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Quasirigidity means that one builds a theory for assemblies of grains under a slowly changing external load
by using the deformation of those grains as a small parameter. Is quasirigidity a complete theory for these
granular assemblies? Does it provide unique predictions of the assembly’s behavior, or must some other
process be invoked to decide between several possibilities? We provide evidence that quasirigidity is a com-
plete theory by showing that two possible sources of indeterminacy do not exist for the case of disk-shaped
grains. One possible source of indeterminacy arises from zero-frequency modes present in the packing. This
problem can be solved by considering the conditions required to obtain force equilibrium. A second possible
source of indeterminacy is the necessity to choose the status �sliding or nonsliding� at each contact. We show
that only one choice is permitted, if contacts slide only when required by Coulomb friction.
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I. INTRODUCTION

A. Historical overview

The foundation of many physical theories is the observa-
tion that a certain physical quantity is “small.” In practice,
this means that the ratio between two different quantities
with the same units is much less than unity. Once a small
quantity has been identified, there are two ways of proceed-
ing. First of all, that quantity can be set to zero, if one wishes
to emphasize other aspects of the system. This is what is
done when presenting the harmonic oscillator to students for
the first time: one usually sets the dissipation to zero, even
though its effects are quite important. The second possibility
is to use the small quantity to linearize the equations. This is
what one does when one suspects that the quantity, though
small, plays an important role. An example is linear stability
analysis.

In the study of granular materials, an obvious choice for a
small quantity is the distance particles must move in order to
activate contact forces. This choice is motivated by the com-
mon observation that, in a pile of stones or marbles, the
deformation of the particles due to the stresses put on them is
not visible to the naked eye. Should these deformations be
set to zero, or kept as a small parameter?

At the end of the last century, this question was quite
controversial, as one can see from browsing through a con-
ference proceedings from that time �1�. The issue at hand
was the stress distribution at the bottom of a sandpile. Sev-
eral authors �2–5� proposed theories where the grains were
assumed to be perfectly rigid. In this way, they could circum-
vent the question of a stress-free reference state. However,
these theories were criticized on many points �6�. For ex-
ample, it was pointed out that continuum mechanics could
also account for the observations �7,8�. Another objection
was that they used arbitrary ways to resolve the problem of
contact force indeterminacy. This problem arises because it
is impossible to deduce the contact forces in a static granular
packing from assuming force equilibrium. There is no unique

solution; instead many solutions are possible �9,10,12�. This
loss of uniqueness occurs because there are more unknowns
�contact forces� than equations �vanishing force and torque
on each particle�.

But the root of all these objections was the realization that
rigid particle theories must be radically different from con-
tinuum mechanics. In continuum mechanics, the counterpart
to the particle deformations is the strain. Thus neglecting
deformations corresponds to eliminating the strain. But strain
is a fundamental quantity, and eliminating it destroys the
entire structure of continuum mechanics. Continuum me-
chanics can describe the macroscopic behavior of granular
materials, and it would be quite strange if the best micro-
scopic or grain-level theory were incompatible with it. It was
no coincidence that most opposition to rigid particle theories
came from engineers, who are more familiar with continuum
mechanics than most physicists.

The recently proposed force network ensemble �11� can
be considered as a modern version of the rigid particle theo-
ries. Instead of adding assumptions to determine the forces,
all possibilities are considered. The system is thus repre-
sented by a point in a high-dimensional space �10,12�, much
as in statistical mechanics. One should also mention the
widely used numerical method of contact dynamics �13�,
which is also based on the assumption of rigid particles.

This paper is concerned with an alternative approach,
where the particle deformations are a small parameter of cen-
tral importance. We call this approach “quasirigidity.” This
choice is motivated both by the belief that such deformations
determine the contact forces in physical systems, and by the
desire to propose a theory compatible with continuum me-
chanics, in view of arranging a future unification of micro-
scopic and macroscopic theories.

B. Quasirigidity

Quasirigidity was first proposed as the basis for a numeri-
cal method �14–18�, but has recently been explored theoreti-
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cally by a number of authors �19–27�. Results of this ap-
proach include a deeper understanding of isostatic packings
of frictionless particles �19,20,22�, the microscopic origins of
strain �19,21,22�, the stability of packings �24,25�, the rela-
tion between softening and sliding contacts �26�, and jam-
ming �27�. Work on a corresponding numerical method
�21–23� has also continued.

In quasirigid theories, the state of the packing is given by
the deformation of the particles at each contact. These defor-
mations determine the contact forces, which in turn govern
the motion of the particles. Finally, the particle motion gives
the change of the deformations. When studying the response
of a packing to an external load, these deformations must be
given initial values, analogous to specifying a reference state
in continuum mechanics.

Do these theories predict a unique evolution of the pack-
ing? Two possible sources of nonuniqueness have been
pointed out �25�. First of all, indeterminacy can occur if there
exists a possible motion that would not modify the contact
forces. Such motions are called “floppy modes” or “mecha-
nisms.” We call this mechanism indeterminacy. Second, in-
determinacy can arise due to the necessity of choosing the
status �sliding or nonsliding� of each contact. This is contact
status indeterminacy.

In this paper, we show that neither type of indeterminacy
occurs. Mechanism instability appears to be a problem be-
cause force equilibrium is the usual starting point for qua-
sirigid theories. But force equilibrium can be considered as a
certain limit of Newton’s second law. When this is done, one
can assess the impact of any mechanisms that may be
present. Contact status indeterminacy can be eliminated by
requiring that the contacts obey Coulomb friction, and letting
contacts slide only when necessary. This is what is com-
monly done in numerical simulations. A precise definition of
“necessary” will be given later in this paper.

A third possible source of indeterminacy is opening or
closing contacts. In this situation, one must consider transi-
tions between four different statuses �open, nonsliding, and
two different sliding directions�. One would like to be sure

that such transitions are always uniquely determined. Unfor-
tunately, the methods developed in this paper are not suffi-
cient to show this, so that this possible source of indetermi-
nacy must be investigated in the future.

This paper is organized as follows. Section II presents an
overview of the paper, detailing the questions posed in the
Introduction, and sketching the results of the rest of the pa-
per. Readers not wishing to savor the details may read this
section, and then skip directly to Sec. V for a discussion of
the results. The stiffness matrix for frictional disks is derived
in Sec. III, including a discussion of mechanism indetermi-
nacy in Sec. III E. Section IV deals with contact status inde-
terminacy by showing that there is a unique way to choose
the contact status.

II. SYNOPSIS

A. The stiffness matrix

In this paper, we will deal with an assembly of disks,
interacting via Coulomb friction and subjected to a slowly
changing force. As a concrete example, consider a biaxial
box, where a granular sample composed of disks is enclosed
in a rectangular box of dimensions Lx�Ly, with forces Fx
and Fy exerted on the walls. These forces vary slowly with
time, and one measures the resulting movement of the walls.
A sketch of the biaxial box is shown in Fig. 1.

In Sec. III, we define the quasirigid limit precisely, and
show that it leads to a piecewise linear behavior of the pack-
ing. Thus time can be divided into intervals �ti , ti+1� during
which the velocities of the particles are linearly related to the
change in forces:

dfext

dt
= kv , �1�

where fext represents the external forces �Fx and Fy for the
biaxial box�, v contains the velocities of the particles, and k
is called the stiffness matrix.

