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Two-dimensional granular flow in a channel with small exit is studied by both experiments and simulations.
We first observe the time variation of the transition from dilute flow state to dense flow state by both experi-
ments and simulations. Then we obtain a relationship between the local flow rate and the local packing fraction
in the choke area by use of molecular dynamics simulations. The relationship is a continuous function rather
than a discontinuous one. The flow rate has a maximum at a moderate packing fraction and the packing fraction
is terminated at high value with negative slope. According to the relationship, four flow states—i.e., stable
dilute flow state, metastable dilute flow state, unstable dense flow state, and stable dense flow state—are
defined for fixed inflow rate. The discontinuities and the complex time variation behavior occurring in the
transition between dilute and dense flow states can be attributed to the abrupt variation through unstable flow
state.
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I. INTRODUCTION

Granular flow extensively exists in nature. Differing from
the flow of gas or liquid, it may show discontinuous proper-
ties, such as, collapse, crowds, jamming, etc., which occur
frequently in our daily life. The importance of this system
stems from both basic understanding in theories and applica-
tions in technology �1,2�. The limiting case of the granular
flow at very low density �dilute flow� or very high density
�dense flow� has been widely studied, and some kinetic theo-
ries have been established. However, less work has hitherto
been done in this intermediate density regime as compared to
the very dense or the very dilute regime, though a very nice
work has been done recently �3�.

The system of granules flowing in a channel with a small
exit is a good candidate to study the granular flow from
dilute to dense state �4,5�, because the density in the channel
can be easily controlled. This problem is connected with the
traffic flow �6,7�, which is an important subject in city plan-
ning. A common property in these systems is that the outflow
rate may be discontinuous as the inflow rate or the size of the
exit changes �4–7�. Generally, the discontinuity is used to
distinguish the flow states. For granular flow, two flow states
are defined, i.e., dilute flow and dense flow, and for the traffic
flow, three states are defined, i.e., free traffic flow, synchro-
nized traffic flow, traffic jams. Under this definition, some
physical quantities are discontinuous when transition hap-
pens. The discontinuity occurring here is apparently different
from that of phase transitions, in that it is governed by bulk
properties and that the discontinuity results from the break-
down of symmetry in an infinitely large system. In the prob-
lem of granular flow, the system is limited in size and its
properties are seriously affected by the boundary conditions,
which have some analogies with a dynamical system of liq-
uid. However, such kinetic theory could not explain the dis-

continuity, so we have to find a new mechanism for the tran-
sitions. Besides the discontinuity, experiments in these
systems also show very complex time-space behavior, which
is also an open problem as of now.

The classical research for a material usually aims to es-
tablish a set of equations by use of the conservation laws and
constitutive relations. For granular systems, only few kinds
of situations can be studied by such kinetic theory. One ex-
ample is the so-called granular gas system corresponding to
the very dilute and high-speed case, which can be described
by a kinetic theory similar to that of ordinary gas �8,9�. An-
other example corresponds to the very dense and low-speed
case, in which a modified plastic model is adapted �10,11�. In
establishing the kinetic theory, the constitutive equation is
the key point, which is generally a relationship between
physical quantities in differential volume elements. However,
such a relationship is yet to be defined for general granular
systems at present. Instead of a differential relationship, we
could find a relationship in a larger local area, for example,
in the area near the choke. This relationship includes some
local information and can be considered as the first step in
establishing a constitutive equation. The relationship can also
be used to explain physical phenomena occurring in the sys-
tem.

In this paper we investigate the two-dimensional �2D�
granular flow in a channel with a small exit by both experi-
ments and simulations. By experiment, we show some basic
properties of the granular flow and the transitions between
flow states. We suggest that the transition of granular flow
between each flow state is a stochastic process, and discon-
tinuity occurring in the transition is attributed to an abrupt
variation through an unstable flow state. To show these in
more detail, especially to reveal how the local choke area can
affect the whole system, we also carry out molecular dynam-
ics �MD� simulations to establish a relationship between the
flow rate and the packing fraction in the choke area. By use
of the relationship, we explain the time evolution of the sys-
tem in different cases.
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II. EXPERIMENTS AND OBSERVATION

