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Powdered materials of sizes ranging from nanometers to micrometers are widely used in materials science
and are carefully selected to enhance the performance of a matrix. Fillers have been used in order to improve
properties, such as mechanical, rheological, electrical, magnetic, thermal, etc., of the host material. Changes in
the shape and size of the filler particles are known to affect and, in some cases, magnify such enhancement.
This effect is usually associated with an increased probability of formation of a percolating cluster of filler
particles in the matrix. In this series of papers, we will consider lattice models. Previous model calculations of
percolation in polymeric systems generally did not take into account the possible difference between the size
and shape of monomers and filler particles and usually neglected interactions or accounted for them in a crude
fashion. In our approach, the original lattice is replaced by a recursive structure on which calculations are done
exactly and interactions as well as size and shape disparities can be easily taken into account. Here, we
introduce the recursive approach, describe how to derive the percolation threshold as a function of the various
parameters of the problem, and apply the approach to the analysis of the effect of correlations among mono-
disperse particles on the percolation threshold of a system. In the second paper of the series, we tackle the issue
of the effect of size and shape disparities of the particles on their percolation properties. In the last paper, we
describe the effects due to the presence of a polymer matrix.
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I. INTRODUCTION

Percolation theory deals with the effects of varying the
number of the interconnections among the particles of a
given kind in a system: the particles are usually assumed to
be distributed completely randomly �1,2�. The single most
interesting aspect of percolation is the presence of a sharp
phase transition at which a long-range “connectivity” sud-
denly appears in the system. Connectivity in this work will
always mean that arising from the formation of clusters due
to nearest-neighbor physical proximity, which may or may
not result in any chemical bonding. In the former case, the
percolation is known as bond percolation, and in the latter
case, it is known as site percolation. In the former case per-
colation corresponds to the formation of a cluster of con-
nected bonds where in the latter it corresponds to the forma-
tion of a cluster of sites. The percolation transition occurs at
the percolation threshold as a consequence of a progressive
increase in the interparticle connectedness or a network for-
mation within the system. This change in connectedness can
be a consequence of a change in the concentration of a spe-
cies present in a system �site percolation� or of the occupa-
tion probability of the bonds describing interactions between
particles in the system �bond percolation�. This aspect makes
the percolation model very appealing. It has been applied to
countless problems in very different fields: the study of ge-
lation of branched polymers, the description of polymer
composites, the oil industry, the analysis of diffusion in po-
rous media, the study of electrical and magnetic properties of

disordered systems, as well as epidemiology, just to name a
few �3�.

As a model used to describe disordered media, percola-
tion is one of the simplest �3�. Its attractions are manifold. It
is easy to formulate but not unrealistic in its qualitative pre-
dictions for random media. Also, it has always been a play-
ground for developing mathematical techniques and insights.

Finally, it is well endowed with beautiful conjectures that
are easy to state but apparently rather hard to settle �3�.

The percolation transition can be described easily in a
lattice model by studying the dependence of the probability
to have an infinite network of neighboring occupied sites
present in the system, indicated as p, on the fraction of oc-
cupied sites on the lattice, �. A typical result is shown sche-
matically in Fig. 1. In the simplest possible case, the so-
called random site percolation, the occupation of one site of
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FIG. 1. Dependence of the probability to have an infinitely large
cluster of occupied sites, p, on the fraction of occupied sites in the
system, �. See text for details.
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the lattice by the particle is completely independent of the
occupation of the neighboring sites by the other particles.

The probability to have an infinite network in the system
is identically zero as long as � is less than a critical value �c,
known as the percolation threshold. As soon as the threshold
value is reached, one or more networks of infinite size are
formed and will be present for any larger value of the occu-
pation probability �1,4�. The existence of a perfectly sharp
threshold at the percolation transition is true only for an in-
finitely large system, in what is known as the thermodynamic
limit �1,2�. For a finite system, repeated experiments will
yield a spread of observed thresholds with values close to,
but not identical to, �c. The thresholds will be distributed in
a critical region with a width inversely proportional to the
number of sites present in the lattice under consideration.
This width goes to zero as the size of the system becomes
infinitely large �4�.

It should be stressed that the percolation transition is not a
thermal singularity: all the derivatives of the free energy of
the system taken with respect to the temperature are continu-
ous. The transition has some remarkable similarity with a
continuous transition, though. In particular, a divergence of
the correlation length is observed at the percolation thresh-
old, a feature that is characteristic of continuous thermal
transitions. In the case of percolation, the correlation length
of the system can be thought of as the size of the largest
cluster present in the system. This quantity diverges as the
percolation threshold is reached from below.

The discrete nature of the material at nanoscales becomes
critical in determining the properties of the composite. A
theory that averages over these length scales cannot do full
justice to this discrete nature, since the averaging processes
performed during the calculations are done on length scales
much larger than the size of the nanoparticles. The discrete
nature of the problem, however, can be captured in a lattice
theory. For example, percolation of water in microemulsions
refers to the percolation of water globules in a continuum oil
background �5�. The size of a water molecule is about
0.1 nm, and interparticle separation in liquid water is about
0.3 nm. A rough estimate of the size of oil molecules is about
2 nm, and of water globules is about 8 nm �5�. Thus, at the
nanoscale that we are interested in, the water globules and oil
should both be considered discrete and not continuous. As
we will see below, there are several exact results available
for lattice percolation so that we can compare our findings
with them. In addition, the calculation of percolation prob-
ability that is one of our aims in this series of papers is easy
to carry out in lattice models, but is not trivial in continuum
percolation. This motivates our work based on a lattice
model.

A composite that contains nanoparticles is characterized
by nanoscopic inhomogeneities that cannot be described sat-
isfactorily in a continuum model since the averaging pro-
cesses performed during the calculations are done on length
scales much larger than the size of the nanoparticles.

Lattice models have been employed for many decades to
study percolation problems. Random percolation was origi-
nally solved exactly in two limiting cases: in one dimension
and on a Bethe lattice.