The motion is only piecewise linear because the stiffness
matrix k depends on the contact status. Whenever a contact
status changes, therefore, k must be modified. Therefore, the
times �ti� that define the intervals of linearity are the times
when one or more contacts change status.

B. Indeterminacy of mechanism

What happens when the stiffness matrix has a zero eigen-
value? In that case, there exists v*�0 such that kv*=0. Any
multiple of v* can be added to the solution of Eq. �1�, and it
would still be a solution. Thus it would seem that the theory
is incapable of determining the amplitude of v*.

But it important to realize that one obtains Eq. �1� under
the assumption that the external forces change on a time
scale that is very long compared to the vibrations in the
granular packing. The appearance of a zero eigenvalue cor-
responds to a diverging time scale of vibration, and thus the
assumptions leading to Eq. �1� are not met. One must use
instead Newton’s second law, and in this case, the amplitude
of v* can be determined. If there is no interaction between
the mechanism and the external force �fext ·v*=0�, then the

FIG. 1. Sketch of a biaxial test. An assembly of two-
dimensional grains is confined by four walls. Forces Fx and Fy are
applied to the vertical and horizontal walls.

SEAN C. MCNAMARA AND HANS J. HERRMANN PHYSICAL REVIEW E 74, 061303 �2006�

061303-2



mechanism is decoupled from the other degrees of freedom,
and Eq. �1� can still be used.

C. Contact status indeterminacy

Another source of indeterminacy may arise from the de-
pendence of k on the contact status. Each contact in the
packing may be sliding or nonsliding, and each choice leads
to a different stiffness matrix. If there are M contacts, there
are 2M ways to assign contact status, and thus 2M possible
stiffness matrices, and 2M different solutions to Eq. �1�.
Which one is correct? As stated in the Introduction, there is a
unique solution if the contacts have Coulomb friction, and
slide only when necessary. Coulomb friction means that the
condition

F̃ � �Fn − �Ft� � 0 �2�

must be obeyed at each contact. Here, Fn and Ft are the
normal and tangential components of the contact force. The
constant � is the Coulomb friction coefficient.

When we say that contacts should slide only when neces-
sary, we mean that they should slide only when they would
violate Eq. �2� if they did not slide. Since this rule places an
important role in this paper, we give it a name:

Principle of minimum sliding. A contact slides if, and only
if, remaining nonsliding would violate Eq. �2�.

To illustrate this principle, let us consider a block pushed
against a plane with normal force Fn

�ext�, as shown in Fig. 2. A
force tangential to the plane Ft

�ext� is also applied. The contact
between the block and the plane exerts a normal force Fn

�C�

and a tangential force Ft
�C�. Let these forces be directed op-

posite to the external ones, so Fn,t
�ext�=Fn,t

�C� indicates force
equilibrium. Let us suppose that Fn

�ext� is fixed, while Ft
�ext� is

slowly increased from zero. As long as Ft
�ext���Fn

�ext�, we
have Fn

�C�=Fn
�ext� and Ft

�C�=Fn
�ext�, so the block remains in

place, and the contact is nonsliding. When Ft
�ext���Fn

�ext�, the
block must begin to slide, since the contact cannot cancel the
imposed tangential force without violating Eq. �2�. The con-
tact is now sliding and Ft

�C�=�Fn
�ext�. Now suppose Ft

�ext� is
decreased again, so that Ft

�ext���Fn
�ext�. The block will deac-

celerate, and finally stop. When the block stops, the principle
of minimum sliding says that the contact must become non-
sliding. Then the block will remain in place as long as
Ft

�ext���Fn
�ext�. Note that if we did not apply the principle of

minimum sliding, we would obtain a nonsensical result: the
tangential contact force would remain constant at �Fn

�ext� and
start to accelerate the block. The frictional forces would thus
be doing work on the block, which is a violation of the
second law of thermodynamics. Thus, there is nothing artifi-

cial about the principle of minimum sliding. It is simply
makes explicit what is needed to obtain sensible results. It
also describes what is done in numerical simulations.

Now let us return to the problem of choosing the contact
statuses in a granular packing. It is helpful to consider the
contact forces as points in the �Fn ,Ft� plane. The set of
forces �Fn ,Ft� that obey Eq. �2� is shown in Fig. 3 as a
shaded region. This set is called the Coulomb cone because it
forms a cone when plotted this way.

As the particles move, the contact forces change, and thus
trace out continuous trajectories in the �Fn ,Ft� plane. These
trajectories must of course remain within the Coulomb cone.
For contacts in the interior of the Coulomb cone, any motion
is allowed �for short enough times�, since there is no danger
they will leave the cone. Therefore, all such contacts will be
nonsliding by the principle of minimum sliding.

Contacts whose forces lie on the boundary of the Cou-
lomb cone �Ft�=�Fn are called critical contacts, and must be
handled carefully, since they may leave the Coulomb cone. If
they are sliding, they will stay on the boundary. But as we
saw above, we must also allow them to leave this surface and
enter back into the interior of the Coulomb cone. Therefore,
each critical contact could be sliding or nonsliding.

It seems that one could determine the status of the critical
contacts simply by inspecting the particle velocities v. These
velocities determine the change in contact forces, and one
can easily determine if these changes would cause a critical
contact to return to the interior of the Coulomb cone or not.
However, changing a contact status also changes the matrix
k and thus through Eq. �1� the velocities v. These new ve-
locities may require changing the status of other contacts,
provoking another recalculation of v, etc. Thus it seems one
must use an iterative procedure. One assigns the contact sta-
tus in a certain way, uses Eq. �1� to calculate the particle
velocities v, and then begins to check if these velocities are
consistent with the chosen statuses. If an inconsistency is
found, the status must be changed, and the procedure begins
again. This procedure must be continued until a solution is
found.

In this paper, we are not concerned with this algorithm,
but rather about the uniqueness and existence of a solution.
Is it always possible to find a solution? Or are there many

FIG. 2. A block pushed against a plane.

FIG. 3. The possible motion of a contact in the �Fn ,Ft� plane.
The Coulomb cone is shaded. The contact begins at point A within
the cone. At B, it reaches the surface of the cone, becomes sliding,
and moves along the cone boundary. At C it becomes nonsliding
and moves into the cone interior.
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solutions? Note that it is difficult to investigate these ques-
tions numerically. Even though we must only deal with the
critical contacts, we are often faced with situations where all
possibilities cannot be investigated. For example, it is com-
mon to have hundreds of critical contacts in numerical simu-
lations involving thousands of particles. This means that the
possible ways to choose the status cannot even be numbered
with 64-bit integers.

Either nonexistence or nonuniqueness would bring up
hard questions about the quasirigid approach. If there were
sometimes no solutions, the theory could not be applied to
those situations. On the other hand, if the solution were not
unique, the stiffness matrix, combined with the principle of
minimum sliding, would not be a complete description of the
system. Some physical process must decide between the dif-
ferent possibilities. This unknown process would have been
left out of the model, leading to indeterminacy in the same
way that neglecting particle deformations leads to force in-
determinacy. We would then have to ask what that physical
process could be. One possibility is sound waves. As we
show below, the quasistatic assumption amounts to removing
“fast” processes like sound waves. When a contact changes
status, there is probably a “negotiation” between the critical
contacts, mediated by sound waves, that establishes their sta-
tus. In the quasistatic limit, this period of negotiation be-
comes a single point in time, and it is assumed that the prin-
ciple of minimum sliding suffices to determine the new
status. Nonuniqueness of the choice of contact status means
that the details of this negotiation must be taken into account.

