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We argue that structural rearrangements experienced by an assembly of hard disks under increasing disk
density are accompanied by the mutual caging of each disk by its three alternating Voronoi nearest neighbors.
This caging becomes effective at a packing fraction �=��3/8�0.680 when the average gap width between
neighboring disks in the system shrinks to about 15% of the disk diameter. The freezing occurs when the
fraction of caged disks is about 40%.
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The freezing transition �FT� of a two-dimensional �2D�
substance was first seen in the computer simulation studies
of 870 hard disks �HD’s� by Alder and Wainwright �1� more
than 40 years ago. Since then, a number of papers, both
theoretical and computational, have been published discuss-
ing different aspects of the fluid-to-solid transformation in
2D. Is this transformation an ordinary first-order FT or a
more complex continuous transition or a superposition of
both? It is very probable that the fluid-to-solid transition sce-
nario in 2D is sensitive to the details of the interparticle
interaction �2�. In the case of HD’s, recently there has been
growing evidence �3,4� to demonstrate that the observed
phase transformation consists of a first-order FT that may be
followed by the so-called hexatic phase �HP� predicted by
the Kosterlitz-Thouless-Halperin-Nelson-Young �KTHNY�
theory �5–7�. Therefore, the issue of a HP is of importance to
understand the melting mechanism of a 2D solid. The prob-
lem is complicated since observation of the HP seems to be
sensitive to the size of the simulated system �millions of
disks are necessary �3,4�� and very possibly the HP is meta-
stable �8�. On the other hand, the FT can be studied by simu-
lating reasonably small systems �thousands of disks is
enough �1��; however, the reason why a HD fluid freezes is
not clear as well. Insight into the mechanism and driving
force of the FT in a HD system is the main purpose of this
paper.

In a recent computer simulation study of the HD structur-
ing, Truskett et al. �9� turned their attention to a shoulder that
developed on the second maximum of the disk radial distri-
bution function �RDF� in the vicinity of the FT �the dashed
curve in Fig. 1�. The observed shoulder was attributed to the
formation of a four-disk hexagonally close-packed arrange-
ment and has been suggested to be considered as a precursor
of HD freezing. Indeed, as the disk density increases beyond
the FT region �the solid line in Fig. 1�, the shoulder gradually
transforms into two subpeaks. One closely follows the posi-

tion of the original second maximum, which is located at
distances larger than twice the disk diameter �, but the other
subpeak is clearly shifted to shorter distances in the region
r /��2. When the density further increases towards the
close-packing �CP� density, these two subpeaks eventually
are transformed into two distinct �-like peaks centered at the
distances r /�=2 and r /�=�3, respectively, representing a
loose crystalline hexagonal ordering in a HD solid.

On the other hand, the relevant studies by Huerta et al.
�10� and Moučka and Nezbeda �11� indicate a notable in-
crease in the formation of quasiregular hexagonal configura-
tions already on approaching the FT. By quasiregular hexa-
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FIG. 1. MC data for the RDF of a HD system at two packing
fractions: before melting, �=0.723 �solid line�, and before freezing,
�=0.686 �dashed line�. Inset: sketch of the quasiregular hexagonal
configuration with an average gap width � between VNN’s. The
disks filled with black and those drawn by the dashed line are the
VNN’s of the central disk A while disks filled with gray and those
drawn by the solid line are farther and closer next-VNN’s,
respectively.
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gons we mean the sixfold configurations �see the inset in Fig.
1� with on average the same gap width ��� between the
Voronoi nearest neighbors �VNN’s�. It already has been
shown �10,12� that the upper limit of such a gap for regular
hexagons is �1/ �2 sin � /7�−1���0.152�; gaps larger than
0.152� will allow for a ring of seven disks to be formed
around the central disk; ���=0 in the CP limit when all disks
are in immediate contact. Since the freezing density �2,13� is
far lower than the CP density, �cp=� / �2�3��0.907, the
regular but loose hexagons in a prefreezing region are
formed on average by noncontacting disks—i.e., with a gap
width ����0. Therefore, it seems reasonable to suggest that
the phenomenon of disk freezing somehow is linked to the
shrinkage of the average gap width between disks.

Based on these observations, as well as on our own com-
puter simulation data, we believe that during the structural
rearrangements that take place in an assembly of HD’s with
increasing density, there exists a gap width ��� that favors a
local environment characterized by the mutual caging of
each disk provided by only a single set of its three alternat-
ing VNN’s. The FT occurs when about 40% of the disks are
caged in this way.

