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The preparation of many composites requires the intermixing of several macromolecular fluids along with
the addition of rigid filler particles. These fillers are usually polydisperse and there is extensive experimental
evidence that their size and shape profoundly affect the properties of the resulting material. In particular, it is
generally found that the percolation threshold decreases as the size disparity between the different particles
present in a system increases, and that the threshold decreases with increasing aspect ratio of the particles.
Here, a recursive approach that we have recently introduced is applied to the study of the percolation of
particles of different sizes and shapes, without the presence of a polymer matrix, on a lattice in various phases
including metastable states. In our approach, the original lattice is replaced by a recursive structure on which
calculations are done exactly and interactions as well as size and shape disparities are easily taken into account.
In the previous paper of this series, we introduced the recursive approach and showed how correlations among
particles of the same size can affect percolation. Before considering the complete system made of particles of
various sizes and shapes embedded in a polymer matrix, in the third paper of the series, we describe here the
properties of systems made of particles without any matrix. The approach appears to be extremely successful
since it is able to capture most of the important features observed in experiments.
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I. INTRODUCTION

The fabrication of typical polymeric systems often re-
quires the intermixing of several macromolecular fluids
along with the addition of rigid filler particles. The most
classical example of inclusion of rigid particles in a polymer
matrix is represented by the addition of carbon black into a
natural rubber matrix in order to improve its strength and
processability. The original driving force for the incorpora-
tion of fillers into polymers was certainly economic since
common polymers produced in high volume typically cost
about ten times more than mineral fillers. In most cases,
though, the cost argument cannot be sustained. The incorpo-
ration of fillers into thermoplastic polymers through com-
pounding, for example, is a costly process that almost always
cancels out the economic advantage of introducing the filler.

The use of powdered materials of sizes ranging from na-
nometers to micrometers is not limited to polymer compos-
ites but is common in many branches of materials science.
Fillers are carefully selected to enhance the performance of a
matrix. Fillers have been used in order to improve mechani-
cal �1–9�, rheological �1,2,10�, electrical �3–5,11–21�, mag-
netic �11,22�, and thermal �3,12,13,23–25� properties of the
host material. The elastic modulus of a filled resin, as an
example, results from a complex interplay of the properties
of the individual components. There is enough experimental
evidence to conclude that the properties of the composite are
affected by a large number of parameters: the size, shape,
and distribution of the reinforcing particles as well as the
interactions between the particles and the polymeric matrix.

Even without considering the interactions of the particles
with the polymer matrix, it is clear from the experiments that
the percolation threshold decreases as the size disparity be-
tween the different particles present in a system increases,
and that the threshold decreases with increasing aspect ratio
of the particles present in the system �4,7,9,19,22�. In the
case of particles that are not spherical in shape, another im-
portant parameter that affects the mechanical properties of
the composite is represented by the degree of orientation of
the particles with respect to the direction of an applied ex-
ternal stress state.

Although most of the physical systems that are usually
described through percolative models are polydisperse, most
studies have described the percolation of equal-sized compo-
nents. Even though lattice models are simpler, the effect of
polydispersity has been considered only in continuum perco-
lation, mainly in the case of a system of particles represented
by disks and spheres with a distribution of radii. In contrast
to some initial claims that the average fractional volume cov-
ered by the percolating species at the threshold would be
constant �26�, results that have been recently published have
shown that the volume fraction occupied by the percolating
species at the threshold increases as the ratio between the
size of the constituent species becomes larger and larger,
more significantly so when the ratio itself is very large �27�.

Many other models have been developed in order to de-
scribe the percolation process. Some of them involve modi-
fications of the classical theory of rubber elasticity to account
for additional cross links produced by the fillers �28�. Models
have also been developed based on a double network de-
scription �29� and on the replica formalism �30�.

Monte Carlo lattice simulations of filled polymers are also
very common and often based on the rotational isomeric-
state model �9,31–33�. The simulations are applied to both
polymer chains attached at one end to the filler surface and to
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free chains. All these simulations assume that the filler par-
ticles occupy the sites of a regular cubic lattice and the poly-
mer chains occupy the space between the particles. These
simulations were successful in predicting the anisotropic re-
inforcing properties of prolate particles �9�.

II. OBJECTIVE OF THE PRESENT RESEARCH

As explained before �34�, a composite that contains nano-
particles is characterized by nanoscopic inhomogeneities that
cannot be described satisfactorily in a continuum model
since the averaging processes performed during the calcula-
tions are done on length scales much larger than the size of
the nanoparticles. A lattice model is more promising and can
be used to capture this nanoscopic inhomogeneities. Previous
lattice model calculations of percolation generally did not
take into account the possible difference between the size of
filler particles �with very few exceptions like �35�� and usu-
ally neglected interactions. Such calculations have additional
very important limitations represented by the use of random
mixing approximation, the incompressibility of the model,
and the necessity for the monomers and voids to have the
same size.

In our approach, we replace the original regular lattice by
a recursive lattice �RL�, which is built up from its smaller
parts in a recursive fashion. The two infinitely large recursive
structures that we have extensively used are the Bethe lattice
and the Husimi lattice. The choice of the recursive lattice to
be used is dictated by the model being investigated.

Our theory is given by the solution on a recursive lattice.
These tree structures allow us to capture only weak correla-
tions and are consequently not suitable, for example, for car-
rying out the calculation of critical exponents. However,
other kinds of recursive lattices that do not have a tree struc-
ture can be used to obtain nonclassical exponents, as we have
done in �36�. However, as our interest here is not in critical
exponents, we will restrict ourselves to the theory obtained
on treelike recursive lattices. This theory has been applied by
Gujrati and co-workers to study and describe a wide range of
polymer systems and it has provided extensive insight in
their phase separation, critical points, loop formation in tree
polymer gel, � states, compressibility effects, immiscibility
loops, the Kauzmann paradox, and the ideal glass transition
�37–44�. Another benefit of this approach has been its appli-
cability to study the thermodynamics of a system in confined
geometries �45–49�.

Here we study the possible percolation of filler particles
of different sizes and shapes in the system. Although size
disparity alone without any interactions has been argued to
induce phase separation in this kind of system, recent rigor-
ous calculations �50� have proven that no phase separation in
an athermal fully packed state of hard particle mixtures on a
lattice is possible merely due to size disparity.

Our goal is to study the dependence of percolation on the
size disparity and nature of the interactions between different
filler particles. In the following paper �51�, we describe the
effects of the presence of a polymer matrix on the percola-
tion of these particles.

Even though conventionally, when a solution is described,
the name solvent is attributed to the abundant species, in the

following we will always refer to the smallest component
present in the system as the solvent even when that species is
not the abundant one. This does not mean that different spe-
cies must be chemically different, it is just a convention to
make the description easier to understand.

We study a system of monomeric and square particles and
compare its behavior with a system of monomeric and star
particles on a square Husimi lattice to determine the effects
of the change in shape of the larger particles on the proper-
ties of systems made of particles of different sizes. In this
and the following publication, we will simply call the square
Husimi lattice the Husimi lattice for brevity.