Our experiments are performed by falling steel spheres
under gravity in a 2D channel with an inclination angle of
20°. The 2D channel is made by two glass plates separated
by specially shaped metal spacers. The gap between the two
glass plates �2.2 mm� is kept slightly larger than the diameter
of the steel spheres d0=2.0±0.01 mm to ensure single-layer
flow. The channel is confined in a range with 200d0
=40.0 cm long and 30d0=6.0 cm width. At the top of the
channel, some thin plates are distributed, which control the
inflow rate Q0 and ensure the uniformity of the granular flow.
The exit is located at the center of the bottom of the channel
with a fixed width d=7d0, and the outflow rate Q is obtained
by the time differential of the total mass out of the exit,
which is measured by an electronic balance per 0.1 second
under the exit. In the experiments of this paper, the only
adjustable parameter is the inflow rate, which is controlled
by the thin plates at the top of the channel, and its value is
measured by opening the exit fully. It is found that the par-
ticles behave much differently when they are magnetized, so
we have taken special care to keep the particles far from
magnetic field. The static charges on the particles can also
affect the behavior of the granules in many systems, but it
was avoided in our experiments by the main spacers and the
frame of the apparatus, which are made by metal and are
connected to the ground.

The experiment was started by drawing out a baffle plate
at the entrance of the channel. The outflow rate will quickly
tend to a steady value in most cases, after a very short tur-
bulent initial state. Figure 1 shows the outflow rate at 5 sec-
onds from the starting time as a function of Q0. From Fig. 1,
we can find that Q is almost equal to Q0 for smaller inflow

rate. In this case, the granules do not pile up in the channel
and the granular flow is in the dilute flow state. For larger
inflow rate, Q becomes a constant smaller than Q0. In this
case, the granules pile up in the channel and the granular
flow is in the dense flow state. In between the two ranges, a
discontinuity can be found, at where the boundary of dilute
and dense flow states is defined as usual. At the larger
�smaller� side of the inflow rate far from this boundary, the
final flow state is dense �dilute� flow state decisively. How-
ever, with a medial inflow rate we find that the flow state
observed at a certain finite time is not decisive, with some
probability of being in either the dilute flow state or the
dense flow state. The inset in Fig. 1 shows the probability of
the final flow state being dense flow state at 5 and 10 sec-
onds, respectively, which is described by the percentage of
the final flow state being dense by observing 200 ensembles
of experiments at corresponding time. It shows clearly that
the probability is almost zero at smaller inflow rates and
increases sharply to one at larger inflow rates. Comparing the
probability at 5 and 10 seconds, we find that the curve of the
probability at 10 seconds shifts slightly left of that at 5 sec-
onds.

All these properties imply that the transition from dilute
flow state to dense flow state is a stochastic process. Let us
emphasize that the experiment starts with an empty channel,
so the initial flow state should be the dilute flow state. For
smaller inflow rates, the dilute flow state remains all the
time, so it is a stable state. However, the initial dilute flow
state becomes unstable or metastable when the inflow rate
exceeds some value, so it transforms to the dense flow state
at certain stochastic time. The transition also has the charac-
teristic that the larger the inflow rate, the faster the transition
occurs. When the inflow rate is very large, the transition
usually happens very quickly and we always observe the
dense flow state in the observation time. However, at a me-
dial inflow rate, where the observation time is comparable to
the survival time of the initial dilute state, the transition hap-
pens for only parts of ensembles. In this case, we can ob-
serve the probability of the dense flow state between 0 and 1
at the observation time. Under this scheme, the probability of
the dense flow state at longer times should shift left slightly,
relative to that for shorter times, which is just the experimen-
tal result for different time scale as we show in the inset of
Fig. 1.