In one dimension, it is possible to have percolation only
when �=1 �1� and it is not possible to observe the side of the

phase transition corresponding to ���c. Even if this prob-
lem seems somehow unusual, since only one side of the tran-
sition is accessible, it has been very important because of its
similarities with the percolation process in higher dimension
and also for its similarities with certain aggregation pro-
cesses �6�.

Besides the one-dimensional case, there is one other case
that was solved exactly in the early stages of the work on
percolation, the Bethe lattice case. The Bethe lattice is a
particular recursive structure, part of which is shown in Fig.
2, that is built up from smaller parts in a recursive fashion. It
has infinite dimensionality since the ratio between the num-
ber of surface sites and bulk sites is a finite number equal to
�q−2� /q where q is the coordination number of the lattice,
that is, the number of nearest neighbors of any site in the
bulk of the lattice. The Bi’s shown in the figure represent one
possible ith branch of the lattice. Every Bi is similar to Bi+1
except that the latter is smaller in size than the former. Every
Bi branches out into �q−1�Bi+1 branches. The complete lat-
tice is formed by connecting qB0 branches at the origin.

Since a Bethe lattice cannot be embedded in any finite-
dimensional space, the results obtained by studying the per-
colation process on this lattice represent the mean-field be-
havior for percolation processes �2�. The very nature of a
Bethe lattice is the reason why it is possible to solve many
physical problems when they are defined on such a structure:
different branches are independent and never cross each
other. This powerful simplification is not available for regu-
lar lattices where the existence of closed loops allows for
innumerable crossings. The absence of closed loops simpli-
fies the problem enormously, since there is one single path
that connects any two points, so that is possible to derive
explicit equations for p��� and for �c �1,4�. It is possible to
prove that on a Bethe lattice the percolation threshold is �c
=1/ �q−1� �1�. If the coordination number of the lattice be-
comes very large, the fraction of sites that need to be occu-
pied in order to have percolation becomes smaller and tends
to zero as the coordination number goes to infinity. In gen-
eral it is possible to study two different kinds of percolation
processes: the bond and the site percolation. The site and

FIG. 2. Part of an infinite lattice known as Bethe lattice. The
finite portion shown in the figure is an example of a Cayley tree,

and contains no closed loops. B̄n indicates an nth-generation
branch.
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bond percolation processes are usually different so that the
thresholds for these two processes can be very different but
they are always the same on a Bethe lattice. In the following,
we will always refer to site percolation. It should be kept in
mind that the calculations carried out on a Bethe lattice also
describe the bond percolation results.

The percolation problem has also been solved on other
recursive structures that we will deal with in the following
such as the triangular lattice �7� and a general l-sided Husimi
lattice �8�.

In the past 30 years much progress has been achieved in
the description of random percolation on many different lat-
tices. But the exact results are few, except for the ones de-
scribed above. Most of the known percolation thresholds are
only numerical estimates obtained either numerically or ana-
lytically. Until recently, the only other known exact results
for the bond percolation were those for the honeycomb,
square, triangular, and Kagome lattices and for the site per-
colation those on a triangular lattice, all the other results
representing estimates of the percolation threshold value �9�.
Recently, exact values for the percolation thresholds on Mar-
tini and Archimedean lattices were also obtained �10,11�.

One of the main reasons for the development of the per-
colation theory and its consequent flourishing is to be found
in the availability of computers that have allowed scientists
to study and solve problems that would have otherwise been
unmanageable. Since then, the percolation theory has be-
came a part of the field of critical phenomena. Most of the
effort has been put into the study of the critical exponents of
the percolation transition, which are supposed to show a uni-
versal behavior and can therefore be described by the sim-
plest model exhibiting a percolation threshold. But in design-
ing composite materials it is important to understand the
nonuniversal behavior as well. In particular, the behavior of
the percolation threshold as a function of volume fraction,
shape, orientation, and correlations of the component phases
remains a key problem in composite materials �12,13� that
needs careful study.

Since the introduction of the percolation problem, Monte
Carlo simulations have been performed in order to be able to
describe the process. Although many systems contain poly-
disperse fillers, most of the simulations have dealt with mo-
nomeric systems in which the size of all the species present
in the system is the same �14,15�. The simulation results
presented so far illustrate only that the percolation threshold
for disks of two different sizes depends on the ratio of the
disks �16,17�. Recent results �13� show how the dependence
of the percolation threshold on the composition of the system
is stronger for composites in which the ratio between the size
of the components is the largest.

In the case of Monte Carlo simulations, an important limi-
tation is represented by the finite-size scaling that the results
have to go through. Monte Carlo simulations are obtained by
considering finite systems, sometimes very small, depending
on the capacity of the computers used in the project, and the
thermodynamic limit is obtained by studying the problem
with systems of different sizes and trying to extrapolate from
these results to the behavior of an infinite system. In the case
of simple problems, in which all the components have the
same size, the scaling process is quite simple and, to some

extent, well understood. When looking at complicated sys-
tems, though, the scaling process is not at all trivial and can
introduce artifacts that depend on the choice of the initial
lattice and can hinder the physics of the problem �14�.

The choice of the boundary conditions can be very impor-
tant and influence the simulation. Usually, problems arise if
the filler molecules are in a very dense system and the simu-
lations become extremely time consuming. Most interactions
between different species are not taken into account in order
to make solving the problem feasible.

II. OBJECTIVE OF THE PRESENT RESEARCH

The fabrication of typical polymeric systems often re-
quires the intermixing of several macromolecular fluids
along with the addition of solid filler particles. The most
classical example of inclusion of solid particles in a polymer
matrix is represented by the addition of carbon black into a
natural rubber matrix in order to improve its strength and
processability. The use of powdered materials of sizes rang-
ing from nanometers to micrometers is not limited to poly-
mer composites but is common in many branches of materi-
als science. Fillers are carefully selected to enhance the
performance of a matrix. Fillers have been used in order to
improve mechanical �18–26�, rheological �18,19,27�, electri-
cal �20–22,28–38�, magnetic �28,39�, and thermal
�20,29,30,40–42� properties of the host material. The elastic
modulus of a filled resin, as an example, results from a com-
plex interplay between the properties of the individual com-
ponents. There is enough experimental evidence to conclude
that the properties of the composite are affected by a large
number of parameters: the size, shape, and distribution of the
reinforcing particles as well as the interactions between the
particles and the polymeric matrix.

