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One-dimensional detrended fluctuation analysis �DFA� and multifractal detrended fluctuation analysis
�MFDFA� are widely used in the scaling analysis of fractal and multifractal time series because they are
accurate and easy to implement. In this paper we generalize the one-dimensional DFA and MFDFA to higher-
dimensional versions. The generalization works well when tested with synthetic surfaces including fractional
Brownian surfaces and multifractal surfaces. The two-dimensional MFDFA is also adopted to analyze two
images from nature and experiment, and nice scaling laws are unraveled.
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I. INTRODUCTION

Fractals and multifractals are ubiquitous in natural and
social sciences �1�. The most usual records of observable
quantities are in the form of time series and their fractal and
multifractal properties have been extensively investigated.
There are many methods proposed for this purpose �2,3�,
such as spectral analysis, rescaled range analysis �R/S analy-
sis� �4–9�, fluctuation analysis �10�, detrended fluctuation
analysis �DFA� �11–13�, wavelet transform module maxima
�WTMM� �14–18�, and detrended moving average �19–23�,
to list a few.

The idea of DFA was invented originally to investigate the
long-range dependence in coding and noncoding DNA nucle-
otide sequences �11�. Then it was generalized to study the
multifractal nature hidden in time series, termed multifractal
DFA �MFDFA� �13�. Due to the simplicity in implementa-
tion, the DFA is now becoming the most important method in
the field.

Although the WTMM method seems a little complicated,
it is no doubt a very powerful method, especially for high-
dimensional objects, such as images and scalar and vector
fields of three-dimensional turbulence �24–28�. In contrast,
the original DFA method is not designed for such purposes.
In a recent paper, a first effort is taken to apply DFA to study
the roughness features of texture images �29�. Specifically,
the DFA is applied to extract Hurst indices of the one-
dimensional sequences at different image orientations and
their average scaling exponent is estimated. Unfortunately,
this is nevertheless a one-dimensional DFA method.

In this work, we generalize the DFA �and MFDFA as
well� method from one to higher dimensions. The general-
ized methods are tested by synthetic surfaces �fractional
Brownian surfaces and multifractal surfaces� with known
fractal and multifractal properties. The numerical results are
in excellent agreement with the theoretical properties. We
then apply these methods to practical examples. We argue
that there are tremendous potential applications of the gen-
eralized DFA to many objects, such as the roughness of frac-

ture surfaces, landscapes, clouds, three-dimensional tempera-
ture fields and concentration fields, and turbulence velocity
fields.

The paper is organized as follows. In Sec. II, we represent
the algorithm of the two-dimensional detrended fluctuation
analysis and the two-dimensional multifractal detrended
fluctuation analysis. Section III shows the results of the nu-
merical simulations, which are compared with theoretical
properties. Applications to practical examples are illustrated
in Sec. IV. We discuss and conclude in Sec. V.

II. METHOD

A. Two-dimensional DFA

Being a direct generalization, the higher-dimensional
DFA and MFDFA have quite similar procedures to the one-
dimensional DFA. We shall focus on two-dimensional space
and the generalization to higher dimensions is straightfor-
ward. The two-dimensional DFA consists of the following
steps.

Step 1. Consider a self-similar �or self-affine� surface,
which is denoted by a two-dimensional array X�i , j�, where
i=1,2 , . . . ,M and j=1,2 , . . . ,N. The surface is partitioned
into Ms�Ns disjoint square segments of the same size s�s,
where Ms= �M /s� and Ns= �N /s�. Each segment can be de-
noted by Xv,w such that Xv,w�i , j�=X�l1+ i , l2+ j� for 1� i , j
�s, where l1= �v−1�s and l2= �w−1�s.

