connec-
tions, allowing the removal of a controllable percentage of
the cells). During the subsequent typically 24 h long time-
lapse microscopy experiments we monitored the motion
of live keratocyte cells (taking pictures in several fields of
view at frequency of 1 shot per minute) in cultures of vary-
ing density ranging from sparse ones with very low cell den-
sities to confluent ones with nearly complete coverage.
We observed a relatively sharp transition from random mo-
tility to an ordered collective migration of dense islands of
cells as the density was increased. Figure 1 shows the typical
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FIG. 1. Phase contrast images
showing the typical behavior of
cells for three different densities.
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behavior of cells for three different densities. The technical
details of the experiment are described in Ref. [17].

In order to quantify the level of coherence of the migra-
tion pattern of cells—the individual motion of which are
usually described as a persistent random walk [18]—we cal-
culated the velocity of 20-30 cells in each experiment from
their displacement between frames. This process yielded the
v,(t,) velocity vectors of cells, where i is the index of the
cell, t,=kAt is the time elapsed from the start of the cell’s
trajectory and Ar denotes the time difference between
frames. We define as the measure of coherence of motion an
order parameter equal to the time average of the sum of the
normalized velocities divided by the number of cells
measured. Thus, the order parameter is
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where N is the number of evaluated cells. Figure 2 displays
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FIG. 2. Order parameter V is shown as a function of normalized
cell density. Cell density was normalized with the maximal ob-
served density of 2.5X 1073 cells/um? and error bars indicate the
standard error of the density and order parameter.

the order parameter as a function of cell density. Our mea-
surements were carried out after the cells had sufficient time
to migrate out of the scales and achieve a quasistationary

migration. V was calculated by averaging over the observa-
tion time and its standard error was calculated by dividing
the standard deviation by VM —1, where M is the number of
analyzed snapshots. We attempted to survey the extent of
finite size effects, by calculating the order parameter and its
error, while considering only half the number of available
cells. We found no significant deviation. Cell density was
measured locally, i.e., in the field of view, every 30 minutes.
Both its mean value and the standard error of the mean is
presented in Fig. 2. A sharp increase can be observed around
5X 107 cells/ um?.

We conclude that a kinetic phase transition takes place
from a disordered into an ordered state as cell density ex-
ceeds a relatively well-defined critical value. Our experi-
ments suggest that short-range attractive-repulsive intercellu-
lar forces alone are sufficient to organize motile keratocyte
cells into coherent groups.

III. MODEL DESCRIPTION AND RESULTS

To interpret the above phase transitionlike ordering phe-
nomenon we constructed a model that takes into account the
specific features of the experimental system and is able to
reproduce experimental behavior. In our model individual
model cells (self-propelled particles) move forward in a well-
defined direction with constant speeds. The noisy nature of
the processes which generate cell locomotion is taken into
account by considering the direction of self-propulsion of
model cells to be noisy. Intercellular forces through which
model cells interact are considered to be short ranged, as
between keratocytes they are the result of direct physical
contact. Further, regarding interactions between keratocyte
cells, it is obvious that explicit averaging of the directions
of motion employed in previous models is not realistic. Tis-
sue cells forming coherently migrating groups are unable to
explicitly adjust their direction of motion to the average
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FIG. 3. Computer simulations were performed of the system described in the text for different densities. These simulations showed a
transition to the ordered phase similar to that seen in experiments. (a) Typical behavior of cells is shown for three different values of the
normalized number density p=p/pmn.x, With p. =2, which is approximately the density where gaps disappear, and the cells reach tight
packing in simulations. (b) As cells moving in different directions come into contact adhesive intercellular forces act to align n; and n;,
resulting in an effective averaging of self-driving directions. For videos of simulation runs see Ref. [17].

velocity of their neighbors, collective motion must emerge
solely as a result of direct cell-to-cell interactions (forces).
To model the emergence of collective motion without such
explicit averaging, we consider self-propelled particles
(model cells) that attempt to adjust their direction of motion
toward the direction of the net-force acting on them.