III. SIMULATION METHOD AND THE SELECTED
LOCAL AREA

To show that the transition from dilute flow state to dense
flow state is a stochastic process, we also carry out MD
simulations for the system. The main advantage of the simu-
lation is that the information of each granule can be easily
known, so we can treat the data in a more detailed way. We
use a soft sphere approach in our MD simulations, because
we have to treat the case of the dense flow state in which the
multicollision of particles is not negligible. The simulation is
carried out in a 2D system. The geometrical size in the simu-
lation corresponds to that in our experiment, except the
length of the channel, for which to decrease the simulation

FIG. 1. Experimental results for outflow rate Q �solid squares�
as a function of inflow rate Q0. The solid line is Q=Q0 and the
dashed line is Q=Qd, where Qd is the outflow rate at the dense flow
state. Both lines fit experimental data well in the corresponding
range. The inset shows the transition probability from dilute flow at
initial to dense flow in 5 seconds �solid squares� and 10 seconds
�open diamonds�, respectively. The abscissas for both the inset and
the main graph are set to be the same for easier comparison.
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time we use a relatively shorter length L=125d0 compen-
sated by an increased muzzle velocity of the particle in the
entrance to give equivalent effect of channel length. The
shape of the grains is circular, and its rotation perpendicular
to the 2D plane is considered. The effective gravity is set to
be g sin 20° to simulate the inclined channel in experiment,
where g is the gravity acceleration. The Kuwabara-Kono
model is used as normal interactions between granules or
side wall �12,13�,

Fij
n = − kn�ij

3/2 − �n�ij
1/2Vij

n , �1�

and the tangential interactions are taken to the minor com-
ponent in comparison to the viscous friction and dynamic
friction,

Fij
� = min���Vij

� ,�Fij
n � , �2�

as is generally adopted in the literature. In Eqs. �1� and �2�,
�ij =max�0,2d0− �ri−r j � � is the overlap of particle i and j,
Vij =Vij

n en+Vij
� e� is the relative velocity between particle

i and j at contact point, and the superscript �subscript� n and
� express the normal and tangential components of a vector,
respectively. The detail values of the elastic parameters
are kn=5.0�109 N/m3/2, �n=300.0 Ns/m3/2, and ��

=0.3 Ns/m, and the coefficient of sliding friction is set to
�=0.2. These parameters work out the normal restitution
coefficient ranging from 0.7 to 0.9 as the impact velocity
varies from 1000d0 / s to 1d0 / s. The 2D model meets the
purpose that explains the basic physics in the granular flow
of our experimental system, though it may be not quantita-
tively comparable with the experimental system due to slid-
ing and rolling friction on the surface, the rotation of the
particles on the other axes, etc.

It is logical that the outflow rate is seriously affected by
the physical properties around the exits, i.e., the choke area.
However, how to analyze the local properties is the key point
of this research. The standard method is to establish a rela-
tionship between physical quantities in differential volume
elements. But this may represent a constitutive equation,
which has not been established at present for general granu-
lar flow. Instead of differential volume elements, we choose
finite local areas �see Fig. 2� and try to establish a relation-
ship between physical quantities in these areas. The most
important quantities in the granular flow are the flow rate and
the packing fraction, so we direct our attention on the rela-
tionship between them. For this purpose, the local packing
fraction and local flow rate must be defined clearly in these
areas. The local packing fraction of certain area is straight-
forwardly defined by the ratio of the volume occupied by the
particles in the area and the whole volume of the area. For
constant width � of the area-�2 and 3�, the local flow rate is
easily defined as

Q =

�
i

qi
n

�
, �3�

where �i represents the summation for all particles in the
area and qi

n is the flow rate of ith particle in the cross section.
For area-1, the local flow rate is defined as

Q =

�
i

qi
y

A
, �4�

where qi
y is the flow rate of ith particle in vertical direction

and A is a normalized constant. All the areas we have chosen
have the properties that they separate the entrance and the
exit completely. This is important because from the conser-
vation law of mass, the local flow rate will be equivalent to
the outflow rate at the exit for the stationary flow state,
though it will show a phase difference for a time-dependent
flow.

IV. SIMULATION RESULTS

Figure 3 shows the simulation results for the time evolu-
tion of the local flow rate in the three areas at three different
inflow rates. Figure 3 shows that the flow rate is indeed
equivalent for all three areas. We can also find that there is
no abrupt variation in the flow rate for the smallest inflow
rate �squares�, which means that the dilute flow state remains
throughout the whole simulation time. However, for the
other two larger inflow rates �diamonds� and �triangles� an
abrupt decrease of the flow rate at a certain time can be
found, which corresponds to transition from the dilute flow
state to the dense flow state. It also shows that the larger the
inflow rate, the quicker the transition occurs. These proper-
ties are consistent with those observed in experiment.