Step 2. For each segment Xv,w identified by v and w, the
cumulative sum uv,w�i , j� is calculated as follows:

uv,w�i, j� = �
k1=1

i

�
k2=1

j

Xv,w�k1,k2� , �1�

where 1� i , j�s. Note that uv,w itself is a surface.
Step 3. The trend of the constructed surface uv,w can be

determined by fitting it with a prechosen bivariate polyno-
mial function ũ. The simplest function could be a plane. In
this work, we shall adopt the following five detrending func-
tions to test the validation of the methods:

ũv,w�i, j� = ai + bj + c , �2�

ũv,w�i, j� = ai2 + bj2 + c , �3�*Electronic address: wxzhou@moho.ess.ucla.edu
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ũv,w�i, j� = aij + bi + cj + d , �4�

ũv,w�i, j� = ai2 + bj2 + ci + dj + e , �5�

ũv,w�i, j� = ai2 + bj2 + cij + di + ej + f , �6�

where 1� i , j�s and a, b, c, d, e, and f are free parameters
to be determined. These parameters can be estimated easily
through simple matrix operations, derived from the least
squares method. We can then obtain the residual matrix

�v,w�i, j� = uv,w�i, j� − ũv,w�i, j� . �7�

The detrended fluctuation function F�v ,w ,s� of the segment
Xv,w is defined via the sample variance of the residual matrix
�v,w�i , j� as follows

F2�v,w,s� =
1

s2�
i=1

s

�
j=1

s

�v,w�i, j�2. �8�

Note that the mean of the residual is zero due to the detrend-
ing procedure.

Step 4. The overall detrended fluctuation is calculated by
averaging over all the segments, that is,

F2�s� =
1

MsNs
�
v=1

Ms

�
w=1

Ns

F2�v,w,s� . �9�

Step 5. Varying the value of s in the range from smin�6 to
smax�min�M ,N� /4, we can determine the scaling relation
between the detrended fluctuation function F�s� and the size
scale s, which reads

F�s� � sH, �10�

where H is the Hurst index of the surface �2,30–32�, which
can be related to the fractal dimension by D=3−H �1,33�.
The choice of smin�6 and smax�min�M ,N� /4 is determined
empirically to ensure a better scaling relation and at least two
partitions in each direction.

Since N and M need not be a multiple of the segment size
s, two orthogonal trips at the end of the profile may remain.
In order to take these ending parts of the surface into con-
sideration, the same partitioning procedure can be repeated
starting from the other three corners �30�.

B. Two-dimensional MFDFA

Analogous to the generalization of one-dimensional DFA
to one-dimensional MFDFA, the two-dimensional MFDFA
can be described similarly, such that the two-dimensional
DFA serves as a special case of the two-dimensional
MFDFA. The two-dimensional MFDFA follows the same
first three steps as in the two-dimensional DFA and has two
revised steps.

Divide a self-similar �or self-affine� surface X�i , j� into
Ms�Ns �Ms= �M /s� and Ns= �N /s�� disjoint phalanx seg-
ments. In each segment Xv,w�i , j� compute the cumulative
sum u�i , j ,s� using Eq. �1�. With one of the five regression
equations, we can obtain ũ�i , j ,s� to represent the trend in
each segment, then we obtain the fluctuation function
F�v ,w ,s� by Eq. �8�.

Step 4. The overall detrended fluctuation is calculated by
averaging over all the segments, that is,

Fq�s� = � 1

MsNs
�
v=1

Ms

�
w=1

Ns

�F�v,w,s��q	1/q

, �11�

where q can take any real value except for q=0. When q
=0, we have

F0�s� = exp� 1

MsNs
�
v=1

Ms

�
w=1

Ns

ln�F�v,w,s��	 , �12�

according to l’Hôpital’s rule.
Step 5. Varying the value of s in the range from smin�6 to

smax�min�M ,N� /4, we can determine the scaling relation
between the detrended fluctuation function Fq�s� and the size
scale s, which reads

Fq�s� � sh�q�. �13�

In the standard multifractal formalism based on partition
function, the multifractal nature is characterized by the scal-
ing exponents ��q�, which is a nonlinear function of q �34�.
For each q, we can obtain the corresponding traditional ��q�
function through

��q� = qh�q� − Df , �14�

where Df is the fractal dimension of the geometric support of
the multifractal measure �13�. One can obtain the generalized
dimensions Dq �35–37� and the singularity strength function
��q� and the multifractal spectrum f��� via Legendre trans-
form �34�. In this work, the numerical and real multifractals
have Df =2. For fractional Brownian surfaces with a Hurst
index H, we have h�q�
H.

C. Some remarks on the generalization

To the best of our knowledge, the first few steps of the
one-dimensional DFA and MFDFA in literature are organized
in the following order. Construct the cumulative sum of the
time series and then partition it into segments of the same
scale without overlapping. In this way, a direct generalization
to higher-dimensional space should be the following.