A lattice model is promising, as discussed above, and can
be used to capture these nanoscopic inhomogeneities. Previ-
ous lattice model calculations of percolation generally did
not take into account the possible difference between the size
of filler particles and usually neglected interactions. Such
calculations have very important limitations represented by
the use of the random mixing approximation, the incom-
pressibility of the model, and the necessity for the monomers
and voids to have the same size.

Our approach replaces the original lattice by a recursive
lattice �RL�, which is built up from its smaller parts in a
recursive fashion, for example a Bethe lattice like the one

FIG. 3. Portion of an infinite lattice known as Husimi lattice.
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shown in Fig. 2. A Husimi lattice �see Fig. 3� has also been
used. The choice of the recursive lattice to be used is dictated
by the model being investigated.

Choosing the proper coordination number, both lattices
can locally approximate a square lattice of coordination
number q=4. Replacing the original lattice with a RL is the
only approximation that is made in our approach. We then
solve the problem exactly on the RL using a recursive tech-
nique that will be explained in detail in the following. The
fixed-point solutions of these recursion relations that relate
the partial partition functions of different branches of the
lattice describe the behavior in the bulk of the lattice. All
interactions, including excluded volume, can be treated ex-
actly, as well as size and shape disparity between different
components of the system. Since our theory is exact, even
though defined on a recursive lattice, and we do not approxi-
mate any thermodynamic potentials, as is done in almost all
other theories, the results will not violate thermodynamics.

Our recursive approach is a generalization of the conven-
tional recursive approach used on a Bethe lattice; however,
the generalization is not trivial in two important respects. In
the first place, as we are dealing with correlated percolation,
we need to worry about the interplay between thermal phase
transitions and percolation, for which we need to be able to
determine the free energies of various states and their impact
on percolation. This is usually not a concern if one is merely
looking for multiple solutions but not their free energies. The
second aspect has to do with the presence of higher-cycle
fixed-point solutions, and percolation in the corresponding
states represented by these higher-cycle fixed points. This
latter aspect has never been studied before to the best of our
knowledge. There is yet another important difference from
the standard approach, which deal only with fixed-point so-
lutions, whereas our calculation can also be carried out for a
finite system, such as a system next to an infinite wall, where
we need not approach a fixed point of the recursion relations.

Our theory is given by the solution on a recursive lattice.
The recursive lattices based on tree structures capture only
weak correlations and are consequently not suitable, for ex-
ample, for carrying out the calculation of critical exponents.
However, the tree-structure-based recursive theory has been
applied by Gujrati and co-workers to study and describe
many interesting properties of polymer systems including
phase separation, critical points, loop formation in tree poly-
mer gels, � states, compressibility effects, immiscibility
loops, the Kauzmann paradox, and the ideal glass transition
�43–50�. The predictions obtained using this recursive ap-
proach are more reliable than the conventional mean-field
calculations in many different contexts, including spin
glasses, linear and branched polymers, and gauge theories
�51�.

Recursive lattices such as a diamond hierarchical lattice
that do not possess a tree structure can also be used to obtain
exact results using recursive techniques. We have used such
a lattice in our group �52� to obtain nonclassical exponents.
These lattices were invented for the sole purpose of carrying
out renormalization group �RG� calculations near critical
points in certain statistical mechanical models �53–56�. The
RG calculations become exact on these lattices. As the justi-
fication for the RG calculation requires a diverging correla-

tion length near a critical point, their usefulness lies in pre-
dicting reliably the singular part of the free energy of the
model, and therefore the critical exponents. They are not
supposed to be reliable for the free energy itself except when
they are exact. As our interest is not in critical exponents
here, we will restrict ourselves to tree-structure-based recur-
sive lattices in the current series of papers.

It should be pointed out that the RG calculations also give
rise to recursion relations. Thus, from the point of view of
the use of recursive techniques, our approach is not math-
ematically different from that in the RG calculations, except
for the requirement of a diverging length scale in the case of
critical phenomena where RG calculations find their useful-
ness. The technique has also been applied to study percola-
tion of particles of the same size near the percolation thresh-
old �57–60�. However, we are unaware of any such
calculation where size disparity has been taken into consid-
eration, which is one of our aims.

Here we introduce our approach and we describe how the
recursive technique can be used to obtain the percolation
threshold as well as the thermodynamics of systems made of
particles. We apply this approach first to random percolation
in very simple systems in order to test our method vs known
results.

We then study the effects of correlations on the percola-
tion process in such systems and draw some conclusions.

In the following paper �61�, we study the possible perco-
lation of filler particles of different sizes and shapes on a
recursive lattice. Although size disparity may in principle
induce phase separation in this kind of system, recent rigor-
ous calculations �62� have proved that no phase separation in
an athermal fully packed state of hard particle mixtures on a
lattice is possible merely due to size disparity.

Finally, in the third part of our study �63�, we describe the
percolation of systems of different sized and shaped particles
in the presence of a polymer matrix. To study these systems,
we use a model for linear polymers that we have previously
applied to the study of the melting and glass transition of
linear polymers �47–49�.

III. RANDOM PERCOLATION ON RECURSIVE
STRUCTURES

In order to validate our approach, we initially apply the
recursive method to simpler problems involving only small
“particles” and no polymers. We defer to the next papers the
investigation of systems made of monomeric particles �par-
ticles that occupy one lattice site� and stars or square par-
ticles on a Husimi lattice. Here, we focus on the percolation
of particles of the same size on three different lattices: the
Bethe lattice, the square Husimi lattice, and the triangular
Husimi lattice. The Husimi lattice is an infinite tree structure
formed by a polygons. We will allow only two polygons to
be attached at a given site in the Husimi lattice. The choice
of the Bethe lattice, in particular, is very important since we
can compare the results obtained with our recursive approach
with the exact results obtained by Flory in his ground-
breaking work �64–66�.