D. Uniqueness of the solution

We now sketch the proof that that there is always one, and
only one, choice of contact status that satisfies the principle
of minimum sliding everywhere in the packing. We begin by
defining some terms. Let the state of a packing be a way of
assigning the status to all the critical contacts. To each state
belongs a corresponding set of velocities v, which can be
calculated from Eq. �1�. A state is locally consistent at con-
tact � if the principle of minimum sliding is obeyed at that
contact, and locally inconsistent otherwise. We also refer to
the consistency of a contact, which means whether or not the
principle of minimum sliding is obeyed there or not. A state
is globally consistent if it is locally consistent at all contacts.
We are thus concerned with the existence and uniqueness of
the globally consistent state.

The proof has two premises. First, we assume that all
possible states lead to a stable packing. The packing is stable
if

vTkv � 0 �3�

for a certain �large� class of relevant vectors v. The second
premise is the observation that the left-hand side of Eq. �1� is
not modified by the status of the contacts. Thus if we con-
sider two different states X and Y for the global contact sta-
tus, one has

dfext

dt
= kXvX = kYvY , �4�

where kX is the stiffness matrix obtained if one chooses X,
and kY is obtained by choosing Y. The corresponding veloci-
ties are vX and vY.

From Eqs. �3� and �4� it is possible to derive a series of
inequalities, from which one may deduce the following theo-
rem.

Status change theorem. If the status of any set of critical
contacts changes, the consistency of at least one of those
contacts must also change.

This statement is sufficient to prove both existence and
uniqueness.

To show this, let us cast the theorem into a different form.
A particular state corresponds to an Mc-bit binary number,
S� �0,1�Mc, with each bit corresponding to the status of a
single critical contact, and Mc is the number of critical con-
tacts. For concreteness, let us say S�=1 if contact � is slid-
ing, and S�=0 if it is nonsliding. To check the consistency of
a given state S of contact status, we would construct the
corresponding stiffness matrix kS, solve Eq. �1� for vS, and
then check for consistency at each critical contact. The result
of this procedure can be represented by a second Mc-bit bi-
nary number C=C�S�, where each bit gives the consistency
of a critical contact, i.e., C�=1 if contact � is consistent, and
C�=0 otherwise. Now, the above theorem can be stated as
follows: Changing any number of bits of S causes at least
one of the corresponding bits in C to change. This means that
no two different values of S can lead to the same value of C.
There are 2Mc possible choices for S, and 2Mc possible values
for C, so each possible value of C must be associated with a
unique value of S. This applies also to C=111. . .1, corre-
sponding to global consistency.

This result can be elegantly stated using a more math-
ematical language. The process of determining the consis-
tency of a state defines a mapping C of one Mc-bit binary
number to another:

C : �0,1�Mc → �0,1�Mc,

S � C�S� . �5�

Now the status change theorem sates simply that the map-
ping C is bijective. This proves the existence and uniqueness
of the consistent choice since C is a mapping from �0,1�Mc

onto itself.

III. THE STIFFNESS MATRIX

In this section, we present a derivation of Eq. �1�, where
the motion of the particles is related to the change in applied
force by the stiffness matrix. Several related derivations have
already been published �19,23,25,27�. The formulation pre-
sented here is distinguished from these other works in sev-
eral ways. First, it incorporates sliding contacts, which is
necessary to consider the uniqueness of the globally consis-
tent contact status. The second difference is that Eq. �1� is
shown to be a certain limit of Newton’s second law. This is
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essential to resolving the question of mechanism indetermi-
nacy. On the other hand, the simplest possible form of the
grains—disks in two dimensions—is assumed.

We first describe how interactions between the grains are
modeled. We then assemble the quantities introduced here
into vectors and matrices that describe all particles in the
assembly. We then insert these results into Newton’s second
law to obtain equations for the motion of the grains. Then a
limit of these equations is taken, leading to Eq. �1�. A dis-
cussion of mechanism indeterminacy completes this section.

A. Particle interaction model

We suppose that the grains interact through cohesionless
repulsion and Coulomb friction. We adopt the convention
that a positive normal contact force Fn corresponds to repul-
sion. Thus the absence of cohesion requires

Fn � 0. �6�

Recall that Coulomb friction means that Eq. �2� is obeyed.
When two grains first touch, two springs are created, one

in the tangential and the other in the normal direction. The
springs obey Hooke’s law so that the normal and tangential
contact forces Fn ,Ft are proportional to the spring elonga-
tions Dn ,Dt. To this restoring force, we add a linear damping
to model the dissipation of energy:

Fn = − KnDn − �nVn, Ft = − KtDt − �tVt, �7�

where Kn and Kt are the spring constants, �n and �t are
viscous damping coefficients, and Vn and Vt are the normal
and tangential relative velocities. Here, Dn	0 is interpreted
as an overlap.

The springs are stretched by the relative motion of the
particles, as long as this does not violate Eq. �2� or Eq. �6�.
When the contact is in the interior of the Coulomb cone, any
motion is possible, so one has

dDn

dt
= Vn,

dDt

dt
= Vt, �8�

where Vn and Vt are just the relative velocities at the point of
contact:

Vn = �v� i − v� j� · n̂n̂ ,

Vt = �v� i − v� j� · t̂t̂ + ri
i + rj
 j , �9�

where v� i, 
i, and ri are the velocity, angular velocity, and
radius of particle i, and i and j label the touching particles.
The vectors n̂ and t̂ are unit vectors pointing in the normal
and tangential directions, respectively. Throughout this pa-
per, capital letters indicate quantities concerning contacts,
and small letters quantities concerning particles.

Now let us consider how to handle sliding contacts. It is
helpful to define

Ṽ = �
Kn

Kt
Vn + Vt sgn Dt. �10�

Note that if the contact is nonsliding,

dF̃

dt
= − �Kt + �t�Ṽ , �11�

where F̃ is defined in Eq. �2�. For contacts on the boundary

of the Coulomb cone, we have F̃=0. The sign of Ṽ deter-
mines whether such contacts leave or remain within the Cou-

lomb cone when made nonsliding. If Ṽ	0, the contact will

move into the interior of the Coulomb cone �F̃�0�. If Ṽ
�0, the point would leave the Coulomb cone. The principle
of minimum sliding can thus be reformulated.

Principle of minimum sliding. The status sliding is consis-

tent if, and only if, Ṽ�0, where Ṽ is defined in Eq. �10�.
When a contact slides, Eq. �7� is still valid, but we set

�t=0 and constrain the spring elongations to change so that

F̃=0. This can be accomplished if we use the first equation
in Eq. �8� but replace the second with

dDt

dt
= − 	�

Kn

Kt
sgn Dt
Vn. �12�

Once the contact forces are known, the net force f� and
torque � on each particle can be computed:

f� = �
�

F�,nn̂� + F�,tt̂�,

� = r�
�

F�,t, �13�

where the sums are taken over all the contacts that the con-
cerned particle makes with its neighbors, and r is its radius.