The average gap width between hexagonal VNN’s can be
estimated assuming that disks are spread uniformly,

���/� = 	�CP

�

1/2

− 1, �1�

where �=��2 / �4a� is the packing fraction with a denoting
the area per disk. To proceed, let us consider what different
values of ��� imply and why this could be important for
HD’s before FT. Analyzing the schematic drawing in Fig. 1,
it is easy to find that for ��� /�=2/�3−1�0.155, the aver-
age center-to-center �CTC� distances between a central disk
and what we call farther �circles filled with gray� and closer
�white solid circles� next-VNN’s in a hexagonal arrangement
are AD=2.31��2� and AB=AC=BC=2�, respectively.
The fact that for ����0.155� the average CTC distances
between a central disk and its closer next-VNN’s will be

shorter than 2�—i.e., AB=AC=BC�2�—is crucial. In par-
ticular, it means that in such a case the corresponding gaps
between pairs of disks A and B , A and C, and B and C will
be on average shorter than � and, consequently, the central
disk �circle filled with black� becomes caged. In contrast, if
����0.155�, then distances AB=AC=BC�2� and the cor-
responding gaps are large enough for the central disk to es-
cape. Because of this, the gap width ��� /�=2/�3−1 can be
referred to as the caging gap. An estimate made by substitut-
ing this gap value into relation �1� gives the corresponding
caging density �cage=��3/8�0.680.

More careful examination of the hexagonal arrangement
similar to that in Fig. 1 reveals that any disk in a 2D array
being chosen as a central disk �e.g., disk A� and its two
closer next-VNN’s �e.g., disks B and C� serve simulta-
neously as the pair of alternating VNN’s of common neigh-
boring disks �the disks filled with black in Fig. 1�. Thus, the
formation of the subshell of closer next-VNN’s, which re-
veals itself as a shoulder on the disk RDF, signals that the
corresponding gaps between the pairs of alternating VNN’s
in the entire array become on average shorter than �. The
latter means that the disks considered as wanderers �e.g., the
disks filled with black in Fig. 1� can no longer squeeze out of
the triangular cells formed by their three alternating
VNN’s—i.e., become caged.

The caging by the alternating VNN’s in a qualitative
manner can be seen from the snapshot of the disk configu-
ration obtained from computer simulations of 1000 disks.
The canonical ensemble Monte Carlo �MC� method that we
used in the present study is quite standard and identical to
that used in our previous study �10� as well as in the relevant
studies by Truskett et al. �9� and Moučka and Nezbeda �11�.
The snapshots in Fig. 2 correspond to two different densities:
�=0.686 and �=0.723, which are on either side of the FT
region �2,13�. The dots mark those disks that are caged using
the criterion that gaps between their alternating VNN’s be
less than � while lines connect these VNN’s. From the snap-
shot that corresponds to the density before freezing, we can
see that practically all disks in the array already have their
six VNN’s. Nevertheless, only some of the disks are caged;

FIG. 2. �Color online� Snapshots of a part of the configuration of N=1000 disks at two different densities. Left: �=0.686—i.e., before
freezing. Right: �=0.723—i.e., before melting. Disks with a dot mean that they are caged using the criterion that CTC distances between
three pairs of its alternating VNN’s be less than 2� while lines show the alternating VNN disks that cage the central disk.
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the majority of this caging is realized by a single set of the
three alternating VNN’s. There are only few disks that ex-
perience double caging—i.e., are caged by a hexagonal cell
of the all six VNN’s which in fact represent double sets of
the alternating VNN’s. As the density increases, more single
sets of VNN’s merge to form the hexagonal arrangement.

To quantify this caging, we calculated the fraction of
caged disks at various packing fractions �. This fraction was
obtained as the ratio of the HD’s that have three alternating
VNN’s with a CTC distance between them shorter than 2� to
the total number of disks. We can see from Fig. 3 that indeed
on approaching the FT there is a sharp increase of the disks
caged by three alternating VNN’s. Moreover, the profile of
the fraction of caged disks follows closely the profile of the
global bond orientational order parameter �2,6�, which was
evaluated in the same simulation runs. It follows that around
40% of disks in the array must be caged by their three alter-
nating VNN’s for the FT to occur. In contrast, the caging by
all six VNN’s shows little relation to the FT.

The concept of caging is essential in studies of the FT by
means of the cell model �CM� approach �14�. Originally this
approach considered that each disk in the array always is
surrounded by a fixed group of VNN’s equal in number to
those that surround it in the solid phase. In an approach that
we will refer to as a conventional CM �15�, this group of
VNN’s was identified as a sixfold hexagonal arrangement. In
turn, Alder et al. �16� suggested a correlated CM in which
only four out of six VNN’s remain fixed in their hexagonal
lattice positions. An important observation from the present
study lies in the fact that when the density progressively
increases towards freezing, the caging is realized neither by
six nor four disks but only by three disks that are the alter-
nating VNN’s. This finding led us to the conclusion that the
triangular cell formed by the alternating VNN’s could be a
natural unit cell for the HD system. Such a unit cell is shown
in Fig. 3. The three alternating VNN’s drawn by open circles
are fixed while circles filled with black represent the disks

that are allowed to move within their cells or even get out
from the cell if the gap between fixed disks allows one to do
so. This gap, or better the CTC distance d, between alternat-
ing VNN’s is only a parameter of the proposed CM; the
corresponding packing fraction � follows from �d /��2

=��3/ �2��. The free area per disk, af, is given by

af/�
2 =

�3

4
�d/��2 −

�

2
+ 3 cos−1	d/�

2

 −

3

4
�d/���4 − �d/��2,

�2�

for distances 1�d /��2; if d /��2, only the first two terms
contribute. Then the pressure pa /kT=a�� ln af /�a� is

pa

kT
=

d2

2af
��3

2
−

3

d/�
�1 − 	d/�

2

2� , �3�

for distances 1�d /��2; if d /��2, only the first term con-
tributes. To calculate the derivative �af /�a we used the rela-
tion a=�3d2 /6.