Let us first consider the problem of random percolation of
monomeric particles on a square Husimi lattice. A site is
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arbitrarily designated as the origin. It could be possible to
designate a square as the center of the lattice as well. Each of
the squares that form the lattice has four sites. Out of these
four sites, one is closer to the origin and the other three are
not. The site close to the origin is called the base site and
given an index m and the other three sites an index �m+1�.
We will often refer to the latter sites as the middle sites, the
two that are the nearest neighbors of the base site, and the
remaining site as the peak site of the square. The square
containing the base site m is labeled as the mth generation
square �see Fig. 4�. The origin of the lattice is labeled as the
m=0 level and the level index m increases as we move out-
ward from the origin to the periphery of the lattice. The level
�that is, the generation� of each square corresponds to the
number of squares that are present between the square and
the origin of the lattice. We will call the branch of the lattice
that starts and lies above the mth level as the Cm branch of
the lattice. This branch has its base at the mth site. In some
cases, the Cm branch may require additional indices. The
need for additional indices can arise in the presence of a
complex structured ground state for the system under inves-
tigation. In the following papers �61,63� we will see that it is
sometimes necessary to discriminate between the middle
sites and the peak site of the square. When this becomes
necessary in the so-called two-cycle scheme �see �61,63��,
we will give the index m+1 to the middle sites and the index
m+2 to the peak site. In this paper, we will just need the first
labeling introduced above, which is usually referred to as a
one-cycle description of the lattice.

A. Random percolation on a square Husimi lattice

Let us consider an mth-level square in the Husimi lattice,
between the mth and the �m+1�th generations. As explained
above, the square contains one site at the mth level and three
sites at the �m+1�th level. If we are considering random
percolation of monomeric species on this lattice, the site at
the mth level can only be in one of two states: either it is
occupied, this state being called S, or it is not occupied, the

state being called S̄. We are interested in the contribution of
the mth branch Cm of the lattice, given that its base is in a

given state S or S̄, to the total partition function of the sys-
tem. This contribution is called the partial partition function
�PPF� of the branch. It is easy to see that the PPF only
depends on the state of its base site. We denote the PPF of

the Cm branch when the mth-level site is in state � �=S, S̄� as
Zm���. We then express this PPF in terms of the PPF’s of the
three sites at the �m+1�th level, so that the set of configura-
tions that the system can adopt on the portion of the lattice
that lies above the mth level are described in terms of the
configurations that can be adopted in the branches that lie
above the �m+1�th level weighted by the local interactions in
the mth square.

Following Gujrati �51�, the recursion relations can always
be written in the following form:

Zm��� = Tr�W��,������
�

Zm+1��� �1�

where � represents the possible state of one of the three sites
on the �m+1�th level, ��� represents the set of states �, and
W�� , ���� denotes the local Boltzmann weight due to the
activities and the local interactions between � and � states.
In this particular problem, since we are interested in the ran-
dom percolation process, we do not consider any interaction
between different states. The amount of sites that are occu-
pied in the lattice by the particles is controlled by an activity
� for a particle, which is related to the chemical potential per
particle, �, through

� = exp���� . �2�

Here, � is the inverse temperature 1/T in units of the Bolt-
zmann constant. The total partition function for this problem
is trivial and can be written as

Z = � �NS �3�

where NS represents the number of sites that are occupied,
and the sum is over distinct configurations of the particles on
the lattice of N sites.

When the site at the mth level is occupied by a particle,
the state S, there are eight possible different configurations
that the system can assume at the three �m+1�th level sites.
These eight configurations are shown in Fig. 5.

In configuration �a�, all the sites at the �m+1�th level are
occupied. Therefore the contribution of this configuration to
the partial partition function coming from this configuration
is

Zm+1�S�Zm+1�S�Zm+1�S� . �4�

Configurations �b�–�d� all represent two occupied sites
and an unoccupied one. Thus, the contribution from each one
of these three configurations is

Zm+1�S�Zm+1�S�Zm+1�S̄� . �5�

Configurations �e�–�g� all consist of one occupied site and
two unoccupied ones. Thus, the contribution from each one
of these three configurations is

Zm+1�S�Zm+1�S̄�Zm+1�S̄� . �6�

Finally, configuration �h� presents all three sites unoccu-
pied so that its contribution to the partition function is

Zm+1�S̄�Zm+1�S̄�Zm+1�S̄� . �7�

FIG. 4. The structure of a Husimi lattice.
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The recursion relation for Zm�S�, the partial partition func-
tion for the mth branch of the Husimi lattice, given that the
mth level site is occupied, is therefore given by

Zm�S� = ��Zm+1�S�Zm+1�S�Zm+1�S�

+ 3Zm+1�S�Zm+1�S�Zm+1�S̄�

+ 3Zm+1�S�Zm+1�S̄�Zm+1�S̄�

+ Zm+1�S̄�Zm+1�S̄�Zm+1�S̄�� . �8�

If the site at the mth level is unoccupied, we can write a
similar expression since the possible configurations of the
three sites at the �m+1�th level are the same as in the previ-
ous case:

Zm�S̄� = Zm+1�S�Zm+1�S�Zm+1�S� + 3Zm+1�S�Zm+1�S�Zm+1�S̄�

+ 3Zm+1�S�Zm+1�S̄�Zm+1�S̄�

+ Zm+1�S̄�Zm+1�S̄�Zm+1�S̄� , �9�

the only difference being that we do not have an activity for
this state. When n species are present in a system, we need
only n−1 activities to control the composition of the system
since the abundance of the remaining species is determined
by the constraint that the sum of all the fractions associated
with the different species is equal to 1.