III. MONOMERIC AND SQUARE PARTICLES

A. Model

The first system we investigate is the one formed by mo-
nomeric particles and square particles on a Husimi lattice
�see Figs. 1 and 2�. Figure 1 shows a portion of a Husimi
lattice, including the labeling of its sites. The Husimi lattice
is built in a recursive fashion starting from a central
plaquette. The different size of the plaquettes that belong to
different generations is just a matter of convention: one
might consider all plaquettes to have the same size but then
a lattice would become impossible to draw because of the
crowding that one has as one moves away from the origin of
the lattice. Figure 2 shows one element of a Husimi lattice,
that is, a square plaquette. As shown in the figure, the square
particles that we are considering are particles in the shape of
squares occupying one elemental square of the Husimi lattice
and, therefore, its four lattice sites. As explained before �34�,
we define “above” and “below” relative to the origin of the
lattice �above meaning moving away from the origin� and we
distinguish the sites inside a plaquette of the Husimi lattice
as a base site �the one closest to the origin of the lattice�, two
intermediate sites, and a peak site, opposite to the base one.

In order to be able to describe this system, we introduce
three possible states that describe the configuration of the
mth-level site which is the base site of the mth-level square.
This site can be in the S state if it is occupied by a solvent
molecule, in the A state if a corner of a square particle occu-

FIG. 1. Portion of an infinite lattice known as a Husimi
lattice.
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pies the site and the square is above it �so that all the �m
+1�th-level sites are occupied by the remaining corners of
the square� or in the B state if a corner of a square particle
occupies the site and the square lies below it �see Fig. 2�.

As we have seen in the preceding paper �34�, we can
associate a Boltzmann weight w with every nearest-neighbor
contact between particles of different species present in the
system. The weight w is determined by the excess interaction
energy � as follows:

w � exp�− ��� . �1�

We will set �=1 to set the temperature scale, as was also
done in paper I. The activity for the monomeric species par-
ticle, is �, related to its chemical potential � through

� � exp���� = w−�. �2�

The total partition function for this system of N sites can
be written as

Z � � wNc�Ns �3�

where Nc is the number of contacts between particles of two
different species and Ns is the number of solvent particles
present in the lattice. From the partition function of the sys-
tem we can obtain the thermodynamic potential or free en-
ergy per site F by means of

Z = e−NF/kT. �4�

In the following, instead of using the conventional expres-
sion of the free energy �per site�, we will use the dimension-
less free energy

� = − �F . �5�

The change in sign implies that, whenever we look for stable
phases, we will have to look for the maximum of the free
energy and not for its minimum. Taking into account, as
usually happens, that the sum in the expression for Z over all
sets of states is determined by the equilibrium state corre-
sponding to the average densities per site �c and �s, where
�c is the density of contacts between solvent molecules and
square particles and �s is the density of solvent molecules,
and given the definition of the entropy of the system, we can
write for the entropy per site

s = � − ���s + ��c. �6�

All thermodynamic densities in this work will be defined per
site unless noted otherwise. The procedure that we use to
obtain the above two densities has been outlined in the pre-
ceding paper �34�: it is necessary to consider the contribution
to the total partition function given by configurations in
which the solvent is at the origin �to obtain the value of �s�
or by those in which the particle at the origin is in “contact”

FIG. 2. Possible states for the mth-level site in the case of per-
colation of solvent and square particles. A, B, and S refer to the
three possible states of the base site of the plaquette; see text for
details.

FIG. 3. Percolation of squares and solvent molecules: possible
configurations of the sites in the mth-level square when the base is
in the S state.
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with one or more particles of a different species �to obtain
the value of �c�.

B. Recursion relations

When the mth-level site is in the S state, there are eight
possible configurations for the three sites at the �m+1�th-
level as shown in Fig. 3.

Following �34�, we can write the recursion relation for
Zm�S�, the partial partition function for the mth branch of the
Husimi lattice given that the mth-level site is occupied by a
solvent molecule, as a function of Zm+1:

Zm�S� = ��Zm+1�S�Zm+1�S�Zm+1�S�

+ 3w2Zm+1�S�Zm+1�S�Zm+1�A�

+ �2w2 + w4�Zm+1�S�Zm+1�A�Zm+1�A�

+ w2Zm+1�A�Zm+1�A�Zm+1�A�� . �7�

If the mth-level site is in the B state, we can write a
similar expression for Zm�B� since the possible configura-
tions of the three sites at the �m+1�th level are the same as in
the previous case:

Zm�B� = w2Zm+1�S�Zm+1�S�Zm+1�S�

+ �2w2 + w4�Zm+1�S�Zm+1�S�Zm+1�A�

+ 3w2Zm+1�S�Zm+1�A�Zm+1�A�

+ Zm+1�A�Zm+1�A�Zm+1�A� , �8�

where the Boltzmann weight w appears every time a solvent
molecule is a nearest neighbor of a square particle. The pos-
sible configurations of the �m+1�th-level sites when the base
site is in the B state are shown in Fig. 4. Finally, if the mth
level is in the A state we can write

Zm�A� = Zm+1�B�Zm+1�B�Zm+1�B� . �9�

The single configuration that the system can assume in this
particular case is shown in Fig. 5.

We introduce the following ratios:

xm�S� �
Zm�S�

Bm
, xm�A� �

Zm�A�
Bm

, �10�

and

xm�B� �
Zm�B�

Bm
= 1 − xm�S� − xm�A� , �11�

where we have introduced

Bm � Zm�S� + Zm�A� + Zm�B� . �12�

The ratios satisfy the following sum rule at every generation:

xm�A� + xm�B� + xm�S� � 1. �13�

We express Bm in terms of the partial partition functions of
the �m+1�th level for completeness:

Bm = ��Zm+1�S�Zm+1�S�Zm+1�S� + 3w2Zm+1�S�Zm+1�S�Zm+1�A� + �2w2 + w4�Zm+1�S�Zm+1�A�Zm+1�A�

+ w2Zm+1�A�Zm+1�A�Zm+1�A�� + w2Zm+1�S�Zm+1�S�Zm+1�S� + �2w2 + w4�Zm+1�S�Zm+1�S�Zm+1�A�

+ 3w2Zm+1�S�Zm+1�A�Zm+1�A� + Zm+1�A�Zm+1�A�Zm+1�A� + Zm+1�B�Zm+1�B�Zm+1�B� , �14�

which is easy to derive.
The choice of the normalization factor Bm used to obtain

these ratios from the partial partition functions is critical. We
always try to keep these ratios finite so that the denominator

cannot go to zero. In order to enforce this, we always use
combinations such as that above: our lattice is always com-
pletely filled with either squares or solvent molecules present
at any temperature. Thus, at any temperature, the terms

FIG. 4. Percolation of squares and solvent molecules: possible
configurations of the sites in the mth-level square when the base is
in the B state.
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Zm�S�, Zm�A�, and Zm�B� cannot all be zero and all the ratios
are always finite. At the fixed point of the recursion relations
we have

xm�S� = xm+1�S� = s, xm�A� = xm+1�A� = a ,

xm�B� = xm+1�B� = b . �15�

In general, we call such a fixed-point solution, in which
the ratios do not change from level to level, a one-cycle
solution. The reason for this nomenclature will become clear
below. Using the fixed-point solution, we can express

Bm � Bm+1
3 Q , �16�

where Bm+1=Zm+1�S�+Zm+1�A�+Zm+1�B� according to Eq.
�12�, and where we have introduced a polynomial Q, which
at the fixed-point takes the value

Q = �� + w2�s3 + �3�w2 + 2w2 + w4�s2a

+ �3w2 + 2�w2 + �w4�sa2 + �1 + �w2�a3 + b3.