Step I. Construct the cumulative sum

u�i, j� = �
k1=1

i

�
k2=1

j

X�k1,k2� . �15�

Step II. Partition u�i , j� into Ns�Ms disjoint square seg-
ments. The ensuing steps are the same as those described in
Secs. II A and II B.

One can show that, for the one-dimensional DFA and
MFDFA, the residual matrix in a given segment is the same
no matter which step is processed first, either the cumulative
summation or the partitioning. This means that we have two
manners of generalizing to higher-dimensional space, that is,
steps 1 and 2 in Sec. II A and steps I and II aforementioned.
Our numerical simulations show that both these two kinds of
generalization gives the correct Hurst index for fractional
Brownian surfaces when adopting two-dimensional DFA.

GAO-FENG GU AND WEI-XING ZHOU PHYSICAL REVIEW E 74, 061104 �2006�

061104-2



However, the two-dimensional MFDFA with steps I and II
gives the wrong ��q� function for two-dimensional multifrac-
tals with analytic solutions where the power-law scaling is
absent, while the generalization with steps 1 and 2 does a
nice job.

The difference of the two generalization methods be-
comes clear when we compare uv,w�i , j� in Eq. �1� with u�i , j�
in Eq. �15�. We see that uv,w�l1+ i , l2+ j� is localized to the
segment Xv,w, while u�l1+ i , l2+ j� contains extra information
outside the segment when i� l1 and j� l2, which is not con-
stant for different i and j and thus cannot be removed by the
detrending procedure. In the following sections, we shall
therefore concentrate on the correct generalization expressed
in Secs. II A and II B.

After the two-dimensional case has been introduced, the
multivariate extension of DFA and MFDFA be deduced simi-
larly. We have tested the three-dimensional MFDFA method
using a simulated multifractal field. The three-dimensional
multifractal field is constructed by partitioning a cube into
eight identical smaller cubes and redistributing the measure
to these smaller cubes with multipliers 0.09, 0.1, 0.15, 0.2,
0.06, 0.09, 0.14, and 0.17 �see also Sec. III B for more de-
tails on the construction of higher-dimensional multifractals�.
The curves Fq�s� versus s in log-log plot show sound power-
law scaling and the empirical ��q� points collapse well on the
theoretical ��q� function. It follows that the scaling behavior
in the simulations is similar qualitatively to the two-
dimensional case and no adjustment is necessary.

III. NUMERICAL SIMULATIONS

A. Synthetic fractional Brownian surfaces

We test the two-dimensional DFA with synthetic frac-
tional Brownian surfaces. There are many different methods
to create fractal surfaces, based on Fourier transform filtering
�33,38�, midpoint displacement and its variants �1,39,40�,
circulant embedding of covariance matrix �41–44�, periodic
embedding and fast Fourier transform �45�, top-down hierar-
chical models �46�, and so on. In this paper, we use the
MATLAB software FRACLAB 2.03 developed by INRIA to syn-
thesize fractional Brownian surfaces with Hurst index H.

In our test, we have investigated fractional Brownian sur-
faces with different Hurst indices H ranging from 0.05 to
0.95 with an increment of 0.05. The size of the simulated
surfaces is 500�500. For each H, we generated 500 sur-
faces. Each surface is analyzed by the two-dimensional DFA
with the five bivariate functions in Eqs. �2�–�6�. The results
are shown in Fig. 1. We can see that the estimated Hurst

indices Ĥ are very close to the preset values in general. The
deviation of the Hurst index H becomes larger for large val-
ues of H.

In Fig. 2, we show the log-log plot of the detrended fluc-
tuation F�s� as a function of s for two synthetic fractional
Brownian surfaces with H=0.2 and 0.8, respectively. There
is no doubt that the power-law scaling between F�s� and s is
very evident and sound. Hence, the two-dimensional DFA is
able to capture well the self-similar nature of the fractional
Brownian surfaces and results in precise estimation of the
Hurst index.