We introduce the following ratios:

xm�S� =
Zm�S�

Zm�S� + Zm�S̄�
�10�

and

xm�S̄� =
Zm�S̄�

Zm�S� + Zm�S̄�
= 1 − xm�S� . �11�

As one moves from a level that is infinitely far away from
the origin toward the origin itself, the recursion relations will
reach their fixed-point �FP� solutions, xm���→x*���. These
fixed-point solutions of the recursion relations describe the
behavior in the interior of the Husimi lattice. Once the fixed
point is reached, the value of xm��� becomes independent of
m, so that we can write

xm�S� = xm+1�S� = s , �12�

xm�S̄� = xm+1�S̄� = 1 − s . �13�

To determine the FP solutions, we introduce

Bm = Zm�S� + Zm�S̄� , �14�

and express it in terms of the partial partition functions of
�m+1�th-level branches:

Bm = Zm�S� + Zm�S̄�

= �1 + ���Zm+1�S�Zm+1�S�Zm+1�S�

+ 3Zm+1�S�Zm+1�S�Zm+1�S̄� + 3Zm+1�S�Zm+1�S̄�Zm+1�S̄�

+ Zm+1�S̄�Zm+1�S̄�Zm+1�S̄�� 	 Bm+1
3 Q �15�

where Bm+1=Zm+1�S�+Zm+1�S̄� according to the definition,
and we have introduced a polynomial

Q = �1 + ���s3 + 3s2�1 − s� + 3s�1 − s�2 + �1 − s�3� = �1 + �� .

�16�

Using this polynomial and the recursion relations written
above, we can write

s =
�

1 + �
�17�

so that the activity is directly related to the value of the ratio.
In order to determine the density of sites that are occupied

as a function of the activity we need to write the total parti-
tion function of the system. The total partition function of the
system at the �m=0�th level can be written considering all
the possible configurations of the �m=0�th-level site �51�.
The total tree is obtained by joining two �m=0�th level
branches, one of which is shown in Fig. 3. In order to obtain
this total partition function, we must consider all the configu-
rations that the system can assume in the two squares that
meet at the origin of the tree. This can seem trivial for a
system in which there are only two possible states, the origin
being either occupied or not occupied, but it will become
very useful with more complicated problems.

In this case the total partition function of the system can
be written as

FIG. 5. Possible configurations of the sites in the mth-level
square when the base site is occupied. Filled circles represent oc-
cupied sites; empty circles represent empty ones.
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Z0 =
Z0�S�Z0�S�

�
+ Z0�S̄�Z0�S̄� . �18�

The first term corresponds to an occupied site and the second
one to an unoccupied one. The factor � in the denominator
of the first term is necessary in order not to over count the
activity. Each Z0�S� term contains a factor � �see Eq. �8��;
thus by dividing by � we avoid counting the activity twice
for the same monomer. The density of monomers or occu-
pied sites is always defined as the ratio between the partition
function describing configurations in which the origin is oc-
cupied and the total partition function of the system. So, its
general expression is

� =
Z0�S�Z0�S�/�

Z0
, �19�

so that in this case the density of occupied sites is identical to
the ratio s:

� =
�

1 + �
. �20�

In order to calculate the percolation probability we proceed
following Gujrati and Bowman �43,67� but we extend the
calculation to the lattice �8�. We introduce the probability
Rm�1 that a site occupied at the mth generation is connected
to a finite cluster of occupied sites at higher generations.
Then ZmRm denotes the contribution to the partial partition

function of Cm due to all those configurations in which the
site at the mth generation is connected to a finite cluster
above the mth site. If we divide ZmRm by Zm, we obtain a
recursion relation for Rm. At the fixed-point, Rm approaches
its fixed-point value R given by the solution of an equation of
the form

R = 	�R� � 1, �21�

where the right-hand side of this equation is always in the
form of a ratio of two polynomials in R and it is also always
positive since these two polynomials are always positive.

The percolation threshold geometrically corresponds to
the slope of 	�R� at R=1 being equal to 1. The onset of
percolation then corresponds to


 d	

dR
�

R=1
= 1. �22�

In the case of random percolation on a Husimi lattice, it is
possible to write

Zm�S�Rm = ��Rm+1
3 Zm+1�S�Zm+1�S�Zm+1�S�

+ 3Rm+1
2 Zm+1�S�Zm+1�S�Zm+1�S̄�

+ �2Rm+1 + 1�Zm+1�S�Zm+1�S̄�Zm+1�S̄�

+ Zm+1�S̄�Zm+1�S̄�Zm+1�S̄�� , �23�

so that

Rm =
�Rm+1

3 sm+1
3 + 3Rm+1

2 sm+1
2 �1 − sm+1� + �2Rm+1 + 1�sm+1�1 − sm+1�2 + �1 − sm+1�3�

�sm+1
3 + 3sm+1

2 �1 − sm+1� + 3s�1 − sm+1�2 + �1 − sm+1�3�
. �24�

The form of the equation above can be understood by
looking at the eight possible configurations of the three �m
+1�th-level sites of the lattice when the mth level is occu-
pied, as introduced in Fig. 5. In configuration �a�, all the sites
at the �m+1�th level are occupied. In order for the mth-level
site to be connected to a finite cluster of occupied sites, all
the three occupied sites at level �m+1� must be connected to
finite clusters above that level. Thus, the contribution to
Zm�S�Rm due to this particular configuration is
Rm+1

3 Zm+1�S�Zm+1�S�Zm+1�S�, with a factor Rm+1Zm+1�S� cor-
responding to each one of the three considered sites. When
considering configurations �b�–�d� in Fig. 5, we notice that
two of the three upper sites are occupied. These two sites
must be connected to finite clusters of occupied sites in order
for the mth-level site to be connected to a finite cluster of
sites. The third site is empty and consequently it does not
matter if it is connected to a finite or infinite network of
occupied sites since the cluster is “broken” already at the site
under investigation. Then the contribution to RmZm�S� asso-
ciated with each one of these configurations is

Rm+1
2 Zm+1�S�Zm+1�S�Zm+1�S̄�. When looking at configurations

�e�–�g�, we have to be particularly careful. In the case of
configurations �e� and �g�, the mth-level site is neighboring
one occupied middle site at the �m+1�th level. This middle
site must be connected to a finite cluster of occupied sites in
order for the mth-level site to be connected to a finite
cluster of sites. Then the contribution to RmZm�S�
associated with each one of these configurations is