B. Matrix formulation

It is useful to consider the preceding equations in matrix
form. To do so, we must gather the various quantities into
vectors. To begin with, we can group the force and torque
exerted on particle i into a vector f�i, and the contact forces
exerted by a contact � into a vector F� �:

f�i = � f i,x

f i,y

�i/ri
, F� � = 	F�,n

F�,t

 . �14�

It is often convenient to group these vectors together into
high-dimensional quantities concerning all the particles or
contacts in the packing:

f =�
f�1

f�2

]

f�N

 =�
f1,x

f1,y

�1/r1

]

fN,x

fN,y

�N/rN

 �15�

and
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F =�
F� 1

F� 2

]

F� N

 =�
F1,n

F1,t

]

FM,n

FM,t

 . �16�

Here N is the number of bodies whose motion must be con-
sidered, and M is the number of contacts between these bod-
ies. In these equations, and throughout this paper, boldface
vectors will denote quantities concerning all contacts or par-
ticles �i.e., vectors in contact or particle space�, whereas un-
derscores indicate quantities associated with a single particle
or contact.

Equation �13� can now be written

f�i = �
�=1

M

c� i�F� �, �17�

where c� i� is a 3�2 matrix

c� i� = ��i�n̂�x �i�t̂�x

�i�n̂�y �i�t̂�y

0 ��i��
 . �18�

This gives the contribution of contact � to the force exerted
on particle i. The symbol �i� is defined as

�i� = �1 if particle i is first in contact � ,

− 1 if particle i is second in contact � ,

0 if particle i does not participate in contact � .
�

�19�

If a particle is “first” in contact �, that means that the contact
exerts a normal force Fn,�n̂� on it. If it is “second” in contact
�, a normal force −Fn,�n̂� is exerted on it. For each contact
between two grains, one element of � is 1, and another is −1.
� is also called the incidence matrix.

Equation �17� holds for each particle �i=1, . . . ,N�. All of
these equations can be written compactly using the defini-
tions in Eqs. �15� and �16�:

f = cF . �20�

The 3N�2M matrix c can be constructed by assembling an
N�M array of the c� i�.

One can consider Eq. �20� as an equation for the unknown
contact forces F. However, one almost always has 2M
�3N, meaning that c has at least 2M −3N linearly indepen-
dent null eigenvectors. Therefore, Eq. �20� does not have a
unique solution. This is the force indeterminacy problem dis-
cussed elsewhere in the literature �9–12,24�.

We now continue by gathering the other quantities intro-
duced in Sec. III A into vectors. Equation �7� can be written

F� � = − K� �D� � − �� �V� � or F = − KD − �V , �21�

where

K� � = 	Kn 0

0 Kt

, �� � = 	�n 0

0 �t

 , �22�

and K and � are 2M �2M diagonal matrices containing the
K� � or the �� � on the diagonal.

Equation �9� can be written as

V� � = �
i=1

N

�c� i��Tv� i or V = cTv , �23�

where cT is the transpose of c �19�. Since the dimension of V
is larger than that of v, Eq. �23� places restrictions on V. Not
every vector V�R2M is allowed, but only those vectors in
the range of cT. Physically, this means that not every relative
motion is possible, but only those that can be generated by
moving and rotating the particles. The dimension of the
range of cT is at most 3N. There are thus 2M −3N dimen-
sions in R2M that are inaccessible. These 2M −3N dimen-
sions are precisely the null space of c �19�.

Finally, the relation between D and V in Eqs. �8� and �12�
requires careful treatment, due to the different possible con-
tact statuses. Let S be the set of sliding contacts. We define a
2�2 matrix S�� that depends on the status of contact �. If
��S, S��=1� , if ��S:

S�� = � 1 0

− �
Kn

Kt
sgn Dt 0  . �24�

Now the relation between v and D can be written

dD� �

dt
= S��V� � or

dD

dt
= S�S�V . �25�

S�S� is a block diagonal matrix, with the S�� on the diagonal.
It is a function of S, as indicated.

Note that sgn Dt in Eq. �24� is a constant. In order for
sgn Dt to change, the contact must cross the Fn axis in Fig. 3.
This can only happen if the contact passes through the inte-
rior of the Coulomb cone. In that case, the contact would be
nonsliding, and Eq. �24� would not be applied. The exception
to this occurs when a contact approaches the origin. This
brings up the question of what happens when a contact opens
or closes. We are not dealing with that problem in this paper.

Our derivation of the global stiffness matrix is summa-
rized in Table I. It rests on a chain of linear relations that can
be established �or assumed� between the various quantities.

TABLE I. Summary of stiffness matrix derivation as a chain of
linear relations. The symbol  is used to mean “is linearly related
to.”

Linear relation Equation

Force on particles  contact forces f=cF �20�
Contact forces  spring lengths F=−KD�21�

Change in spring length  relative motion Ḋ=SV �25�
Relative motion  particle motion V=cTv �23�
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C. Equations of motion

At this point, most derivations of the stiffness matrix pro-
ceed directly to force equilibrium, and assume that the net
forces f exerted on each particle are balanced by some exter-
nally imposed load fext. We take a longer route that gives
more insight into the situations where force equilibrium does
not hold. We begin with Newton’s second law, which relates
the accelerations of the particles to the forces exerted on
them:

m
dv

dt
= f + fext. �26�

Here, m is a diagonal matrix containing the masses and mo-
menta of inertia of all the grains. We could also write

m� i
dv� i

dt
= f�i + f�ext,i �27�

with

m� i = �mi 0 0

0 mi 0

0 0 Ii/ri
2 , �28�

where mi is the mass of particle i and Ii is its moment of
inertia.

Combining Eq. �20�, �21�, and �26� gives

m
dv

dt
= − cKD + fext. �29�

This equation can be differentiated once with respect to time,
and Eqs. �23� and �25� can be used to obtain

m
d2v

dt2 = − cKScTv −
dc

dt
KD − cT�c

dv

dt
+

dfext

dt
. �30�

The combination cKScT appears often, so we define
k=cKScT and write

m
d2v

dt2 = − kv −
dc

dt
KD − cT�c

dv

dt
+

dfext

dt
. �31�

This equation gives the full motion, without approximation,
of the disks. Such an equation is solved numerically in the
molecular dynamics simulation method. On the left-and side
is the mass times the acceleration �differentiated by time�,
and on the right-hand side are the forces exerted on the par-
ticles �also differentiated by time�.

D. Quasistatic balance

If one makes the quasirigid and quasistatic assumptions,
then two terms dominate in Eq. �31�. The quasirigid assump-
tion means that the hardness of the particles is assumed to be
much greater than the confining pressure, and the quasistatic
assumption is that the external forces fext change much more
slowly than any time scale associated with the contact forces.
We describe the consequences of each of these assumptions
below.

Let us begin with the quasirigid assumption. We will com-
pare the first two terms on the right-hand side of Eq. �31�.