The pressure resulting from Eq. �3� is shown in Fig. 4
together with the results of the conventional CM theory �15�.
These two theoretical predictions are compared with three
sets of computer simulation data obtained independently for
both fluid and solid phases �17� as well as for the FT region
�4,13�. We can see that the conventional CM, which is based
on the hexagonal unit cell, describes the HD system at high
densities well but fails for low densities and also fails even to
predict a FT region. In contrast, the CM theory, based on the
triangular unit cell of alternating VNN’s, does predict the
coexistence region between HD fluid and HD solid phases.
Similar results were obtained by Alder et al. �16� using a
rectangular unit cell. A clear first-order transition is found in
both cases. There is a cusp at the caging density �cage
�0.680, which corresponds to d=2� or equivalently to
����0.155�. The cusp is inside the coexistence region as
determined by a Maxwell construction. Outside the coexist-

FIG. 3. Left: fraction of caged disks that follows from our MC simulations by using two different criteria: �i� the CTC distances between
all six VNN’s must be less than 2� �line with open squares�, i.e., the criterion used in a conventional CM �15�, and �ii� the CTC distances
between three alternating VNN’s must be less than 2� �line with filled squares�, i.e., the criteria that follows from the present analysis. The
short-dashed curve corresponds to the global bond orientational order parameter while vertical dashed lines mark the freezing and melting
densities all obtained from our MC simulations. Right: triangular unit cell formed by the alternating VNN’s.
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ence region, �p /�a�0. The resultant coexisting densities are
�fluid=0.674 and �solid=0.710.

Two snapshots in Fig. 4 were obtained from MC simula-
tions with fixed alternating neighbors �in analogy to the CM
approach� to illustrate the qualitative change in the free area
�shown as a shaded area� of the HD system across the tran-

sition region. One can see that on the fluid side the traces
�i.e., available free area� of the central disks from different
unit cells are connected—i.e., the central disks wander
through the system. In contrast, on the solid side the same
traces are separated; i.e., each central disk is restricted to
move only in a designed unit cell of its alternating VNN’s. It
is interesting to note that such a restriction finally leads to the
overall hexagonal arrangement in the HD solid in accordance
with observation.

Summarizing, the formation of local quasiregular hexa-
gons with increasing density in a HD system implies that the
average CTC distance between any disk chosen as a central
disk and its closer next-VNN’s begins to be shorter than 2�.
This fact reflects itself as the shoulder on the second maxi-
mum of the disk RDF that already has been suggested as a
structural precursor to FT in the HD system �9�. On the other
hand, within the hexagonal arrangement each central disk
and its closer next-VNN’s are simultaneously the alternating
VNN’s of the common neighboring disk, and when the CTC
distance between them becomes shorter than 2�, this com-
mon neighboring disk becomes caged. Based on this obser-
vation we have reported a simple mechanism for the freezing
of hard disks. This mechanism considers that by taking only
alternating VNN’s into account this is enough to describe
fluid and solid phases as well as the transition region. The
fluid becomes unstable when the average CTC distance be-
tween alternating VNN’s becomes shorter than 2� and the
resulting gap between them is not large enough for the cen-
tral disk to wander.

The results presented in Fig. 4 indirectly suggest that cag-
ing by the alternating VNN’s can be the origin of the freez-
ing in a HD system. On the other hand, some recent large-
scale computer simulations of a HD system indicate the
possibility of the HP existing just after the first-order FT
�3,4�. We wish to point out that the mechanism that we pro-
posed for freezing does not exclude the possibility of a con-
tinuous HP �probably metastable in the case of a HD system�
just after the disks freeze.
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FIG. 4. The equation of state of a HD system. The open symbols
are computer simulation data for fluid �triangles� and solid �circles�
phases �17� as well as for a transition region �squares� �13�, respec-
tively. The thin solid line in the transition region shows the large-
scale computer simulation data extracted from Ref. �4�. The thick
solid line shows results of the CM theory using the proposed trian-
gular unit cell formed by the alternating VNN’s while the dashed
line gives the results of the conventional CM �15�. The vertical
dashed lines mark the fluid and solid coexisting densities as ob-
tained by a Maxwell construction from the pressure isotherm given
by Eq. �3�. The inset illustrates the transition region in detail. Two
snapshots show the traces of central disks surrounded by the disks
�open circles� that are fixed in the positions of a triangular unit cell
formed by alternating VNN’s. The gaps between fixed disks corre-
spond to the packing fractions �=0.686 �on the left� and �=0.723
�on the right�.
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