Rm+1Zm+1�S�Zm+1�S̄�Zm+1�S̄�. In the case of configuration �f�,
instead, the only occupied site at level �m+1� is the
peak site. This site, though, is not a nearest neighbor
of the base site at level m. Since the two intermediate sites
are not occupied, the base site will be connected to a finite
cluster of occupied sites with certainty. Thus, the
contribution of this particular configuration to RmZm�S� is

Zm+1�S�Zm+1�S̄�Zm+1�S̄�. Finally, in the case of configuration
�h�, since all the three �m+1�th-level sites are unoccupied,
the contribution of this configuration to RmZm�S� is

Zm+1�S�Zm+1�S̄�Zm+1�S̄�. By taking the sum of all these con-
tributions, we obtain Eq. �24�.
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At the fixed point, as explained above, R does not depend
on the level, and we can write

R = 	�R�

=
�R3s3 + 3R2s2�1 − s� + �2R + 1�s�1 − s�2 + �1 − s�3�

�s3 + 3s2�1 − s� + 3s�1 − s�2 + �1 − s�3�
.

�25�

We can solve this equation recursively as well. We look for
the smaller solution as a function of s �=� / �1+���.

Each term present in the denominator of the right-hand
side of the equation �	�R�� is also present in the numerator,
except that in the numerator it is weighted by some proper
power of R, so that 	�1�=1. From this it follows immediately
that R=1 is always a solution of the equation. It is also
obvious that 	�R� must lie above the straight line y=R for
large values of R since it grows with some power of R that is
always larger than 1. Thus there are only two possible sce-
narios, shown in Fig. 6 �67�. If the situation is the one de-
scribed in �a�, then R=1 is the only physically acceptable
solution and the solution “u” is unphysical since it corre-
sponds to a value of R larger than unity while R is supposed
to be a probability. If this is the case, then there is no perco-
lation occurring in the system since the only physically ac-
ceptable solution is R=1. If the parameters of the problem
are changed then “u” passes through R=1 and appears as the
physical solution “s” at R
1, as shown in Fig. 6�b�. In this
case “s” represents the physically stable solution and perco-
lation occurs �67�. If the slope 	� at a fixed point is larger
than unity it can be easily shown that the fixed point is un-
stable. So in Fig. 6 the fixed point that appears at larger

values of R is always unstable and labeled “u.” As the slope
changes, the fixed point at R=1 can become unstable.

Since R represents the probability of the �occupied� site at
the origin of the lattice being connected to a finite cluster of
occupied sites on one-half of the lattice, because of how Rm
is calculated, and since two half lattices are joined together at
the origin to form the complete lattice, we define

p = 1 − R2 �26�

as the percolation probability. This represents the probability
for the occupied site at the origin to be connected to an
infinite cluster of occupied sites on both sides of the origin.
This is not the only possibility but this definition for the
percolation probability seems to be the most natural one to
be defined on a structure like this one since it checks the
presence of an infinite cluster that spans the entire lattice on
both sides of the origin. We can have looser or stronger defi-
nition of percolating clusters depending on the condition that
we impose on our clusters. The behavior of p as a function of
� is shown in Fig. 7.

The percolation threshold is in this case

�c � 0.381 95. �27�

We observe that it could be easily shown that the bond per-
colation threshold for this lattice is different from the site
percolation threshold that we are considering here by using
Eq. �51� in �8�, unlike in the case of Bethe lattices where, as
explained above, site and bond percolation thresholds always
coincide.

B. Random percolation on a triangular Husimi lattice

This kind of calculation can be carried out on any recur-
sive lattice. If, for example, we consider the triangular Hu-
simi lattice, shown in Fig. 8, the recursion relation between
the partial partition functions at the mth and �m+1�th levels
has the form

Zm�S� = ��Zm+1�S�Zm+1�S� + 2Zm+1�S�Zm+1�S̄�

+ Zm+1�S̄�Zm+1�S̄�� . �28�

FIG. 6. Possible forms of 	�R� and fixed points. The stable point
�s� is the one relevant to the physics of the system. From Ref. �67�.

FIG. 7. Random percolation on a square Husimi lattice: prob-
ability that an occupied site at the origin of the lattice is connected
to an infinite cluster of occupied sites as a function of the density of
occupied sites.
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All the possible configurations corresponding to these
terms are shown in Fig. 9.

Using the same argument used in the case of the square
Husimi lattice, it is possible to calculate the density of occu-
pied sites by using Eq. �19�. It is easy to show that also in
this case the expression for the fraction of occupied sites is
the same as in the case of the square Husimi lattice �see Eq.
�20��. In the case of the triangular Husimi lattice, the equa-
tion for the probability to have an occupied site at the mth
level connected to a finite cluster of occupied sites at higher
generations assumes the simple form

R =
�R2s2 + 2Rs�1 − s� + �1 − s�2�

�s2 + 2s�1 − s� + �1 − s�2�
, �29�

where s is defined as in the case of the square lattice.
We look for the smaller solution as a function of s �thus of

��. The results of this calculation are shown in Fig. 10,
which plots the probability p of percolation as a function of
the fraction of occupied sites.

The percolation threshold in this case is

�c = 0.5. �30�

This result for the site percolation should be contrasted with
the known result for bond percolation on a triangular Husimi
lattice �see �7,8��

�c  0.403 03. �31�

C. Random percolation on a Bethe lattice

Since we are also interested in studying the percolation
process on the Bethe lattice, we have described the random
percolation on this structure using our recursive approach.
The results obtained in this case can further validate the ef-
ficiency and correctness of our approach since the result for
the random percolation on a Bethe lattice is exactly known,
as explained in the Introduction. The recursion relation for
Zm�S�, the partial partition function for the mth branch of the
Bethe lattice given that the mth-level site is occupied, is
given by

Zm�S� = ��Zm+1�S� + Zm+1�S̄��q−1,

where q is the coordination number of the lattice. This is a
consequence of the nature of the Bethe lattice where all the
q−1 branches above the mth-level site are independent of
each other and can be either occupied or not.