�17�

Using this polynomial and the recursion relations written
above, we can write at the fixed-point the following system
of equations to be solved:

sQ = ��s3 + 3w2s2a + �2w2 + w4�sa2 + w2a3� , �18a�

aQ = b3, �18b�

bQ = w2s3 + �2w2 + w4�s2a + 3w2sa2 + a3. �18c�

C. Phase diagram and percolation

1. Densities

In order to obtain the densities of the two species, we
must consider the total partition function of our system. The
total partition function of the system at the �m=0�th level
can be written considering all the possible configurations of
the �m=0�th-level site �52�. The entire lattice is obtained by
joining two �m=0�th-level branches C0; see �34� for defini-
tion. In order to obtain the total partition function, we must
consider all the configurations that the system can assume in
the two branches that meet at the origin of the lattice.

There are only three possible configurations that the sys-
tem can assume at the origin, as shown in Fig. 2. The site at

the origin can be occupied by either a solvent molecule or
the corner of a square particle. In the case of a square par-
ticle, we have to take into account the fact that the square can
be either above or below the origin. The total partition func-
tion of the system can then be written as

Z0 =
Z0�S�Z0�S�

�
+ 2Z0�A�Z0�B� . �19�

The first term represents the contribution of the configuration
with the solvent molecule at the origin, while the second one
represents the contribution of the configurations with the
square at the origin. As explained before �34�, the factor � in
the denominator of the first term is necessary in order not to
overcount the solvent activity. The factor 2 in the last term is
related to the possibility of having the square on either side
of the origin.

The form of this contribution is easily understood if we
realize that every configuration that appears as an A state
looking at it from one side of the origin, appears to be in the
B state if considered from the opposite side.

The solvent density is then defined as the ratio between
that part of the total partition function containing configura-
tions in which the origin is occupied by a solvent molecule
and the total partition function of the system.

In this particular case, we can express the density of the
solvent particles on the lattice as

�s =
Z0�S�Z0�S�/�

Z0
. �20�

Similarly, the density of sites covered by the square particles
is defined as

�sq =
2Z0�A�Z0�B�

Z0
. �21�

This is, by the definition, the mass density of squares. It is
obvious that �sq+�s�1. Since each square has four corners
�and occupies four sites�, the number density of squares is

�sq,n � �sq/4. �22�

2. Free energy per site

The total partition function can be used to obtain the ther-
modynamics of the system. It is clear that Z0 is the total
partition function of the system obtained by joining two
branches C0 together at the origin. In the thermodynamic
limit, Z0 becomes unbounded and care must be exercised.
For this purpose, we need to consider the free energy per
site. This we accomplish as follows. Let us imagine taking
away from the lattice the two squares that meet at the origin.
This leaves behind six different branches C1. We connect
these branches to form three smaller but identical cacti, the
partition function of each of which is denoted by Z1; the
latter can be written in a form that is identical to that of Eq.
�19�, except that the index 0 of each partial partition function
is replaced by 1.

The difference between the free energy of the complete
lattice and that of the three reduced lattices is just the free

FIG. 5. Percolation of squares and solvent molecules: possible
configurations of the sites in the mth-level square when the base is
in the A state.
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energy corresponding to a pair of squares �which contain
four sites of the lattice� so that, following Gujrati �52�, we
can write the adimensional free energy per site without the
conventional minus sign as

� =
1

4
���complete lattice� − 3��reduced lattice��

=
1

4
ln�Z0

Z1
3� . �23�

It is possible to write

Z0 = B0
2Q2, Z1 = B1

2Q2, �24�

where Bm is defined above and Q2 is, at the fixed point, the
polynomial

Q2 =
s2

�
+ 2ab . �25�

Since B0=B1
3Q �see �16��, the free energy per site can be

written as

� =
1

2
ln� Q

Q2
� . �26�

The calculations are done in the grand canonical ensemble
and are carried out at constant chemical potentials. Hence,
the above free energy represents �Psqv0 where � is the in-
verse temperature, v0 represents the volume of the unit cell
of the lattice, and Psq is the osmotic pressure �53� across a
membrane permeable to the square particles. The osmotic
pressure Ps across a membrane permeable to the solvent par-
ticles is given by �Psv0��Psqv0−ln �. If the solvents rep-
resent voids, then Ps represents the conventional pressure of
the lattice system �53�. The approach that we use is the fol-
lowing. For every value of w�T� we solve the system of
recursive equations that we have derived. Then we use the
fixed-point values of a, b, and s to calculate the value of the
free energy at that w.

In order to determine which phase is the stable one at
some temperature, we must find the free energy of all the
possible phases of the system as a function of w.

3. ��0

Let us first consider the case when � is positive. The
ground state of the lattice at zero temperature is represented
by a pure solvent phase in this case: all the lattice sites are
occupied by monomeric species. As we start increasing the
temperature, the density of squares increases. In this case, the
solvent is percolating at every temperature. Thus, its perco-
lation is of no interest.

For positive values of �, only one solution of the set of
recursive equations exists and consequently only one phase
is present and, therefore, no phase transition is observed.
From what was said earlier, this phase is easily seen to be a
mixture of solvent particles and squares, which contains only
solvent particles at absolute zero. As no phase transition oc-
curs, we need only to investigate the percolation of squares
to which we now turn.

To study the percolation of the square particles, we intro-
duce �40,51� as before the probability Rm�A�	1 that a site in
an A state at the mth generation is connected to a finite clus-
ter of squares at higher generations as well as the probability
Rm�B�	1 that a site in a B state at the mth generation is
connected to a finite cluster of squares at higher generations.
Then Zm�
�Rm�
� denotes the contribution to the partial par-
tition function of the branch Cm due to all those configura-
tions in which the site at the mth generation is in the state 

and is connected to a finite cluster of squares at higher gen-
erations. If we divide Zm�
�Rm�
� by Zm�
� we obtain a
recursion relation for the Rm�
�. At the fixed-point solution,
each one of these Rm�
� approaches its fixed-point value
given by the solution of an equation of the form

R�
� = ��	R���
� , �27�

where 	R���
 represents the set formed by the complete set
of states �. By considering the configurations shown in Figs.
4 and 5, and following an approach that is identical to that
used to obtain the partial partition functions, we can write

R�A� = R�B�3, �28�

R�B�

=
w2s3 + �2w2R�A� + w4�s2a + 3w2R�A�2sa2 + R�A�3a3

w2s3 + �2w2 + w4�s2a + 3w2sa2 + a3 .