We also adopted fractional Brownian surfaces to test the
two-dimensional multifractal detrended fluctuation analysis.
Specifically, we have simulated three fractional Brownian
surfaces with Hurst indices H1=0.2, H2=0.5, and H3=0.8,
respectively. The five regression equations �2�–�6� are used
in the detrending. We calculated h�q� for q ranging from −10
to 10 according to Eq. �13�. All the Fq�s� functions exhibit
excellent power-law scaling with respect to the scale s. The
function ��q� can be determined according to Eq. �14�. The
resultant ��q� functions are plotted in Fig. 3 with the inset
showing the h�q� functions. We can find from the figure that,
for each surface, the five functions of ��q� �and h�q� as well�
corresponding to the five detrending functions collapse on a
single curve. Moreover, it is evident that h�q�=H and ��q�
=qH−2. The three analytic straight lines intersect at the
same point �q=0,��q�=−2�. These results are expected ac-
cording to theoretical analysis.

We stress that, when fractional Brownian surfaces are un-
der investigation, both the two-dimensional DFA and
MFDFA can produce the same correct results even when
steps I and II are adopted.

B. Synthetic two-dimensional multifractals

Now we turn to test the MFDFA method with synthetic
two-dimensional multifractal measures. There exist several
methods for the synthesis of two-dimensional multifractal
measures or multifractal rough surfaces �25�. The most clas-
sic method follows a multiplicative cascading process, which
can be either deterministic or stochastic �47–50�. The sim-
plest one is the p model proposed to mimic the kinetic en-
ergy dissipation field in fully developed turbulence �48�.
Starting from a square, one partitions it into four subsquares
of the same size and chooses randomly two of them to assign
the measure of p /2 and the remaining two of �1− p� /2. This
partitioning and redistribution process repeats and we obtain
a singular measure 	. A straightforward derivation following

FIG. 1. �Color online� Comparison of the estimated Hurst index

Ĥ using Eqs. �2�–�6� with the true value H. The error bars show the

standard deviation of the 500 estimated Ĥ values. The results cor-
responding to Eqs. �3�–�6� are translated vertically by 0.1, 0.2, 0.3,
and 0.4 for clarity.
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the partition function method �34� results in the analytic ex-
pression

��q� = q − 1 − log2�pq + �1 − p�q� . �16�

A relevant method is the fractionally integrated singular
cascade �FISC� method, which was proposed to model mul-
tifractal geophysical fields �51� and turbulent fields �52�. The
FISC method consists of a straightforward filtering in Fou-
rier space via fractional integration of a singular multifractal
measure generated with some multiplicative cascade process
so that the multifractal measure is transformed into a
smoother multifractal surface:

f�x� = 	�x� � �x�−�1−H�, �17�

where � is the convolution operator and H� �0,1� is the
order of the fractional integration �25�, whose ��q� function
is �25,53�

��q� = q�1 + H� − 1 − log2�pq + �1 − p�q� . �18�

The third one is called the random W cascade method which
generates multifractal rough surfaces from random cascade

process on a separable wavelet orthogonal basis �25�.
In our test, we adopted the first method for the synthesis

of two-dimensional multifractal measure. Starting from a
square, one partitions it into four subsquares of the same size
and assigns four given proportions of measure p1=0.05, p2
=0.15, p3=0.20, and p4=0.60 to them. Then each subsquare
is divided into four smaller squares and the measure is redis-
tributed in the same way. This procedure is repeated ten
times and we generate multifractal “surfaces” of size 1024
�1024. The resultant ��q� functions estimated from the two-
dimensional MFDFA method are plotted in Fig. 4, where the
inset shows the h�q� functions. We can find that the five
functions of ��q� �and h�q� as well� corresponding to the five
detrending functions collapse on a single curve, which is in
excellent agreement with the theoretical formula:

FIG. 2. �Color online� Log-log plots of the detrended fluctuation
function F�s� with respect to the scale s for H=0.2 �a� and 0.8 �b�
using Eqs. �2�–�6�. The lines are the least squares fits to the data.
The results corresponding to Eqs. �3�–�6� are translated vertically
for better presentation.

FIG. 3. �Color online� Plots of ��q� extracted by using the five
detrending functions �2�–�6� as a function of q. The three straight
lines are ��q�=qH−2 for H1=0.2, H2=0.5, and H3=0.8, respec-
tively. The inset shows the corresponding h�q� functions.