By defining S as in the case of the Husimi lattice, we
obtain

s =
�

1 + �
= � , �32�

and the equation for the probability to have an occupied site
at the mth level connected to a finite cluster of occupied sites
at higher generations has the form

R = �Rs + 1 − s�q−1, �33�

which provides the percolation threshold

FIG. 8. Part of an infinite lattice known as a triangular Husimi
lattice.

FIG. 9. Possible configurations of the sites in the mth-level tri-
angle when the base site is occupied.

FIG. 10. Random percolation on a triangular Husimi lattice:
probability that an occupied site at the origin of the lattice is con-
nected to an infinite cluster of occupied sites spanning the entire
lattice as a function of the density of occupied sites.
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�c =
1

q − 1
, �34�

in agreement with the known exact results.

IV. CORRELATED PERCOLATION FOR A SYSTEM
OF SAME-SIZE PARTICLES

In order to be able to mimic the behavior of real systems,
it is very important to study the effects of interactions on the
percolation process. It is possible to extend the model de-
scribed above to the case of correlated percolation. In the
case of correlated percolation, the occupation of a site of the
lattice is not random but depends strongly on the interactions
with the nearest neighbors. Let us start by considering the
case of the square Husimi lattice considered above. The total
partition function of the system can be written as

Z = � �NSwNC �35�

where here NS represents the number of sites that are occu-
pied and w is the Boltzmann weight for every nearest-
neighbor contact between particles of different nature �or, in
this case, between occupied and unoccupied sites� present in
the system, NC being the number of such contacts. The
weight w is determined by the excess interaction energy � as
follows:

w = exp�− ��� . �36�

The excess energy � between two different species 1 and 2 is
the excess

� 	 e12 −
1

2
�e11 + e22� , �37�

where eij is the direct interaction energy between the species
i and j. In the following, we also replace T /� with T so that
the temperature is measured in units of interaction energy.
This can always be done without affecting the physics of the
problem. Only the temperature scale changes. The activity
for the occupied state, �, is then related to w through

� = w−�. �38�

If � is positive, then the system will lower its free energy by
having more occupied sites and will consequently prefer
such sites. If � is negative, instead, the free energy of the
system will be lower if the number of unoccupied sites is
larger. The sign of � determines the ground state of the sys-
tem since at zero temperature entropy does not matter and
the lowest-energy state will be the most stable one.

Let us look back at the eight possible configurations in-
side the mth-level squares shown in Fig. 5. In the configura-
tion �a�, all the sites at the �m+1�th level are occupied.
Therefore, the contribution of this configuration to the partial
partition function coming from this configuration is

Zm+1�S�Zm+1�S�Zm+1�S� . �39�

There is no extra weight we have to consider. The configu-
rations �b�–�d� all present two occupied sites and an unoccu-

pied one. The unoccupied site in all three configurations is
neighboring two occupied sites; we need to take this into
account by multiplying the partial partition function of this
configuration by a factor w2, one w factor for each contact
between an occupied and an unoccupied site. Thus, the con-
tribution from each one of these three configurations is

w2Zm+1�S�Zm+1�S�Zm+1�S̄� . �40�

The configurations �e�–�g� all consist of one occupied site
and two unoccupied ones. In the configurations �e� and �g�,
the unoccupied sites are one at the peak site of the square and
the other one at one of the middle sites. The total number of
contacts between unoccupied and occupied sites is 2. Thus,
the contribution from each one of these two configurations to
the partial partition function at the mth level is

w2Zm+1�S�Zm+1�S̄�Zm+1�S̄� . �41�

In the configuration �f�, instead, the two unoccupied sites
are at the middle sites and each of them has a contact with
both the occupied site at the peak of the square and the
occupied site at the base of the square, the total number of
contacts between occupied and nonoccupied sites being
equal to 4. Then, the contribution of this configuration is

w4Zm+1�S�Zm+1�S̄�Zm+1�S̄� . �42�

Finally, the configuration �h� presents all three sites unoc-
cupied so that its contribution to the partial partition function
is

w2Zm+1�S̄�Zm+1�S̄�Zm+1�S̄� , �43�

since there are only two contacts between occupied and un-
occupied sites.

The recursion relation for Zm�S�, the partial partition func-
tion for the mth branch of the Husimi lattice given that the
mth-level site is occupied, is, therefore, given by

Zm�S� = ��Zm+1�S�Zm+1�S�Zm+1�S�

+ 3w2Zm+1�S�Zm+1�S�Zm+1�S̄�

+ �2w2 + w4�Zm+1�S�Zm+1�S̄�Zm+1�S̄�

+ w2Zm+1�S̄�Zm+1�S̄�Zm+1�S̄�� . �44�

The corresponding recursion relation for the unoccupied
state is

Zm�S̄� = w2Zm+1�S�Zm+1�S�Zm+1�S�

+ �2w2 + w4�Zm+1�S�Zm+1�S�Zm+1�S̄�

+ 3w2Zm+1�S�Zm+1�S̄�Zm+1�S̄�

+ Zm+1�S̄�Zm+1�S̄�Zm+1�S̄� . �45�

By defining the proper ratios, as before, after introducing
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Bm = Zm�S� + Zm�S̄� , �46�

it is possible to obtain the thermodynamics of the system, as
done above.

When looking at the percolation probability, it is possible
to write

Zm�S�Rm = ��Rm+1
3 Zm+1�S�Zm+1�S�Zm+1�S�

+ 3w2Rm+1
2 Zm+1�S�Zm+1�S�Zm+1�S̄�

+ �2w2Rm+1 + w4�Zm+1�S�Zm+1�S̄�Zm+1�S̄�

+ w2Zm+1�S̄�Zm+1�S̄�Zm+1�S̄�� . �47�

By expressing the equation above in terms of ratios and
by considering the fixed-point behavior, it is possible to
obtain

R =
�R3s3 + 3w2R2s2�1 − s� + �2w2R + w4�s�1 − s�2 + w2�1 − s�3�

�s3 + 3w2s2�1 − s� + �2w2 + w4�s�1 − s�2 + w2�1 − s�3�
. �48�

This expression is not as simple as the previous one for
the completely random percolation, but can still be solved
using a recursive approach.