�29�

This system of equations does not depend explicitly on
the chemical potential � but it depends on it implicitly. In
fact, for every value of T, and hence of w, a different chemi-
cal potential corresponds to different values of s, a, and b
and consequently a different value for the R�
�’s.

Since R�
� represents the probability of the �occupied�
site at the origin of the lattice being connected to a finite
cluster of squares on one half of the lattice and since two half
lattices are joined together at the origin to form the complete
lattice, we define

psq = 1 − R�A�R�B� �30�

as the percolation probability for the squares. This represents
the probability of the occupied site at the origin being con-
nected to an infinite cluster of squares on both sides of the
origin. The behavior of psq as a function of �sq for different
�positive� values of �, is shown in Fig. 6. As expected, the
percolation threshold increases as the chemical potential in-
creases. The athermal case, when the two species do not have
any interactions, corresponds to �= +� ,�→0 such that ��
�0 is kept constant.

As before, we can study the percolation process as a func-
tion of the temperature. Figure 7 shows the percolation prob-
ability as a function of the temperature for the same chemical
potential values considered in Fig. 6.

Figure 8 shows how the percolation threshold depends on
the value of the chemical potential while Fig. 9 shows the
dependence of the critical temperature. As expected, an in-
crease in the chemical potential for the smaller particles
makes it more and more difficult for the bigger particles to
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percolate. This explains the increase in the critical tempera-
ture and the percolation threshold as � increases. As before,
the limiting value for the percolation threshold as � goes to
infinity is the athermal value while the critical temperature
grows unbounded.

4. �0

If negative values of � are considered, the problem be-
comes more interesting and slightly more complicated. A
negative value for � means that, according to thermodynam-
ics, the system will be stable at low temperature if no solvent
is present in the lattice and all the sites are covered by square
particles. The very nature of the square particles, in particu-
lar the fact that they occupy more than one single site on the
lattice, makes the solution of the problem more challenging.
What can be expected at low temperature, or at very low
concentrations of solvent molecules, is an ordered structure
of squares. The difference between the nature of this phase

and that of a pure solvent phase must be appreciated. The
order present in the case of a pure solvent phase is due to the
regular nature of the lattice �the periodic nature in the case of
a regular lattice�, and has nothing to do with the nature of the
interactions between the particles that are present in the sys-
tem. Instead, when a phase that is very rich in square par-
ticles is present, the order of the structure is associated with
the nature of the particles and is not only due to the lattice
itself.

In the present case, we expect to have an ordered phase at
low temperature that eventually disorders at high tempera-
ture, when large fractions of both solvent and square par-
ticles are present in the system. Thus, we expect to have a
phase transition between an ordered phase, stable at low tem-
peratures, and a disordered phase, stable at higher tempera-
tures. The empty circles in Fig. 10 represent the free energy
of the system as obtained by using the above method of
one-cycle calculation in the case of �=−1. This cannot be
the free energy corresponding to the stable phase at every
temperature, since it becomes negative. The adimensional
free energy � is the logarithm of the partition function. If we
are properly describing the ground state of our system, the
partition function at T=0 reduces to 2, since the only con-
figuration that contributes is the lattice fully packed by
square particles. On a square lattice, there are only two such

FIG. 6. �Color online� Probability that a square particle at the
origin of the lattice is connected to an infinite cluster of square
particles spanning the entire lattice as a function of the density of
squares.

FIG. 7. �Color online� Probability that a square particle at the
origin of the lattice is connected to an infinite cluster of square
particles spanning the entire lattice as a function of the temperature
of the system.

FIG. 8. Percolation threshold as a function of the chemical po-
tential for the percolation of squares on a Husimi lattice filled with
square and solvent particles.

FIG. 9. Critical temperature as a function of the chemical po-
tential for the percolation of squares on a Husimi lattice filled with
square and solvent particles.
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configurations, corresponding to the checkerboard packing of
the lattice. Thus, the partition function at any positive tem-
perature contains this term besides other positive terms.
Hence, � for a stable phase cannot be negative. This means
that the phase described by the one-cycle solution is not
describing the stable phase at low temperatures because of
the phase transition. It is, therefore, necessary to introduce a
different description of our configurations on the lattice in
order to be able to capture the phase that is stable at low
temperatures. This is a problem that we have already encoun-
tered in previous studies �41,43� and it requires a different
fixed-point solution from the conventional one-cycle solution
used for dealing with disordered phases.

The presence of large square particles introduces a corre-
lation between sites that are not nearest neighbors. In order
to describe these correlations, let us first consider a system
made of species that are all monomeric in size. If the base
site of a particular mth-level plaquette is occupied by a par-
ticle of one species, then the middle sites and the peak site of
the same plaquette can be occupied in principle by a particle
belonging to any species. In the presence of larger particles
that occupy multiple sites of the lattice, this is no longer true.
A first example of this was presented above when we were
looking at the possible configurations of the system when the
site of interest is in the A state, as shown in Fig. 5. In this
case the two middle sites and the peak site do not have any
freedom and can only be in the B state. The recursion rela-
tion for Zm�A� in fact contains one single term. But the cor-
relations introduced by the presence of these large particles
affect even larger portions of the lattice. If we move one
level beyond to the �m+1�th plaquette, we immediately un-
derstand that the presence of the square particle inside the
mth plaquette affects the state of the sites in the �m+1�th
plaquette as well. The middle sites and the peak site in the
�m+1�th plaquette cannot be in the B state because that
would be incompatible with the state of the sites one level
below. From this discussion, it should be clear how the in-
troduction of nonmonomeric species induces correlations
that would have not been present if we just had monomeric
species.

From the point of view of the recursion relations, it is
necessary to look for a different kind of fixed point solution.
When using our recursive approach, we always start from

some initial guesses for the ratios that describe the possible
states of any site of the lattice. These initial guesses can be
thought of as representing some particular boundary condi-
tions at the surface of the system. Then, by using the appro-
priate recursion relations for the problem under investiga-
tion, we descend the lattice and we obtain the values of the
ratios at the mth generation of the lattice as a function of the
values at the �m+1�th generation. When the difference be-
tween the values of the ratios at two consecutive levels is
lower than a preset tolerance, usually set equal to 10−15, it is
assumed that the fixed point has been reached and that the
values obtained for the ratios describe the behavior in the
bulk of the system. The values of the ratios at the fixed point
can be used to obtain the free energy of the system and the
entire thermodynamics as explained in the previous section.
Different initial guesses are chosen in order to investigate if
different fixed points, and consequently different phases, are
present in the system for any temperature. This method, as
explained above, is what we refer to as the one-cycle method.
This explains the meaning of the label for the lower free
energy curve in Fig. 10.