From Eq. �18�, we see that dc /dt will be proportional to
dn̂ /dt. Carrying out this differentiation,

dn̂

dt
=

d

dt
	 x�i − x� j

�x�i − x� j�

 =

v� i − v� j

�x�i − x� j�
· t̂t̂ � O	V

R

 . �32�

Here, R is a typical particle radius, and V a typical relative
velocity. Now we can estimate the sizes of the first two terms
on the right-hand side of Eq. �31�:

kv = cKSV � O�KV�,
dc

dt
KD � O	KV

D

R

 , �33�

where we have used c�S�O�1�. The quasirigid assumption
implies that the deformations D are much smaller than a
typical particle radius R, or D /R�1. Thus the second term
on the right-hand side is much smaller than the first, and Eq.
�31� becomes

m
d2v

dt2 = − kv − cT�c
dv

dt
+

dfext

dt
. �34�

The term that we have just neglected is called the “geometric
stiffness” �25�. It can again become important in some situ-
ations. One example will be given in Sec. III E.

Now let us proceed to the quasistatic assumption. As
stated above, this means that the external force fext is as-
sumed to change much more slowly than any time scale
associated with the vibrations in the granular assembly. To
express the separation of time scales, we write

d

dt
=

d

dt0
+ �

d

dt1
, �35�

where the variable t0 measures a fast time scale, and t1 a long
time scale. In the problem at hand, the fast time scale de-
scribes vibrations of the packing, and the slow time scale is
given by the change in the external load fext. The presence of
��1 before the derivative with respect to t1 shows that these
derivatives are small, as t1 measures slow changes.

The assumption of quasistaticity can be expressed by say-
ing that the particle positions x depend on both t0 and t1, but
the external force fext depends only on the slow time t1:

x = x0�t0� + x1�t1�, fext = fext�t1� . �36�

After differentiation by time, we have

v = v0 + �v1 �37�

and the O�1� terms of Eq. �31� are

m
d2v0

dt0
2 = − kv0 − c�cTdv0

dt0
. �38�

This equation resembles that of a damped, harmonic oscilla-
tor, with three differences. First, it is an equation for the
velocity, not the position. Second, it is a vector equation, not
a scalar one. Finally, k and � depend on contact status. Nev-
ertheless, it has the same properties as a damped, harmonic
oscillator. The matrix m is positive definite and cT�c is non-
negative definite, as m and � are both diagonal matrices with
positive or non-negative entries. The stiffness matrix k, how-
ever is not necessarily positive definite. If there are vectors

QUASIRIGIDITY: SOME UNIQUENESS ISSUES PHYSICAL REVIEW E 74, 061303 �2006�

061303-7



v�0 such that vTkv	0, then k acts like a negative number
in Eq. �38�, and v0 grows exponentially on a short time scale.
This is “motion through an instability” �24�. Physically, the
external forces push the particles away from the positions
they must occupy in order to be in equilibrium �27�. In this
case, one does not obtain the quasistatic balance; rather the
packing is unstable and is set in motion.

On the other hand, if vTkv�0 then k acts like a positive
number in Eq. �38�, and v undergoes damped oscillations. In
this case v0→0 as t0→�. One can then examine the O���
equations assuming v0=0. �The situation when vTkv=0 is
more complicated, and will be discussed in the next section.�
Keeping the O��� terms of Eq. �26� gives

dfext

dt
= kv1. �39�

This is the quasistatic balance, and the same as Eq. �1�.

E. Mechanism indeterminacy

Now let us consider mechanism indeterminacy. This oc-
curs when k has null eigenvalues, i.e., when kv*=0 for v*
�0. The amplitude of these motions cannot be determined
from Eq. �39�; thus they appear to be a source of indetermi-
nacy, just as null eigenvalues of c �see Eq. �20�� indicate
force indeterminacy in rigid particle theories. But there is
one crucial difference between Eq. �20� and Eq. �39�: the
matrix k in Eq. �39� is a square matrix, so if it has null
eigenvalue, its range has a lower dimension than the left-
hand side of the equation. Thus there are external loads for
which Eq. �39� has no solution. On the other hand, the range
of c can have the same dimension as the right-hand side of
Eq. �20�, even when c has many null eigenvalues.

What happens when Eq. �39� has no solution? In that
case, the quasistatic assumption used to derive Eq. �39� is
invalid. This is because a null eigenvalue corresponds to a
diverging period of vibration in the packing. Thus one cannot
assume that the force is changing on a time scale much
greater than the period of vibration. Therefore, one must con-
sider Eq. �34� without assuming any separation of time
scales. If one considers only the eigenvector v*, Eq. �34� can
be integrated once to give

m
dv*

dt
= − cT�cv* + fext. �40�

If the damping can be neglected, then �v* �t � fext � / �m�. This
is “motion through a mechanism” �24�. The growth of the
velocity with time is much more gentle than for motion
through an instability that was discussed in the previous sec-
tion.

However, Eq. �39� can have a solution even when k has
null eigenvalues. In this case, the imposed force does not
excite the mechanisms. The mechanisms are irrelevant to the
evolution of the system, and thus the derivation of Eq. �39� is
again valid. Such irrelevant mechanisms are quite common.
For example, if one constructs the stiffness matrix of the
biaxial box discussed in Sec. II A, it is convenient to con-
sider the walls as particles. Then, the stiffness matrix auto-

matically has three null eigenvalues: two associated with the
translation of the whole apparatus and one associated with its
rotation. As long as the forces on opposite walls are equal,
these modes will not be excited, and they are irrelevant. An-
other example is a “rattler”—a grain that has no contacts.
Each one of its degrees of freedom yields a zero eigenvalue
of k, but it can be removed from the system without chang-
ing the quasistatic behavior.

Another thing that can happen when a mechanism is
present is that motion can be stabilized or destabilized by the
geometric stiffness �dc /dt�KD in Eq. �31�, which was ne-
glected in the quasirigid limit. When there is a mechanism,
the particle displacements are no longer required to be small,
so this term needs to be considered. An example is when two
elliptical particles are pressed together �25�. If the particles
are circular, there is a mechanism: the two particles can roll
like bearings relative to one another. If the particles are made
elliptical, the neglected term �dc /dt�KD must be considered
to predict the behavior.

Thus, null eigenvalues of k can always be put into one of
two classes. If Eq. �39� has no solution, the null eigenvalue
signals the collapse of the packing, and the quasistatic as-
sumption fails, and Eq. �34� must be used to predict the
motion of the grains. On the other hand, if Eq. �39� still has
a solution, even though the range of k has been reduced in
dimension, the null eigenvalue corresponds to a degree of
freedom that is irrelevant. Null eigenvalues appear to cause
indeterminacy only because Eq. �39� is considered as the
most fundamental equation. However, Eq. �39� is in fact an
approximation to Eq. �34�.

IV. CONTACT STATUS INDETERMINACY

In this section, we consider contact status indeterminacy.
We will show that only one state does not lead to a violation
of the principle of minimum sliding at one or more contacts.
To do so, we must compare the stiffness matrices of the
different states. We begin by presenting the two hypotheses
needed for the proof: first, that all possible states are stable,
and second that the applied load is independent of the state.
Then we consider an example where only two contacts are
critical, and show that the consistent state always exists and
is unique. Then we consider the general case with an arbi-
trary number of critical contacts.

A. Conditions needed to show uniqueness

1. The stability condition

A packing is stable if the quadratic form Q=vTkv is posi-
tive �24,25,27�:

Q�v,S� = vTk�S�v � 0, �41�

where S is the set of contacts that are sliding. As we saw in
Sec. III D, the motion cannot be assumed to be quasistatic
when Q�0.