The two-dimensional motion of model cell i € {I1,N} with
position r;() is described by the overdamped dynamics,

N

= Uoni(t) + ME F(I‘,-,rj) . (2)
j=1

dr(1)
dt

Thus, each cell with mobility u attempts to maintain a self-
propelling velocity of magnitude v, in the direction of the
unit vector n,(¢) and experiences intercellular forces F(r;,r;).
The direction of the self-propelling velocity n,(z), described
by the angle 6}'(¢), attempts to relax to v,(r)=dr;(t)/dt with a
relaxation time 7, while also experiencing angular noise &,

dé;;‘t(t) = %_ arcsin{ (n,-(t) |Zi3|) . ez} + &, (3)

where e, is a unit vector orthogonal to the plane of motion
[see Fig. 3(b)] and ¢ is a delta correlated Gaussian white
noise term with zero mean, i.e., (&(1))=0 and (&()&("))
=177/128(t,t"). We consider pairwise intercellular forces
whose magnitude is a function of the distance d;; between the
two centers of mass only. Aiming for simplicity we present
results obtained by using a piecewise linear force function,
the existence of the transition we describe, however, does not
depend on the specific form of the function employed. The
piecewise linear force function we considered was repulsive
for distances smaller than Req, attractive for distances
ReqsdijSR(, and zero for cells farther apart, i.e.,

p
d;ii— R
repJTeq7 dij < Req’
eq
r)=e;\ o
F(r;r;) € Fadhd_l'ieq’ Reg=d; =Ry, (4)
Ry—R
0 eq
0- Ry <dj,
where eij:ﬁj, d,»j=|r,~—rj, Fep is the value of the maxi-
it

mum repulsive force at d;;=0 and F,q, is the maximum at-
tractive force (resulting from adhesive interactions between
cells) at d;=R, [see Fig. 3(b)]. The values vy=1, u=1,
=1, Ry=1, Req=5/6, F,4,=0.75, and Frep=30 were used;
the results obtained, however, were not sensitive to the par-
ticular choice for the parameter values. The parameters of the
function (4), the slope of the two linear segments (F, and
F,qn) and the equilibrium distance R.q, were adjusted while
observing the simulations and comparing them with experi-
mental videos (cf. Ref. [17]), in order to achieve best pos-
sible agreement with the experiments. The two main criteria
were (i) the reproduction of the two-dimensional sheetlike
motion, wherein individual cells only interact with their
nearest neighbors—i.e., cells have a well-defined volume
and (ii) the ability of cells to “break free” from each other.
The first was readily achievable by setting the slope of the
repulsive force segment to be sufficiently larger than that of
the attractive segment and the value of R, sufficiently larger
than R, while the second necessitated that the maximal
value of the attractive segment F,q;, be set smaller than v/ u.

We carried out simulations [Fig. 3(a)] by solving the sys-
tem of 3N differential equations (2) and (3) with periodic
boundary conditions in systems of size L X L using a fixed
time step of Ar=0.05R,/v,. The angular noise term & was
modeled by choosing its magnitude uniformly from the in-
terval [—#n/(2VA1), 5/ (ZV’ZI)]. In good agreement with ex-
periments, running our model resulted in a continuous tran-
sition to the ordered phase (where all cells move in a
common direction) as the number density of cells
p=N/(L/Ry)* was increased for a fixed value of the
noise 7=0.6 (Fig. 4). While varying the value of # was not

061908-3



SZABO et al.

(@)

1 T T T T T T T T T
15N
., osf 1
D
Y
o]
= 1
&
3
] 04l 1
—
5 ,
'E 021 0.01 0.1 1
© (p—pc)/pe

0 S

0 01 02 03 04 05 06 07 08 09 1

®) normalized number density p

1 T T T T T T
5N
w08 slope = 0.44 1
i
]
=2 06¢r \'5,. .
66 E3
z = %
A o4l 1
—
D
?g 02 r 0.01 0.1 1 1

(Me —m)/7e
0 : : : : - S
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
noise n

FIG. 4. The average value and standard error of V is shown
as a function of the normalized number density (a) p=p/puax
and (b) noise 7. Each data point was obtained from at least 10
independent simulation runs with N=1000, with (a) %=0.6,
Pumax =2 and (b) p=0.6. The insets show the dependence of In V on
(@) [p—p1)]/p. and (b) [5.(p)— 171/ 7., the slope of the fitted lines
can be associated with the critical exponents 6 and 3. The large
scaling regimes and the similarity of the numerical values obtained
for the exponents with those found for other models indicate the
existence of a continuous phase transition in both p and 7.