This approach never captures the ordered phase of square
particles like the one that is expected at low temperatures in
the case of negative chemical potentials. To obtain the ap-
propriate description for the ordered phase at low tempera-
tures, we start with the state at absolute zero, where all the
lattice sites are occupied by the square particles. If the base
site �index m� of a plaquette is in the A state then the middle
sites �index m+1� and the peak site �index m+1� of that
plaquette are in the B state. The middle and peak sites �index
m+2� in the following plaquette are in the A state and so on.
It is possible to notice a periodic structure in which consecu-
tive generations on the lattice are alternatively in the A and B
states. The one-cycle approach to the solution of the recur-
sion relations will not succeed in describing this ordered
phase. What we have is this: if at one generation m of the
lattice a=0, for example, then at the following generation
m+1, a=1 followed by a=0 and so on so forth. In this case,
the difference am−am+1 never goes to zero, but the difference
am−am+2 does. This provides us with the clue to describing
the low-temperature ordered phase where the system is
mostly filled with square particles as follows. We need to use
the two-cycle description for the ordered phase at low tem-
peratures. In this case what is checked is the difference of the
values of the ratios at two levels that are one generation apart
on the lattice. Whenever am−am+2 �as well as bm−bm+2 and
sm−sm+2� but not am−am+1 �as well as bm−bm+1 and sm
−sm+1� is less than the desired tolerance, we assume the fixed
point of the solutions has been reached. The system of equa-
tions for this kind of fixed point is the same as derived above
and the equations are used to calculate the quantities of in-
terest needed to describe the thermodynamics of the problem
as well as the percolation probabilities for the system.

It should be stressed that the two-cycle fixed-point con-
tains the one-cycle fixed-point as a special case when the
quantities at two successive generations become the same.
Of course one might also obtain higher-order cycles in which
quantities such as am−am+n with n�2 go to zero as the fixed
point is approached. For an example of such a situation, we
refer the reader to the following section. In the case of the

FIG. 10. Free energy as a function of temperature for �=−1.
See text for details.
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system under investigation we have tried to look at three-,
four-, and five-cycle solutions without getting any physically
meaningful results. But we do have to point out that, at least
in principle, one cannot rule out the presence of higher-order
cycles without actually looking for them, even though they
are hard to envision. One could expect a four-cycle structure
in the present case if there were attractive interactions �w
�1� such as specific interactions like hydrogen bonding be-
tween the solvent and the solute. But we do not consider
these interactions. However, in general, the available cycle
structures would emerge from the same set of recursive re-
lations by starting from all possible initial guesses, and we
have searched for different ones but we have been able to
find just the two possible solutions mentioned in this section.

By using this second method, it is possible to obtain a
second fixed-point solution. The corresponding free energy
curve is the upper one represented by the filled circles in Fig.
10. The solutions obtained with the two different schemes
coincide at high temperatures, but are different at low tem-
peratures. The temperature at which the ordered phase ap-
pears and becomes the stable solution is, in the case of �=
−1, TOD�15.7, indicated by the dotted line in the figure. We
use the subscript OD to recall that this transition is a phase
transition between an ordered and a disordered phase. It is
possible to observe that the stable phase at every temperature
has a positive free energy, as expected. Since � lacks the
conventional minus sign, the stable phase is the one that has
the maximum free energy.

The entropy corresponding to the free energy shown in
Fig. 10 is shown in Fig. 11.

As expected, below TOD the entropy of the ordered phase
is lower than the entropy of the metastable continuation of
the disordered phase. The entropy of the metastable phase,
though, drops much more rapidly, and goes to zero at a finite
temperature. This temperature is the Kauzmann temperature
of the system, corresponding to the Kauzmann catastrophe
�54�. This result is very interesting since until recently the
Kauzmann catastrophe had been observed theoretically only
in polymeric systems �41,43�, but never in a system made of
small molecules. Recently Semerianov and Gujrati �55� have
shown the presence of a Kauzmann catastrophe in a dimer
model.

The results for the percolation probability as a function of
the temperature are shown in Fig. 12. It is obvious that the

strength of the percolation process is very different for the
two phases. The formation of a percolating cluster of solvent
molecules is much easier in the disordered phase than in the
ordered one. There is a wide temperature range, between
�8.42 and �2.25 in the case �=−1, in which there is at
least one percolating cluster in the disordered phase but no
percolation occurs in the ordered phase. The region below
2.25, limited by the dotted line in Fig. 12, does not represent
physical states of the disordered phase because it is below
the Kauzmann temperature and it corresponds to a negative
entropy.

The percolation probability is plotted as a function of the
solvent density in Fig. 13. This figure shows how the perco-
lation threshold for the two phases is very different. In par-
ticular the solvent density must be at least �0.34 in order to
have percolation in the ordered phase while it is much lower
in the metastable prosecution of the disordered phase. While
lowering the temperature, if the phase transition is avoided
the system is percolating all the way down to the Kauzmann
temperature.

Figures 14 and 15 summarize the results obtained as the
value of the solvent chemical potential is changed. As ex-
pected, an increase in the magnitude of the chemical poten-
tial makes it more and more difficult for the solvent particles
to percolate because such an increase makes it more and
more favorable for the lattice to be covered by square par-

FIG. 11. Entropy as a function of temperature for �=−1. See
text for details.

FIG. 12. Solvent percolation probability as a function of tem-
perature for �=−1 in the presence of square particles. The dotted
line corresponds to the Kauzmann temperature.

FIG. 13. Solvent percolation probability as a function of solvent
density for �=−1 in the presence of square particles.
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ticles reducing as much as possible the number of solvent
particles present in the system, at least at low temperature.

If we consider the athermal limit in which there is no
interaction between the two species of particles, we obtain
the value �s�0.23 and �sq�0.255. These results are very
interesting for two reasons. First of all, we observe that the
percolation threshold in this athermal case is larger for the
square particles than for the solvent particles. This is consis-
tent with most experimental findings that show how the per-
colation threshold increases with the size of the particles.
Also, the percolation threshold is lower for both species with
respect to the value obtained for same-size species in other
studies, �s�0.38. This behavior is also consistent with most
of the experimental findings that the presence of size dispar-
ity lowers the percolation threshold of all the species present
in the system.

IV. MONOMERIC AND FIVE-SITE STAR PARTICLES

A. Model

The next system that we have analyzed is the one formed
by monomeric particles and star particles on a Husimi lattice
�see Fig. 16; compare it with Fig. 3�. We consider only the
smallest possible stars, each of which occupies five sites of

the lattice, as compared to the four sites occupied by the
square particles considered above, and always have their
core �the center� on a corner of a square plaquette of the
lattice. Consequently, the star particles always occupy sites
belonging to two different and adjacent plaquettes of the lat-
tice. The introduction of the star-shaped particles introduces
correlations among sites of the lattice that have a range that
is longer than the one characteristic of the squares. This
makes the problem a bit more challenging. In order to be
able to describe this system we introduced four possible
states that describe the configuration of the mth-level site of
the lattice. The base site in the mth-level square can be in an
A state if an end point of a star particle occupies the site and
the core of the star is above it, a B state if an end point of the
star occupies the site and the core of the star lies below it, or
a C state if the core of a star occupies the site �see Fig. 16�.
It is important to point out that the A and B states describe all
configurations in which an end point is at the site of interest
with a core above or below, respectively. So Figs. 16�a� and
16�b� show only one of the two possible A and B configura-
tions each. The star could be also on the other side of the
plaquette as well. The site is in the S state if it is occupied by
a solvent molecule. As before, we always refer to above and
below with respect to the origin of the lattice: above means
farther away from the origin of the lattice while below means
closer to the origin.