The quadratic form plays an important role in this paper,
so we will discuss how it can be calculated. If we recall the
definition k=cKScT, and group factors in a suggestive way,
we have
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Q�v,S� = �vTc�TKS�cTv� = VT�KS�V �42�

The matrix KS is block diagonal, with each block corre-
sponding to a contact. Thus Q�v ,S� reveals itself to be sim-
ply a sum over contacts:

Q�v,S� = �
�=1

M

V� �
TK� �S��V� �,

= �
��S

Q�
�NS� + �

��S
Q�

�S�, �43�

where Q�
�NS� is the contribution of contact � if it is nonslid-

ing, and Q�
�S� is its contribution if it is sliding. Using Eqs.

�22� and �24�, we have

Q�
NS�v� = KnVn,�

2 + KtVt,�
2 , �44�

Q�
�S��v� = KnVn,�

2 − �KnVt,�Vn,� sgn Dt,�. �45�

In the following, it is useful to use Eq. �10� and replace Vn,�

with Ṽ�. Equation �45� becomes

Q�
�S��v� = Q�

�NS��v� − KtVt,�Ṽ� sgn Dt,�. �46�

Now let us define

F̂� = KtVt,� sgn Dt,�, �47�

so that Eq. �46� becomes

Q�
�S��v� = Q�

�NS� − F̂�Ṽ�. �48�

Therefore, the stability condition Eq. �41� is

Q�v,S� = Q�v, � � − �
��S

F̂�Ṽ� � 0. �49�

Note that Q�v , � ��0, because the contribution of each con-
tact must be positive. This means the only way to obtain an
unstable packing is for the sliding contacts to make large and
negative contributions to Q.

In the following, it will be necessary to compare Q for
different states. If the sliding contacts present in a given state
are divided into two disjoint sets S1 and S2 �S1�S2=��, then

Q�v,S1 � S2� = Q�v,S1� − �
��S2

F̂�Ṽ�. �50�

2. The independent load condition

Let us consider two different states X and Y, each with a
different set of sliding contacts. Let S be the set of contacts
sliding in both states, X be set of sliding contacts unique to X
and Y be those unique to Y �see Table II�. Let vX be the
velocities in state X and vY be those in Y. Similarly, kX

=k�S�X� and kY =k�S�Y�. If the externally applied force
is independent of contact status,

dfext

dt
= kXvX = kYvY , �51�

or both vX and vY are the velocities caused by the same
external forces, but with different stiffness matrices.

Equation �51� can be rewritten

kXvX − kYvY = cK�SXVX − SYVY� = 0. �52�

Now let us multiply this equation from the left by �vX

−vY�T:

�VX − VY�TK�SXVX − SYVY� = 0. �53�

This again is simply a sum over contacts:

�
�=1

M

�V� �
X − V� �

Y�TK� ��S��
XV� �

X − S��
YV� �

Y� = 0. �54�

There will be four types of contributions, corresponding to
the four columns in Table II: �1� Contacts that slide in X but
not in Y �the set X�, �2� contacts that slide in Y but not in X
�the set Y�, �3� contacts that are sliding in both X and Y �the
set S�; and �4� contacts that are nonsliding in both X and Y.

For the last two classes of contacts, S�X=S�Y, so their con-
tributions here will be the same as to the quadratic form. For
contacts ��X the contribution is

Kn�Vn,�
X − Vn,�

y �2 + ��KnVn,�
X sgn Dt,� + KtVt,�

Y ��Vt,�
X − Vt,�

y � .

�55�

Defining F̂�
XY = F̂�

X− F̂�
Y, this quantity can be rewritten as

Q�
�NS��vX − vY� − F̂�

XYṼ�
X. �56�

In the same way, the contribution of contacts ��Y is

Q�
�NS��vX − vY� + F̂�

XYṼ�
Y . �57�

Thus Eq. �53� becomes

Q�vX − vY,S� = �
��X

F̂�
XYṼ�

X − �
��Y

F̂�
XYṼ�

Y . �58�

B. Small numbers of sliding contacts

In preparation for treating the general case, we will con-
sider the problem of a packing that may slide at two different
contacts � and �. The four different possible states are
shown in Table III and labeled A, B, C, and D. We will use
superscripts to indicate quantities belonging to each state.
For example vA are the particle velocities in state A and SC is
the status matrix in state C.

The system starts in state A with no sliding contacts. Then
contact � reaches the boundary of the Coulomb cone and

TABLE II. The two states X and Y considered in the indepen-
dent load condition. The status of the contacts in the sets X, Y, and
S is given �S=sliding, NS=nonsliding�. All contacts not in these
sets are nonsliding in both states.

Status

State

X Y S All others

X S NS S NS

Y NS S S NS
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becomes sliding, and the packing moves to state B. Then
contact � reaches the boundary, the system moves to either
state C, where both � and � slide, or to state D, where only
� slides.

We will consider the questions of existence and unique-
ness. For example, when � becomes sliding, is it guaranteed
that B is consistent? If it were inconsistent, then contact �
should become nonsliding. But if it became nonsliding, the
system would return to state A, and � would leave the Cou-
lomb cone. A solution would not exist. The question of
uniqueness arises when contact � reaches the boundary. If
both states C and D were consistent, the system could move
to either C or D, and the solution would not be unique. We
will show that the consistent state exists and is unique.

1. One sliding contact

We first consider the transition from A to B. This transi-
tion occurs when the contact � reaches the boundary of the
Coulomb cone. It starts somewhere within the cone, that is

with F̃��0 �see Eq. �2��. As the contact moves toward the

boundary, F̃� decreases and then vanishes when � reaches
the boundary. Therefore, Eq. �11� requires that

Ṽ�
A � 0. �59�

Thus a 1 is given in the top row of the third column of Table
III.

One usually supposes without comment that the state B is
consistent. But this is not obvious, because all particles
change their velocities when the state changes. The state B

will be consistent only if Ṽ�
B�0, and no one has shown that

this must be so.
To show that B is indeed consistent, let us apply the in-

dependent load condition to the transition between A and B.
Setting X=A, Y =B, S=X=�, and Y= ���, Eq. �58� becomes

Q�vA − vB, � � = − F̂�
ABṼ�

B. �60�

If state A is stable, the quadratic form must be positive, lead-
ing to

F̂�
ABṼ�

B 	 0, �61�

which gives us some information about the sign of Ṽ�
B, but

also unfortunately involves the unknown quantity F̂�
AB. More

information can be obtained by requiring state B to be stable:

Q�vA − vB,���� � 0, �62�

and after using Eq. �50�

Q�vA − vB, � � − F̂�
AB�Ṽ�

A − Ṽ�
B� � 0, �63�

and finally using Eq. �60�:

F̂�
ABṼ�

A 	 0. �64�

Together Eqs. �64� and �61� show that Ṽ�
A and Ṽ�

B have the

same sign. We already showed that Ṽ�
A�0 in Eq. �59�; thus

Ṽ�
B�0 as well. Therefore state B is compatible, and the so-

lution exists.
Before proceeding, let us pause to note that the reasoning

we have just employed does not depend on state A being
without sliding contacts. Define S to be the set of contacts
sliding in state A. If we simply replace the empty set in Eqs.
�60� and �63� with S, and ��� with ����S in Eq. �62�, the
reasoning remains unchanged. Thus we have a general state-
ment: If two states A and B differ only in the status of a

single contact �, then sgn Ṽ�
A=sgn Ṽ�

B. This state implies that
the consistency at contact � must be different in states A and

B. If sgn Ṽ�
A=sgn Ṽ�

B=−1 �or if � is not a critical contact�
then A will be consistent at � and B will be inconsistent. If

sgn Ṽ�
A=sgn Ṽ�

B=1 then A will be inconsistent and B consis-
tent. Thus we have proved a special case of the status change
theorem.