FIG. 4. �Color online� Plots of ��q� extracted by using the five
detrending functions �2�–�6� as a function of q. The continuous line
is the theoretical formula �19�. The inset shows the corresponding
h�q� functions.
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��q� = − log2�p1
q + p2

q + p3
q + p4

q� . �19�

We stress that, when we use steps I and II instead of steps
1 and 2, the resultant ��q� estimated by the MFDFA method
deviates remarkably from the theoretical formula. Indeed, the
power-law scaling for most q values is absent and thus the
alternative algorithm with steps I and II and the resulting
��q� is completely wrong. In addition, we see that different
detrending functions give almost the same results. The linear
function �2� is preferred in practice, since it requires the least
computational time among the five.

IV. EXAMPLES OF IMAGE ANALYSIS

A. The data

In this section we apply the generalized method to ana-
lyze two real images, as shown in Fig. 5. Both pictures are
investigated by the MFDFA approach since it contains auto-

matically the DFA analysis. The first example is the land-
scape image of the Mars Yardangs region �29�, which can be
found at http://sse.jpl.nasa.gov. The size of the landscape im-
age is 2048�1536 pixels. The second example is a typical
scanning electron microscope �SEM� picture of the surface
of a polyurethane sample foamed with supercritical carbon
dioxide. The size of the foaming surface picture is 1200
�800 pixels.

The SEM picture is of the surface of a polyurethane
sample prepared in an experiment of polymer foaming with
supercritical carbon dioxide. At the beginning of the experi-
ment, several prepared polyurethane samples were placed in
a high-pressure vessel full of supercritical carbon dioxide at
saturation temperature for gas sorption. After the samples
were saturated with supercritical CO2, the carbon dioxide
was quickly released from the high-pressure vessel. Then the
foamed polyurethane samples were put into cool water to
stabilize the structure cells. Pictures of the foamed samples
were taken by a scanning electron microscope.

The two images were stored in the computer as two-
dimensional arrays in 256 prey levels. We used Eq. �2� for
the detrending procedure. The two-dimensional arrays were
investigated by multifractal detrended fluctuation analysis.
For each picture, we obtained the ��q� function and the h�q�
function as well. If ��q� is nonlinear with respect to q or, in
other words, h�q� is dependent on q, then the investigated
picture has the nature of multifractality.

B. Analyzing the Mars landscape image

We first analyze the Mars landscape image shown in the
upper panel of Fig. 5 with MFDFA. Figure 6 illustrates the
dependence of the detrended fluctuation Fq�s� as a function
of the scale s for different values of q marked with different
symbols. The continuous curves are the best linear fits. The
perfect collapse of the data points on the linear lines indi-
cates the evident power-law scaling between Fq�s� and s,
which means that the Mars landscape is self-similar.

FIG. 5. �a� The image of the Yardangs region on Mars. �b� A
scanning electron microscope picture of the surface of a polyure-
thane sample foamed with supercritical carbon dioxide.

FIG. 6. �Color online� Log-log plots of the detrended fluctuation
function Fq�s� versus the lag scale s for five different values of q.
The continuous lines are the best fits to the data. The plots for q
=−3, 0, 3, and 6 are shifted upward for clarity.
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The slopes of the straight lines in Fig. 6 give the estimates
of h�q� and the function ��q� can be calculated accordingly.
In Fig. 7 is shown the dependence of ��q� with respect to q
for −6�q�6. We observe that ��q� is linear with respect to
q. The error bars show the standard errors for the regression
coefficient estimates �that is, the values of ��q�� in double-
logarithmic coordinates. This excellent linearity of ��q� is
consistent with the fact that h�q� is almost independent of q,
as shown in the inset. Hence, the Mars landscape image does
not possess multifractal nature.

C. Analyzing the foaming surface image

Similarly, we analyzed the foaming surface shown in the
lower panel of Fig. 5 with the MFDFA method. Figure 8
illustrates the dependence of the detrended fluctuation Fq�s�
as a function of the scale s for different values of q marked

with different symbols. The continuous curves are the best
linear fits. The perfect collapse of the data points on the
linear line indicates the evident power law scaling between
Fq�s� and s, which means that the Foaming surface is self-
similar.

The values of h�q� are estimated by the slopes of the
straight lines illustrated in Fig. 8 for different values of q.
The corresponding function ��q� is determined according to
Eq. �14�. In Fig. 9 is illustrated ��q� as a function of q for
−6�q�6. The error bars show the standard errors for the
regression coefficient estimates. We observe that ��q� is non-
linear with respect to q, which is further confirmed by the
fact that h�q� is dependent of q, as shown in the inset. The
nonlinearity of ��q� and h�q� shows that the foaming surface
has multifractal nature.