Following what has been done before in the case of
square particles, we can associate a Boltzmann weight w
with every contact between particles of different nature
present in the system. As before, the weight w is determined
by the excess interaction energy � as w=exp�−���. The ac-
tivity for the solvent, �, is obtained as a function of its
chemical potential, � through �=exp����=w−� as before;
see Eq. �2�.

Similar to the case of monomeric and square particles, the
total partition function for this system can be written as Eq.
�3�. The entropy per site is similarly given by Eq. �6�.

B. Recursion relations

When a site at the mth level is in the S state, there are nine
possible configurations for the three sites at the �m+1�th

FIG. 14. Critical temperature as a function of the chemical po-
tential for the percolation of monomeric filler particles on a Husimi
lattice filled with square and solvent particles.

FIG. 15. Percolation threshold as a function of the chemical
potential for the percolation of monomeric filler particles on a Hu-
simi lattice filled with square and solvent particles.

FIG. 16. Possible states for the mth-level site in the case of
percolation of solvent and star particles. A, B, C, and S refer to the
four possible states of the base site of the plaquette; see text for
details.
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level. These nine configurations are shown in Fig. 17. In the
figure, the stars are always shown on one side but it is im-
portant to remember that, as explained above, they could be
on either side of the plaquette. The configurations are very
similar to those obtained in the previous section for the per-
colation of monomeric and square particles with the impor-
tant difference that in the case of the stars it is possible to
have the configuration in which the core of a star is at the
peak site of the �m+1�th plaquette of the lattice with two
arms of the stars being inside such plaquette �configuration
�i� in the figure�. In all configurations, the stars occupy sites
of the lattice belonging to two different plaquettes.

By using the same considerations as in the previous sec-
tion, we can construct the recursion relation for Zm�S�, the
partial partition function for the mth branch of the Husimi
lattice given that the mth-level site is occupied by a solvent
molecule, as

Zm�S� = ��Zm+1�S�Zm+1�S�Zm+1�S�

+ 3w2Zm+1�S�Zm+1�S�Zm+1�A�

+ �2w2 + w4�Zm+1�S�Zm+1�A�Zm+1�A�

+ w2Zm+1�A�Zm+1�A�Zm+1�A�

+ w2Zm+1�C�Zm+1�B�Zm+1�B�� , �31�

where � is the activity.
If the site at the mth level is in the A state, we can write

Zm�A� = 2Zm+1�C�Zm+1�B�Zm+1�A�

+ 2w2Zm+1�C�Zm+1�B�Zm+1�S� . �32�

The configurations that the system can assume in this par-
ticular case are shown in Fig. 18.

If the site at the mth level is in the B state, we can write an
expression that is very similar to the one written above for
the S state since the possible configurations of the three sites
at the �m+1�th level are the same as in that case and only the
weights have to be properly changed. Then by properly tak-
ing into account all the nearest neighbors interactions be-
tween particles of different species, we finally have

Zm�B� = w2Zm+1�S�Zm+1�S�Zm+1�S�

+ �2w2 + w4�Zm+1�S�Zm+1�S�Zm+1�A�

+ 3w2Zm+1�S�Zm+1�A�Zm+1�A�

+ Zm+1�A�Zm+1�A�Zm+1�A�

+ Zm+1�C�Zm+1�B�Zm+1�B� , �33�

where the Boltzmann weight w appears every time a solvent
molecule is a nearest neighbor of a star particle. The possible
configurations of the �m+1�th-level sites are shown in Fig.
19. Finally, if the site at the mth level is in the C state, we
have

Zm�C� = Zm+1�B�Zm+1�B�Zm+1�A�

+ w2Zm+1�B�Zm+1�B�Zm+1�S� . �34�

The configurations that the system can assume in this par-
ticular case are shown in Fig. 20.

Following the approach introduced in the previous sec-
tion, we introduce the following ratios:

xm�S� =
Zm�S�

Bm
, xm�A� =

Zm�A�
Bm

, xm�B� =
Zm�B�

Bm
,

�35�

xm�C� =
Zm�C�

Bm
= 1 − xm�S� − xm�A� − xm�B� , �36�

where we have introduced

Bm = Zm�S� + Zm�A� + Zm�B� + Zm�C� . �37�

The ratios satisfy the following sum rule at every generation:

FIG. 17. Percolation of stars and solvent molecules: possible
configurations of the sites in the mth-level square when the base is
in the S state.

FIG. 18. Percolation of stars and solvent molecules: possible
configurations of the sites in the mth-level square when the base is
in the A state.
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xm�A� + xm�B� + xm�C� + xm�S� � 1; �38�

compare with Eq. �13�.
At the �one-cycle� fixed point of the recursion relations,

we have

xm�S� = xm+1�S� = s ,

xm�A� = xm+1�A� = a ,

xm�B� = xm+1�B� = b ,

xm�C� = xm+1�C� = c , �39�

Then, at this fixed point, we can introduce a polynomial Q,
as done in �16�, which is given by

Q = �� + w2�s3 + �3�w2 + 2w2 + w4�s2a

+ �3w2 + 2�w2 + �w4�sa2 + �1 + w2�a3 + b3

+ ��w2 + 1�cb2 + 2�a + w2s�bc + �a + w2s�b2. �40�

Using this polynomial and the recursion relations written
above, we can write

sQ = ��s3 + 3w2s2a + �2w2 + w4�sa2 + w2a3 + w2cb2� ,

�41�

aQ = 2�a + w2s�bc , �42�

bQ = w2s3 + �2w2 + w4�s2a + 3w2sa2 + a3 + cb2, �43�

cQ = �a + w2s�b2. �44�

C. Phase diagram and percolation

1. Densities and free energy per site

In order to obtain the densities of the two species, we
must consider the total partition function of our system.

There are only three possible configurations that the sys-
tem can assume at the origin, as shown in Fig. 16. The site at
the origin can be occupied by either a solvent molecule, or
the end point of a star, or the core of a star. In the case of a
star particle, we have to take into account the fact that the
end point of the star can be either above or below the origin.
The total partition function of the system can then be written
as

Z0 =
Z0�S�Z0�S�

�
+ 2Z0�A�Z0�B� + Z0�C�Z0�C� . �45�

The first term in this equation represents the contribution of
the configuration with the solvent molecule at the origin,
while the second one represents the contribution of the two
possible configurations with the end point at the origin, and
the last one represents the contribution of the configuration
with the core at the origin. The factor of 2 in the second term
of the equation is related to the possibility of having the star
on either side of the origin when the end point is at the
origin.

The solvent density is then defined as the ratio between
the partition function describing configurations in which the
origin is occupied by a solvent molecule and the total parti-
tion function of the system. It is easy to see that it is given by
Eq. �20�. The �mass� density of the star particles is similarly
given by

FIG. 19. Percolation of stars and solvent molecules: possible
configurations of the sites in the mth-level square when the base is
in the B state.