One-contact status change theorem. If two states A and B

differ only in the status of a single contact �, then sgn Ṽ�
A

=sgn Ṽ�
B, meaning that they differ in the consistency at �.

Using this theorem, we can now fill in the third and fourth
columns of Table III. States C and D differ only in the status

of contact �, so sgn Ṽ�
C=sgn Ṽ�

D=�1. States A and D differ

only in the status of contact �, so sgn Ṽ�
A=sgn Ṽ�

D=�2. For

the same reason, sgn Ṽ�
B=sgn Ṽ�

C, and in the next section, we

show sgn Ṽ�
B=1.

2. Two sliding contacts

Suppose now that the system is in state B, when a second
contact � reaches the boundary of the Coulomb condition.
Following the same reasoning as at the beginning of the
preceding Sec. IV B 1, we see that

Ṽ�
B � 0. �65�

Thus a 1 is given in the second row of the fourth column of
Table III. The one-contact status change theorem tells us we

TABLE III. The states considered in Sec. IV B. Contacts � and
� are critical, so there are four possible states labeled by A, B, C,
and D. The table gives the status of each critical contact in each

state �S=sliding, NS=nonsliding�. Also given are the signs of Ṽ. Ṽ�
A

and Ṽ�
B are known to be positive, because it is assumed that �

becomes critical while the packing is in state A, and � becomes
critical while in state B. The other values are deduced from the one
contact status change theorem given at the end of Sec. IV B 1.
�1 ,�2= ±1 are unknown, but used here to show relations between
different states.

State

Contact status sgn Ṽ
Consistency
requirements� � � �

A NS NS 1 �2 � ,� not critical

B S NS 1 1 � not critical

C S S �1 1 �1=1

D NS S �1 �2 �1=−1, �2=1
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should immediately put a 1 in the third row of the same
column.

Now let us consider the uniqueness of the globally con-
sistent state. When � becomes sliding, the system can now
move to either state C where both � and � slide, or to D,
where only � slides.

The one-contact status change theorem shows that the so-
lution is unique. Only a single contact is different between
states C and D, and the theorem states that only one of these

states can be consistent at �. If sgn Ṽ�
C=sgn Ṽ�

D=�1=1, then
contact � must slide, and C is consistent but not D. On the
other hand, if �1=−1, then contact � must be nonsliding, and
D is consistent but not C.

Now let us check the existence of the solution. Suppose
�1=1, meaning the system must move to state C. In order for

this state to be compatible, we must also have Ṽ�
C�0. As

shown above, the one-contact status change theorem guaran-
tees this.

What happens if �1=−1? In this case, the system must
move to state D, but is this state compatible? The first-order

state theorem says sgn Ṽ�
D=sgn Ṽ�

A=�2, but this does not
help prove compatibility, since �2 is unknown. However, we

do know that Ṽ�
B�0, so let us now search for a way to relate

Ṽ�
B to Ṽ�

D. This cannot be done by the one-contact status
change theorem, because B and D differ at two contacts.
Therefore, we must return to two hypotheses discussed in
Sec. IV A, and deduce more information from them.

If we apply the independent load condition to states B and
D, we obtain

Q�vB − vD, � � = F̂�
BDṼ�

B − F̂�
BDṼ�

D. �66�

Requiring all four states A, B, C, and D to be stable leads to
the inequalities

F̂�
BDṼ�

B � F̂�
BDṼ�

D, �67�

F̂�
BDṼ�

D � F̂�
BDṼ�

D, �68�

F̂�
BDṼ�

B � F̂�
BDṼ�

B, �69�

F̂�
BDṼ�

D � F̂�
BDṼ�

B. �70�

Now let us suppose that sgn Ṽ�
B�sgn Ṽ�

D �i.e., �1=−1�. This
means that the left-hand side of either Eq. �67� or �68� must
be negative. The right-hand side of these two relations is
identical, and must be less than some negative number:

F�
BDṼ�

D 	 0. �71�

Similar reasoning with Eqs. �69� and �70� leads to

F�
BDṼ�

B 	 0. �72�

These two inequalities require that V�
D and V�

B have the same
sign. Thus we have shown that

sgn Ṽ�
B � sgn Ṽ�

D ⇒ sgn Ṽ�
B = sgn Ṽ�

D. �73�

In the same way, one can begin with the assumption that V�
D

and V�
B have opposite signs, and obtain

sgn Ṽ�
B � sgn Ṽ�

D ⇒ sgn Ṽ�
B = sgn Ṽ�

D. �74�

Now let us use these results to determine the consistency
of state D. Using the information given in Table III, Eq. �73�
becomes

�1 � 1 ⇒ �2 = 1. �75�

Recall that �1=−1 means that state C is inconsistent, and
�1=−1, �2=1 is the condition required for D to be consis-
tent. Thus the consistent state always exists.

But Eqs. �73� and �74� also have a much more profound
implication. When moving from state B to state D, the sign

of Ṽ at both � and � cannot change. Note that this reasoning
holds even if there are other sliding contacts, as long as they
remain sliding in all four states A, B, C, and D. Thus we have
a second special case of the status change theorem.

Two-contact status change theorem. If two states A and B
differ only in the status of two contacts � and �, then

sgn Ṽ�
A=sgn Ṽ�

B or sgn Ṽ�
A=sgn Ṽ�

B, meaning that the consis-
tency at � or � �or both� must change.

C. Many sliding contacts

In this section, we prove the status change theorem. Let us
restate it in this way.

Status change theorem. If two states A and B differ only
in the status of n contacts �1 , . . . ,�n, then for at least one

contact �i, we have sgn Ṽ�i

A =sgn Ṽ�i

B , implying that the con-
sistency at �i must also change.

Recall that in Sec. II D, we showed that this statement is
sufficient to prove that the globally consistent state exists and
is unique. We now establish this theorem.

Consider two different states A and B. The contacts in A
are sliding in A but not in B, and the contacts in B are sliding
in B but not in A. Let S contain contacts that are sliding in
both states. We want to show that

sgn Ṽ�
A = sgn Ṽ�

B for at least one � � A � B . �76�

We will begin by assuming the contrary:

sgn Ṽ�
A � sgn Ṽ�

B for all � � A � B , �77�

and show that this leads to a contradiction.
The independent load condition Eq. �58� implies

Q�vA − vB,S� = �
��A

F̂�
ABṼ�

A − �
��B

F̂�
ABṼ�

B. �78�

Now let us assume stability for a third state C. The fol-
lowing contacts will be sliding in C: �1� All contacts in S,
who are sliding in both states A and B. �2� Some contacts
that are sliding in A but not in B. Let A��A denote these
contacts. �3� Some contacts that are sliding in B but not in A.
Let B��B denote these contacts. Table IV summarizes this
information.
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Let C=A�B and C�=A��B�. Note that C� can be any
subset of C. The stability condition for state C is

Q�vA − vB,S � C�� � 0,

Q�vA − vB,S� + �
��C�

F̂�
AB�Ṽ�

B − Ṽ�
A� � 0. �79�

Combining this with Eq. �78� yields

�
��A�

F̂�
ABṼ�

B + �
��A\A�

F̂�
ABṼ�

A − �
��B�

F̂�
ABṼ�

A − �
��B\B�

F̂�
ABṼ�

B

� 0. �80�

Note that A� and B� are arbitrary, so there is a large number
of such relations.