experimentally feasible, simulations show that a continuous
transition to the ordered phase also takes place as 7 is de-
creased while p is held fixed (data not shown, see Ref. [17]).
In both cases we calculated the order parameter (1) using the
velocities v,(f;) obtained from the numerical solution of (2)

and (3). V and its standard error were calculated by averag-
ing over at least 10 independent simulation runs each at least
an order of magnitude longer than the typical velocity auto-
correlation time (which was found to be in the range
of 10—1000R,/v). The values p,=0.18 (p,=0.09) and 7,
=1.18 were found for the critical density and noise from
simulations of systems with N=250, 500, 1000, and 2000 at
fixed values of 7=0.6 and p=0.3, respectively. Based on the
assumption that our model exhibits a kinetic phase transition
in the thermodynamic limit analogous to the continuous
phase transition in equilibrium systems, we proceeded to
study its critical behavior, that is,
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FIG. 5. (Color online) (a) Experimental snapshot of a circulating
cell group with the velocities of cells in the corner of a 2
X2 mm? square shaped microfabricated arena. (b) Simulations of
model cells confined to a square arena show the emergence of cir-
cular motion over a wide range of model parameters. Video show-
ing the circular motion of cells in the whole arena as well as in
simulations are available in Ref. [17].

Voe[n(p)- 7l and Velp-p(n]° (5)

where B and § are the critical exponents and 7,.(p) and p.(7)
are the critical noise and density. Analysis of the data yielded
the values 3=0.44+0.08 and 6=0.38+0.07, strongly sug-
gesting that our model belongs to the same universality class
as the angular noise model of Vicsek et al. [8], for which
B=0.45+0.07 and 6=0.35+0.06.

When two cells approach each other close enough, Eq. (3)
leads to a gradual alignment of their direction of motion. Our
model is in this sense similar to other models of systems of
self-driven particles exhibiting emergent collective motion—
i.e., flocking—with the very important difference that the
particles—the cells—do not directly use information on the
movement of others around them to determine their own
movement. Also, while several other models include
self-propelling particles, which interact through various
forces (and the seminal work of Shimoyama er al. [11]
has alignment dynamics similar to ours), they all rely on
either long-range forces [11,14], explicit averaging [8] or
both [13]. The model presented above, on the other hand,
combines an experimentally motivated minimal dynamics
with short-range adhesive and repulsive forces, while also
displaying a continuous kinetic transition to the ordered
state.

IV. EFFECTS OF BOUNDARY CONDITIONS

To investigate the effects of boundary conditions on col-
lective cell motility, we used square as well as more complex
shaped microfabricated arenas, which kept cells in a well-
defined area. Microstructures were fabricated by UV-curing
Norland optical adhesive (NOA63) on the surface of glass
cover slips using UV lithography. The typical diameter of the
structures was 2 mm with 0.8 mm high walls. In closed two-
dimensional square shaped arenas we observed the round-
about motion of large cell groups. Figure 5 shows an experi-
mental snapshot of the circular motion with the
instantaneous velocities of cells in the corner of a square
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shaped arena. A spectacular sustained whirling motion of the
cells can be seen in Ref. [17].

We were also able to reproduce the above effects of
boundary conditions on cell motion in simulations similar to
those described in the preceding section. Placing model cells
in a square box with repulsive walls implemented through
adding a repulsive force with an exponential falloff and a
finite cutoff to the right-hand side of Eq. (3) corresponding to
each of the four walls

2d;,
_Fwall eXP(‘ le)’ diw<R0’
0

O, RO < diw’

Fw(diw) =n, (6)

where d;,, is the distance between cell i € {I,N} and any of
the we{l,4} four walls with unit normal vector n,, and
F1=50. In simulations cells circulated in an organized
fashion under a wide range of noise and density values
as well as for different system sizes. Reference [17] contains
a simulation video showing the emergence of organized
circular motion of model cells confined to a square box.

V. DISCUSSION

In summary, we have presented evidence that purely
short-range forces and simple experimentally motivated dy-
namics can be equivalent to an effective alignment term.

PHYSICAL REVIEW E 74, 061908 (2006)

Drawing an analogy between our experimental and model
results, we imply that the emergence of collective motion
among keratocytes is an example of a continuous kinetic
phase transition. Our results are also relevant in the broader
context of recent work by Grégorie and Chaté [19] question-
ing the continuous nature of the transition in the angular
noise model. Our present numerical results (exponents being
similar to the ones determined for the original Vicsek er al.
model [8]) support the view [20] that, in contrast with Ref.
[19], angular noise models define a universality class with a
corresponding continuous phase transition in the ordering of
the velocities. We expect that our and similar experiments as
well as the quantitative model of the observations we have
provided for the collective motion of tissue cells will lead to
a better understanding of such vital phenomena as wound
healing or embryogenesis.
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