FIG. 20. Percolation of stars and solvent molecules: possible
configurations of the sites in the mth-level square when the base is
in the C state.
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�st =
2Z0�A�Z0�B� + Z0�C�Z0�C�

Z0
. �46�

Since every star particle occupies five sites on the lattice, the
number density of stars is

�st,n = �st/5. �47�

The total partition function can be used to obtain the ther-
modynamics of the system with a calculation that is formally
identical to the one carried on in the previous section for the
case of monomeric particles and squares. The free energy per
site is still given by �26�, but Q2 is the polynomial

Q2 =
s2

�
+ 2ab + c2. �48�

As in the previous case, the calculations are done in the
grand canonical ensemble and are carried out at constant
chemical potentials. Hence, the above free energy represents
�Pstv0 where � is the inverse temperature, v0 represents the
volume of the unit cell of the lattice and Pst is the osmotic
pressure �53� across a membrane permeable to the star par-
ticles. The osmotic pressure Ps across a membrane perme-
able to the solvent particles is given by �Psv0��Pstv0
−ln �. If the solvents represent voids, then Ps represents the
conventional pressure of the lattice system �53�.

In order to determine which phase is the stable one at
some temperature, we must find the free energy of all the
possible phases of the system as a function of w.

2. ��0

Let us first consider the case of positive chemical poten-
tial. As explained in the previous section, when � is positive,
the ground state of the lattice at zero temperature is repre-
sented by a pure solvent phase: all the lattice sites are occu-
pied by monomeric species. As we start increasing the tem-
perature the density of stars will increase. For positive values
of �, as in the previous case, only one phase is present and,
therefore, no phase transition is observed. In this case, the
solvent is percolating at every temperature and what we need
to investigate is the percolation of stars.

In order to study the percolation of the star particles, we
introduce the probabilities Rm�
�	1 as above. For example,
Rm�C�	1 is the probability that a site in a C state at the mth
generation is connected to a finite cluster of stars at higher
generations. At the one-cycle fixed point, each one of these
Rm�
� approaches its fixed-point value given by the solution
of an equation of the form of Eq. �27�, given earlier. By
considering the configurations shown in Figs. 18 and 19 and
following the same steps shown in the previous section for
the square particles, we can write

R�A� =
�R�A�a + w2s�R�B�R�C�

�a + w2s�
, �49�

R�B� =
w2s3 + �2w2R�A� + w4�s2a + 3w2R�A�2sa2 + R�A�3a3 + R�C�R�B�2cb2

w2s3 + �2w2 + w4�s2a + 3w2sa2 + a3 + cb2 , �50�

R�C� =
�R�A�a + w2s�R�B�2

�a + w2s�
. �51�

This system of equations does not depend explicitly on
the chemical potential � but it depends on it implicitly. In
fact, for every value of T, and hence of w, a different chemi-
cal potential corresponds to different values of s, a, b, and c
and consequently a different value for the R�
�’s.

Since R�
� represents the probability of the �occupied�
site at the origin of the lattice being connected to a finite
cluster of stars on one half of the lattice and since two half
lattices are joined together at the origin to form the complete
lattice, we define

pst = 1 − R�C�2 �52�

as the percolation probability for the stars. This quantity rep-
resents the probability to have the origin occupied by the
core of a star connected to an infinite cluster of stars on both
sides of the origin. As explained before �34�, there are many
other possible definitions for the percolation probability. The
one above is the one that seems the most proper choice for
this particular case. The behavior of pst as a function of �st
and T for different �positive� values of �, is shown in Figs.

21 and 22, respectively. As expected, the percolation thresh-
old increases as the chemical potential increases. The ather-
mal case corresponds to �= +� ,�→0 such that �� is a posi-
tive constant.

FIG. 21. �Color online� Probability that a star particle at the
origin of the lattice is connected to an infinite cluster of star par-
ticles spanning the entire lattice as a function of the density of stars.
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Figure 23 shows how the percolation threshold depends
on the value of the chemical potential while Fig. 24 shows
the dependence of the critical temperature. As expected, an
increase in the chemical potential for the smaller particles
makes it more and more difficult for the bigger particles to
percolate. This explains the increase in the critical tempera-
ture and the percolation threshold as � increases.

For any given value of the chemical potential, the perco-
lation threshold and the critical temperature are lower in the
case of star particles as compared to the case of square par-
ticles presented in the previous section. Consequently, our
results describe the fact that, as observed in experimental
results, an increase in the size disparity among the particles
that form a physical system leads to a decrease in the perco-
lation threshold. It is necessary to have a smaller fraction of
sites occupied by the star particles, as compared to the square
particles, in order to observe percolation.

3. �0

If negative values of � are considered, the problem be-
comes more interesting and remarkably more complicated,
even compared to the problem of square and monomeric

particles analyzed in the previous section. As explained in
the previous section, a negative value for � means that, ac-
cording to thermodynamics, the system will be stable at low
temperature if all the sites are covered by star particles.

As it happens with the system formed by monomeric and
square particles, what can be expected at low temperature, or
at very low concentrations of solvent molecules, is an or-
dered structure of stars which disorders at high temperature,
so that there is an abundance of star particles in the system.
Thus, we could have a phase transition between an ordered
phase, stable at low temperature and a disordered phase,
stable at higher temperature. Figure 25 shows the free energy
of the system in the case of �=−1.

By using the set of equations introduced above, the free
energy that one obtains is the one represented by the open
circles in the figure. This cannot be the free energy corre-
sponding to the stable phase at every temperature for the
same reason as given in the previous section, since it be-
comes negative below some critical temperature.

In order to capture the ordered phase for this problem, it is
necessary to have a calculation scheme that goes beyond the
one introduced above. This is exactly what had to be done in
the case of monomeric and square particles in the previous
section. The main problem here is related to the fact that
even though we had a somehow clear understanding of what
the geometrical nature of the ground state should have been,
its mathematical description is everything but simple. If it is

FIG. 23. Percolation threshold for star particles as a function of
the chemical potential for the percolation of stars on a Husimi lat-
tice filled with star and solvent particles.

FIG. 22. �Color online� Probability that a star particle at
the origin of the lattice is connected to an infinite cluster of star
particles spanning the entire lattice as a function of the temperature
of the system.

FIG. 24. Critical temperature as a function of the chemical po-
tential for the percolation of stars on a Husimi lattice filled with star
and solvent particles.

FIG. 25. Monomeric and star particles: free energy as a function
of temperature for �=−1.
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necessary to solve one recursive equation in one variable
there are very well-known theorems that provide necessary
and sufficient conditions for the convergence of the recursion
relation of one variable, and consequently for the solution of
the problem. But, if we have a system of two or more equa-
tions in two or more variables, even as simple as possible but
not linear, there are no conditions that guarantee the conver-
gence of the recursion relations. Consequently, the solution is
obtained through a process of trial and error. Unfortunately,
even though a large number of different systems of equations
have been solved, we have not been able to find a scheme
that works for all the systems that we have considered. Even
if we can immediately determine what approach will not
work, for example in the case of the stars we cannot expect
the one-cycle approach to be able to describe the ground
state for the reasons stated above, we cannot tell a priori
what recursion scheme will work. In the case of the system
made of monomeric and star particles, a very complicated
scheme has been used. The details of the equations used to
solve the problem are not very enlightening. So the equations
are not reported here. But here we will give the rationale
behind the choice of this particular set of recursion relations
for this problem.