To write these relations in a more compact form, we de-
fine

��
A =� FABṼ�

A for � � A ,

− FABṼ�
A for � � B ,

� �81�

with an analogous definition for ��
B. Now the relations Eq.

�80� can be written

�
��C�

��
B + �

��C\C�

��
A � 0. �82�

And the hypothesis Eq. �77� becomes

sgn ��
A � sgn ��

B for all � � C , �83�

To show that Eq. �83� leads to a contradiction, it suffices to
show that

�
��Ci�

��
B + �

��Ci\Ci�

��
A � 0 for 1 � i � n , �84�

where n is the number of elements in C, and Ci is a subset of
C that contains exactly i elements, and Ci� is any subset of Ci.

The case i=1 of Eq. �84� contradicts the hypothesis Eq.
�83�. To see this, let C1= ���. Choosing C1�=� in Eq. �84�
leads to ��

A�0, and choosing C1�= ��� leads to ��
B�0. Thus

��
A and ��

B do not have opposite signs, as assumed in Eq.
�83�. This means that Eq. �77� is false, and Eq. �76� must be
true. Equation �76� is equivalent to the status change theo-
rem.

We now show Eq. �84� by induction, beginning with i
=n and proceeding to i=1. The case i=n is trivial, since Cn

=C. In this case, Eqs. �82� and �84� are identical.
Now let show that if Eq. �84� holds for i+1, then it holds

for i also. Choose a contact � such that ��Ci, but ��C. By
the hypothesis, Eq. �84� holds for Ci+1=Ci� ���. Next, we
make two different choices for Ci+1� and apply Eq. �84�. First
we choose Ci+1� =Ci� and obtain

�
��Ci�

��
B + �

��Ci\Ci�

��
A � − ��

A, �85�

and next we choose Ci+1� =Ci�� ���:

�
��Ci�

��
B + �

��Ci\Ci�

��
A � − ��

B. �86�

Note the parallel between these conditions and Eqs.
�67�–�70�. By Eq. �83� either ��

A or ��
B is negative. There-

fore, the only way for both of these inequalities to hold is if
the sums are positive:

�
��Ci�

��
B + �

��Ci\Ci�

��
A � 0. �87�

This completes the induction step, and thus the proof.

V. DISCUSSION AND CONCLUSION

A. How restrictive are the assumptions?

This work considered only circular particles. The conclu-
sions are probably not modified if other shapes are consid-
ered. The particle shape most strongly affects the geometric
stiffness, which is neglected because of the quasirigid as-
sumption. The moment of inertia plays only a small role,
because it is eliminated in the quasistatic approximation. To
accommodate particles of different shapes, the particle radius
r in Eq. �13� must depend on the contact, and the torque may
also depend on the normal force. This requires modifying the
matrix c. But none of these should alter our considerations of
mechanism indeterminacy, nor alter the two premises of the
proof used to resolve contact status indeterminacy.

Another assumption that seems quite restrictive is the use
of the linear force law in deriving the stiffness matrix. This is
no restriction, because this paper revolves around the ques-
tion of what occurs at one point in time, when the system
must adjust the status of the contacts. Therefore, one could
always linearize the force law around the positions of the
particles.

A second assumption is that all possible states must be
stable. This assumption is reasonable because if there is an
unstable state, the packing will probably collapse, rendering
the question of uniqueness irrelevant. The state that is most
likely to be unstable is the one where all Mc critical contacts
are sliding. This is so, because the contributions of sliding
contacts to the quadratic form are on the average negative
�26�. Furthermore, the only way to obtain instability is for
negative contributions of the sliding contacts to the quadratic
form outweigh the positive contributions of the nonsliding
contacts �see discussion of Eq. �49��. Now, the packing is
always close to this state, because when a contact becomes
nonsliding it leaves the boundary of the Coulomb cone and

TABLE IV. States for the proof of the status change theorem.
Two states A and B are considered. For the proof, a third state C is
constructed. Contacts in A are sliding in A, but not in B, and con-
tacts in B are sliding in B, but not in A. Sets A��A and B��B are
sliding in state C. �Here S=sliding, NS=nonsliding.�

State A \A� A� B \B� B� S All others

A S S NS NS S NS

B NS NS S S S NS

C NS S NS S S NS
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becomes noncritical. Therefore, when the assumption of sta-
bility for all possible states is violated, we expect the packing
to yield.

Furthermore, if there are vibrations in the system, they
will be governed by Eq. �38�. These vibrations will cause the
relative motion at each contact to fluctuate. At critical con-
tacts, the contact status will therefore switch between nons-
liding and sliding. Thus the packing will sample many dif-
ferent possible states, and if it finds an unstable one, it may
collapse. Thus all states must be stable in order to guarantee
that the vibrations will damp out, meaning that this is a nec-
essary condition to obtain quasistatic balance.

Finally, let us remark that theory presented in Sec. III
requires some modifications to deal with opening and closing
contacts. To account for a contact that opens, it is necessary
to introduce the status “open,” and allow Dn to become posi-
tive. Another problem is presented by contacts that are ini-
tially open but may later close. In the theory, the particle
deformations are assumed to be infinitely small, so that no
two particles separated by a finite distance will ever touch.
This may lead to the omission of important effects when the
particle separations are very small, such as in a regular pack-
ing of almost monodisperse spheres.

B. Implications of the result

This work suggests that the stiffness matrix together with
the principle of minimum sliding form a complete descrip-
tion of quasistatic granular material. Since the globally con-
sistent state always exists and is unique, there is no need to
appeal to other processes that have been left out of the model
to decide between various possible states. Instead of rather
brutally setting the particle displacements to zero, as is done

in various stress-only approaches to granular matter, one
should consider taking the quasirigid limit, where the stiff-
ness of the particles diverges, and the displacements become
infinitesimally small, but are not set to zero. Taking this limit
leads to the stiffness matrix approach discussed in this paper.
This work supports the conjecture that the quasirigid limit
preserves all the necessary physics needed to describe the
quasistatic behavior.

Of course, there remain some open questions. For ex-
ample, the question of opening and closing contacts has not
been dealt with. When a contact reaches the apex of the
Coulomb cone, it can then go into four different states. It can
become nonsliding, and move into the interior of the Cou-
lomb cone. Then, there are two distinct sliding states—each
one corresponding to a different side of the Coulomb cone.
Finally, the contact can open. Are these four states mutually
exclusive, as we have shown to be the case for the sliding
and nonsliding states in this paper?

This work should also encourage the use of numerical
methods based on the stiffness matrix. The problem faced by
these methods is, of course, to find the globally consistent
contact status. This work shows that such a state always
exists, and is unique. Thus any way to find the state is ac-
ceptable. Furthermore, perhaps it is possible to use the re-
sults of this paper to design intelligent strategies for finding
the globally consistent state.
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