Figure 4 shows the simulation results for time evolution
of the local packing fraction in the three areas with the same

FIG. 2. A snapshot of the dense flow in the experiment. Three
selected areas around the exit are sketched, including a half-circle
�area-1�, a small sector �area-2�, and a large sector �area-3�. The
width of the cross section is �=4d0.

RELATIONSHIP BETWEEN THE FLOW RATE AND THE… PHYSICAL REVIEW E 74, 061306 �2006�

061306-3



inflow rate used in Fig. 3. Similar to Fig. 3, the abrupt
changes in packing fraction means a transition from the di-
lute flow state to the dense flow state. Figure 4 also shows
that the transition does not exist in the case of the smallest
inflow rate, and it occurs for the other two cases. However,
Fig. 4 shows different amounts of variation of the packing

fraction for different areas when transition occurs. We can
see that the packing fraction increases to a high value near
the random close packing fraction in Figs. 4�b� and 4�c�,
which is around 0.83 �14�. In contrast, only a small variation
in the packing fraction is observed in Fig. 4�a�. This suggests
that the crowding first happens at area-2, and then extends to
the area behind it—i.e., area-2 is the choke area in this sys-
tem.

We have shown the local flow rate and packing fraction
separately. It is interesting and important to see if they have
any inherent relations. For this purpose, the average local
flow rates as a function of average local packing fraction are
plotted in Fig. 5. In these calculations, two kinds of simula-
tion conditions are used to control the local packing fraction.
One is the fixed inflow rate conditions, which is the same as
that we used in the experiment. Under this condition, the
results show that the packing fraction increases successively
as the inflow rate increases. However, this method cannot be
used for larger inflow rate, because the high inflow rate will
cause particle piling-up in the channel and the long time
averaging could not be accomplished. Another simulation
condition is the fixed particle number condition, which can
overcome the disadvantages occurring in the fixed inflow
rate simulation. The fixed particle number condition is real-
ized by creating an equal number of particles at the top of the
channel when some particles flow out. We can find that the
local packing fraction increases also successively as the par-
ticle number increases. In these simulation conditions, no
particle accumulation occurs in the channel, even for the
dense flow state, so we can obtain the relationship in the
whole range.

FIG. 3. Simulation results of local flow rate in �a� area-1, �b�
area-2, and �c� area-3 as a function of time with several inflow rates.
Open squares, closed diamonds, and open triangles are for Q0

=9.0, 10.0, and 12.0 cs−1, respectively, in all the cases.

FIG. 4. Simulation results for local packing fraction in three
areas as a function of time. The symbols are used in the same way
as in Fig. 3.

FIG. 5. Simulation results of the relationship between local flow
rate and packing fraction. Squares, diamonds, and triangles are re-
sults for area-1, 2, and 3, respectively, and the open �closed� sym-
bols are results obtained by fixed particle number �fixed inflow rate�
simulation. Qmax and Qd are the maximum flow rate and the flow
rate of stable dense flow state, respectively. The inset is the histo-
gram of the local packing fraction in area-2 for fixed particle num-
ber N=300 �dash-dotted line�, 400 �dotted line�, 450 �dashed line�,
and 500 �solid line�, which is normalized for all the simulation
steps.
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Figure 5 gives the relationship between the local flow rate
and packing fraction for all three areas. First, we compare the
results for two simulation conditions, and it is easy to find
that they agree very well in dilute flow. So it is reasonable to
consider the relationship being inherent and robust. To ex-
clude that the relationship is obtained from mixed states, we
have checked the histogram of the local packing fraction.
The inset in Fig. 5 shows the histogram of the packing frac-
tion in area-2 for several particle numbers, which correspond
to different flow states. It is clear that the histogram has only
one peak for all the cases, and the position of the peak moves
smoothly as the particle number changes. The histogram of
the local flow rate shows similar properties. In Fig. 5, the
most important characteristics in the relationship are that the
flow rate has a maximum Qmax at a moderate packing frac-
tion and the packing fraction is terminated at a high value
with a negative slope for the flow rate. For all three areas,
these characteristics are similar, but the curve is wider for the
area further from the exit.