The key is to distinguish the directions along which one
moves on the lattice and the position along which a star is
placed inside a given plaquette. Figure 26 shows how this
can be achieved. We distinguish the directions labeled 1, 2,
3, and 4 in the figure because of the very peculiar nature of
the ground state. It is necessary to use this description in
order to be able to capture the ground state that has a very
regular pattern and where, as explained above in the case of
the percolation of square particles, at low temperature when
the lattice is almost completely covered by stars there are
very strong correlations between sites that are second or third
neighbors on the lattice. In this case, in order to get a solu-
tion it was necessary to introduce a symmetry-breaking field
to make the ground state unique. The symmetry-breaking
field makes some direction more favored than the others,
thus creating a unique ground state for the system. There are
four different fixed points that come out from the recursion

relations. These different fixed points have to be carefully
accounted for in order to obtain the proper free energy for
this system.

In this case, the approach is more complicated than in the
case of the square particles. It is necessary to use a multi-
cycle method. In this case, what is checked is the difference
of the values of all the ratios at two levels that are n genera-
tions apart on the lattice. Whenever 
m−
m+n for all the
ratios 
 is less than the desired tolerance we assume the fixed
point of the solutions has been reached. Wherever the or-
dered phase exists �at low temperature� for the case of stars
on a square Husimi lattice, we have a four-cycle structure of
the fixed point, so that the quantity 
m−
m+4 is the one that
is going to vanish.

By using this second method, it is possible to obtain a
second solution for the problem. The corresponding free en-
ergy curve is the one represented by the filled circles in Fig.
25. The solutions obtained with the two different schemes
coincide at high temperatures, but are different at low tem-
peratures. The temperature at which the ordered phase
appears and becomes the stable solution is, in the case of
�=−1, TOD�8.4. We use the subscript OD, as done before
in the case of the square particles, to remind us that this
transition is a phase transition between an ordered and a
disordered phase. It is possible to observe that the stable
phase at every temperature has a positive free energy, as
expected.

The entropy corresponding to the free energy shown in
Fig. 25 is shown in Fig. 27. As expected, below TOD the
entropy of the ordered phase is lower than the entropy of the
metastable continuation of the disordered phase. The entropy
of the metastable phase, though, drops much more rapidly,
and goes to zero at a finite temperature. This temperature is
the Kauzmann temperature of the system.

The results for the percolation probability as a function of
the temperature are shown in Fig. 28. It is obvious that the
strength of the percolation process is very different for the
two phases. The formation of a percolating cluster of solvent
molecules is much easier in the disordered phase than in the
ordered one. There is a wide temperature range, between
�2.70 and �7.45 in the case �=−1, in which there is at
least one percolating cluster in the disordered phase but no
percolation occurs in the ordered phase. The region below

FIG. 26. Labeling of the tree used to obtain the ground state of
the system for the case of star and solvent particles on a Husimi
lattice with a ground state made of a pure star phase.

FIG. 27. Monomeric and star particles: entropy as a function of
temperature for �=−1.
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2.70, limited by the dotted line in Fig. 28, does not represent
physical states of the disordered phase because it is below
the Kauzmann temperature and it corresponds to a negative
entropy. This figure shows how the percolation threshold for
the two phases is very different. In particular, it could be
shown that the solvent density must be at least �0.32 in
order to have percolation in the ordered phase while it is
much lower in the metastable extension of the disordered
phase. During the lowering of the temperature, if the phase
transition is avoided, the system will percolate all the way
down to the Kauzmann temperature. Figure 29 summarizes
the results obtained as the value of the solvent chemical po-
tential is changed.

V. CONCLUSIONS

If we compare the results described above, we can draw
some interesting conclusions about the effect of the size and
shape of the particles on the percolation properties of these
systems.

The two systems that have been considered on the Husimi
lattice have one common species, the monomeric one, and a
different one, square particles in the first case and star par-
ticles in the second case.

Both systems present common features. For instance for
negative values of the solvent chemical potential, a meta-
stable phase is present that is percolating very strongly in a
temperature interval where the stable phase has a very weak
percolating cluster �a much lower value of p� or even no
percolating cluster at all. This observation suggests how it
might be useful to prepare a system in a metastable state in
some cases in which a percolating network of particles of
some kind is needed in order to enhance one or more physi-
cal properties of the composite system. The presence of the
star particles lowers the percolation threshold that decreases
as the size disparity between different particles present in the
system increases since each star particle occupies more sites
than a square particle. The introduction of the star particles,
as compared to the square particles, has an effect on the
thermodynamics of the system as well. If we consider the

case of negative values of the monomeric species chemical
potential, we observe in both cases a continuous transition
between an ordered phase that is stable at low temperature
and a disordered phase that is instead stable above a critical
temperature. The system that contains the star particles,
though, has a much lower value of the critical temperature,
as compared to the system containing the square particles.
The presence of the larger star particles makes the disorder-
ing of the system easier as compared to the case in which the
smaller square particles are present. So the system has a
critical temperature that is lower in the case of the presence
of star particles than in the case of the square particles.

We have recently also looked at the percolation of stars
and solvent particles on a Bethe lattice �56�. In this case, the
most striking difference, as compared to the case of the Hu-
simi lattice, is the different nature of the percolation transi-
tion since on the Bethe lattice we obtain a discontinuous
transition for the percolation probability. At this stage of the
research, the results obtained do not allow us to draw any
conclusions about the reason of the different nature of the
phase transition between the ordered and the disordered
phase on the two different lattice structures that we have
used, the Husimi lattice and the Bethe lattice. We believe that
the size disparity coupled with the nature of the lattice plays
an important role in determining the nature of the transition.
Further investigations are needed to give a complete answer
to this question and they will be pursued in the future. In
particular, it would be very interesting to study the behavior
of larger and more complicated particles on both a Husimi
lattice and a Bethe lattice. Of course, an increase in the com-
plexity of the particles that are treated would likely lead to a
tremendous increase in the complexity of the recursive equa-
tions that need to be solved. This would represent a problem
mainly for the description of the ground state of the phase
rich in larger particles.

Now that we are able to describe the properties of systems
made of particles of different sizes and shapes, we move
forward and include the effect of having a polymer matrix in
which the particles are embedded �51�.

FIG. 29. Monomeric and star particles on a Husimi lattice: criti-
cal temperature as a function of the chemical potential for the per-
colation of monomeric filler particles on a Husimi lattice.

FIG. 28. Monomeric and star particles on a Husimi lattice:
solvent percolation probability as a function of temperature for �
=−1. The dotted line corresponds to the Kauzmann temperature.
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