The sign of the chemical potential determines the ground
state of the system at zero temperature: if the chemical po-
tential is positive, the lattice is completely occupied in the
ground state while it is completely empty for a negative
chemical potential. In order to study the percolation process,
it is necessary to consider negative values of the chemical
potential. For positive values of � the occupied sites are the
majority at any temperature and the system has always at
least one percolating cluster of occupied sites. In the case of
negative �, instead, the number of occupied sites grows as
the temperature of the system increases, until the percolation
threshold is reached and an infinite cluster appears. In this
case, it is also possible to introduce the concept of critical
temperature Tc, the temperature above which one or more
infinite clusters of occupied sites appear in the system.

The results for the percolation probability as a function of
the density of occupied sites are shown in Fig. 11. It is im-
portant to observe that in this case the density of occupied
sites does not have a simple expression like the one obtained
for the random percolation case in Eq. �20�, but it must be
explicitly calculated, as explained before, as the ratio be-
tween that part of the partition function that contains con-
figurations in which the origin is occupied and the total par-
tition function of the system �the density of occupied states is
obtained, as always, from the general expression given in Eq.
�19��. The percolation threshold becomes larger as � be-
comes more negative. As � changes from 0 toward −�, the

curve of p as a function of � tends to the one obtained in the
case of random percolation and shown in Fig. 7. This behav-
ior is easy to understand if we remember that in our model
the temperature is rescaled by the interaction energy between
the particles and that the chemical potential is consequently a
rescaled chemical potential �→��. The limit �→−� cor-
responds to the limit �→0, that is, to the random percolation
case. In this limit, we must keep �� fixed and equal to a

FIG. 11. �Color online� Correlated percolation on a square Hu-
simi lattice: probability that an occupied site at the origin of the
lattice is connected to an infinite cluster of occupied sites spanning
the entire lattice as a function of the density of occupied sites and of
the chemical potential for an occupied site.

FIG. 12. �Color online� Correlated percolation on a square Hu-
simi lattice: probability that an occupied site at the origin of the
lattice is connected to an infinite cluster of occupied sites spanning
the entire lattice as a function of the temperature of the system and
of the chemical potential for an occupied site.
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negative value. Increasing the value of � from −� toward 0
is analogous to increasing the interaction energy between the
occupied and unoccupied states. Since the interaction is re-
pulsive, as � becomes smaller in magnitude the configura-
tions in which occupied sites are surrounded by other occu-
pied sites become favorable, thus lowering the percolation
threshold for the system. As the magnitude of � becomes
smaller, occupied sites like more and more to be surrounded
by other occupied sites so that the presence of these interac-
tions leads to the formation of “pathways” that connect oc-
cupied sites and that lead to a decrease of the percolation
threshold.

Figure 12 shows the behavior of the percolation probabil-
ity as a function of T. The percolation threshold increases as
the chemical potential becomes larger in magnitude. We are
not interested in the case of attractive interactions here, since
the excess energies for physical interactions between par-
ticles of different kinds are usually positive. However, in the
case of attractive excess interactions between different kind
of particles �which can occur in the presence of specific in-
teractions�, the percolation threshold should increase with
the strength of the interactions since the configurations with
occupied sites surrounded by empty ones would be favored.

Figures 13 and 14 summarize the dependence of the per-
colation threshold and the critical temperature on the value
of �.

As expected, both the percolation threshold and the criti-
cal temperature increase as the value of the chemical poten-
tial becomes larger and larger in magnitude. The percolation
threshold has a limiting value represented by the value ob-
tained for the random case studied above, �c�0.381 95. The
critical temperature, instead, grows unbounded as the chemi-
cal potential becomes larger and larger in magnitude. The
random percolation case corresponds to the absence of inter-
actions, what is usually known as the athermal limit. This
limit corresponds to an infinitely large temperature, since at
such temperature any interactions become negligible. So, an
infinitely large and negative chemical potential corresponds
to an infinite value for the critical temperature.

V. CONCLUSIONS

In this paper we have introduced a recursive approach that
we intend to use to study the percolation of particles of dif-
ferent size and shape that might be embedded in a polymer
matrix. The approach allows us to take into account size and
shape differences as well as to correctly account for the in-
teractions between the different species present in the sys-
tem. All these aspects were not taken into consideration all
together in the previous descriptions of percolation that we
are aware of.

We have introduced the machinery of our recursive ap-
proach in which the original lattice where the problem is
defined is replaced by a recursive structure.

We have shown how it is possible to calculate the perco-
lation threshold for a system of noninteracting particles on
three different recursive structures: the Bethe lattice, the Hu-
simi lattice, and the triangular Husimi lattice. We have
shown how one can recursively obtain the percolation from
the solution of a system of equations. We have also shown
that where exact results are known, as in the case of the
Bethe lattice, the recursive approach that we have introduced
is able to reproduce such exact results.

The effect of interactions on the percolation of a system
of monodisperse particles on a Husimi lattice has also been
analyzed to show how the recursive approach can take into
account the interactions. The results show that an increase in
the attractive interactions between the particles present on
the lattice lowers the percolation threshold and the value of
the critical temperature. This result agrees with many previ-
ous observations and conjectures �12,68–70�.

Now that we have described the foundations of our ap-
proach, we move to the description of more complicated sys-
tems. In the following paper, we describe the percolation in
systems made of particles with different sizes and shapes.
Finally, in the third portion of this study, we describe the
effects of the presence of a polymeric matrix on such poly-
disperse systems of particles. In particular, we will show how
the percolation threshold decreases with increasing aspect
ratio of the particles present in the system and how the stiff-
ness of a polymer matrix as well as the nature of the inter-
actions between fillers and matrix affect the percolation
properties of the system.

FIG. 13. Percolation threshold as a function of the chemical
potential for the percolation of monomeric species on a Husimi
lattice.

FIG. 14. Critical temperature as a function of the chemical po-
tential for the percolation of monomeric species on a Husimi lattice.
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