The relationship is useful in explanation of the flow state
and the transition between them when the inflow rate is
fixed. First, we can find that the end point at highest packing
fraction corresponds to a dense flow state, which is crowded
with particles and the flow rate Qd is less than the maximum
flow rate. It is stable for inflow rates higher than this point,
because the outflow rate is smaller than the inflow rate, so
the packing fraction would remain at this high value. Thus,
we define this point as stable dense flow state. We shall show
that this is the only stable state when the inflow rate is higher
than Qd. In the range of smaller packing fraction, a fixed
inflow rate less than Qd will give a unique small packing
fraction, which corresponds to the dilute flow state. In this
region, the flow rate increases with the increase of the pack-
ing fraction. The positive slope of the relation between the
flow rate and packing fraction results in the flow state being
stable for the fluctuation of the inflow rate. The mechanism
is like the following. For an instantaneous increase �de-
crease� of the inflow rate, the packing fraction will increase
�decrease� first. The increase of the packing fraction will
increase �decrease� the flow rate if it is in the range of the
positive slope. Then in turn, the increase �decrease� of the
flow rate will then decrease �increase� the packing fraction.
This feedback mechanism could keep on the packing fraction
at its stable value. Thus, the flow state in this range is defined
as stable dilute flow state. Similar to the previous consider-
ation, we can find that the flow state with negative slope is
unstable in fixed inflow rate condition, because the larger
packing fraction will decrease the flow rate in this case,
which will cause further crowding, so the flow state will
depart from its original state further and move to a stable
dense flow point finally. The process going to stable dense
flow point is very fast, and the surviving time of the state is
almost neglected in experiments. Considering both discus-
sions on the stable and unstable states, the flow state with
positive slope but having higher flow rate than Qd should be

metastable, because the flow state in this range is unstable in
large fluctuations, though it is stable in small fluctuation.
When the fluctuation exceeds the certain allowed range, the
high packing fraction causes the local flow rate to be less
than the inflow rate, and then the area will begin to accumu-
late particles and further decrease the local flow rate, and so
on. In this metastable state, the dilute flow state can survive
for some time, but finally transforms to the stable dense flow
point, and the surviving time will be longer if the inflow rate
is far from the maximum flow rate, because it will take some
time for large fluctuations to occur. The boundary between
the metastable and unstable states is at the maximum point,
which closes to the boundary of the dilute flow state and
dense flow state defined by the discontinuity of the flow rate
or packing fraction if the observation time is short. Near this
point, the abrupt change to the stable dense flow point is
usually considered as discontinuity. To be consistent with
preexisting works, we suggest to call the metastable state as
metastable dilute flow state and the unstable state as unstable
dense flow state.

Our simulations show very similar characteristic with that
of the backward propagating shockwaves �15,16�, for ex-
ample, the piling-up from area-2 and then spreading to the
area behind it. We know that the effective sound speed of
granular system is very slow because of the larger mass of
the particles, so it is natural to see some properties of the
shockwaves. It would be interesting to check if an acoustic
equation can give a similar relationship between the inflow
rate and the packing fraction as ours, we will do this in near
future.

V. CONCLUSIONS

In conclusion, we have first observed the time variation of
the transition from dilute flow state to dense flow state by
both experiments and simulations. Then we have shown that
both the flow rate and the packing fraction are continuous in
the fixed particle number condition. The relationship be-
tween the flow rate and the packing fraction has a maximum
at a moderate packing fraction and is terminated at high den-
sity with a negative slope. By discussing these characteristics
in detail, we have defined four flow states clearly for the
fixed inflow rate condition and show that the transition be-
tween dilute flow state and dense flow state is a stochastic
process. The discontinuities and the complex time variation
behavior occurring in the transition have been explained by
the abrupt variation through an unstable flow state. All these
descriptions are consistent with those we observed in both
experiments and simulations.
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