D. Sensitivity versus specificity

Another important issue concerns the interpretation of the
results of DFA to which less attention has been paid �54�. In
the case of one-dimensional R/S analysis, Lo proposes a
modified version for the statistical test of long memory and
finds that stationary time series with Hurst index larger than
0.5 may stem from short memory �55�. The situation is quite
similar in the interpretation of DFA results �54�. In other
words, a Hurst index estimated from DFA or R/S analysis
that is larger than 0.5 is only a necessary condition for the
presence of long memory, but not sufficient. This issue can
be discussed in terms of sensitivity and specificity �54�: A
method is sensitive if it is able to identify correctly the prop-
erty whensoever it is present, while it is specific if, with a
high probability, the approach rejects the existence of the
property when it is absent. An optimal algorithm would be
both sensitive and specific.

In our analysis, we applied techniques to simulated data
originating from the class of processes for which the tech-
nique has been developed so that we know a priori the sen-
sitivity of our method but we do not know its specificity. In
other words, we do not exclude the possibility that the scal-
ing behaviors in our analysis of real-world images are gen-

FIG. 7. �Color online� Dependence of ��q� with respect to q.
The solid line is the least squares fit to the data. The inset plots h�q�
as a function of q.

FIG. 8. �Color online� Log-log plots of the detrended fluctuation
function Fq�s� versus the lag scale s for five different values of q.
The continuous lines are the best fits to the data. The plots for q
=−3, 0, 3, and 6 are shifted upward for clarity.

FIG. 9. Dependence of ��q� with respect to q. The inset shows
h�q� as a function of q.
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erated by other processes. In this sense, we should be cau-
tious in the interpretation of the results. More rigorously
speaking, we can state that the two images possess empiri-
cally effective self-similarity or empirically effective multi-
fractal nature. In order to test the specificity of the DFA and
MFDFA, the numerical simulations should be extended to
processes violating the assumptions made by the DFA or
MFDFA and investigate the significance level of each pro-
cess. It is surely impossible to cover all classes of alternative
images for the test of specificity. The only realistic way is to
adopt self-similarity or multifractality as the null hypothesis
and perform statistical tests with respect to an alternative
process. Unfortunately, we do not have well-established al-
ternative processes proposed in the literature for the Mars
landscape and foaming process. This test should be done
when alternative hypotheses are available.

V. DISCUSSION AND CONCLUSION

In summary, we have generalized the one-dimensional de-
trended fluctuation analysis and multifractal detrended fluc-
tuation analysis to two-dimensional versions. Further gener-
alization to higher dimensions is straightforward. We have
found that the higher-dimensional DFA methods should be
performed locally in the sense that the cumulative summa-
tion should be conducted after the partitioning of the higher-
dimensional multifractal object. Extensive numerical simula-
tions validate our generalization. The two-dimensional
MFDFA is applied to the analysis of a Mars landscape image
and a foaming surface image. The Mars landscape is found
to be a fractal, while the foaming surface exhibits multifrac-
tal nature.

It is interesting to consider the possibility of extending
other long-range dependence methods to higher dimensions
following the idea presented in this work. Indeed, the wave-
let transform methods have already been applied to higher-
dimensional quantities. We argue that such an extension to
higher dimensions is not limited to the DFA and the WTMM
method and can be devised for other methods such as R/S
analysis, fluctuation analysis, and so on. We have generalized
the R/S analysis to two dimensions �2D� and found worse
sensitivity compared to the 2D DFA. Moreover, the standard
fluctuation analysis is similar to the DFA without the de-
trending step and the extension to higher dimensions is
straightforward. However, a detailed discussion is beyond
the scope of the current work.

Finally, we would like to stress that there are tremendous
potential applications of the generalized DFA in the analysis
of fractals and multifractals. In the two-dimensional case, the
methods can be adapted to the investigation of the roughness
of fracture surfaces, landscapes, clouds, and many other im-
ages possessing self-similar properties. In the case of three
dimensions, it could be utilized to qualify the multifractal
nature of temperature fields and concentration fields. Pos-
sible examples in higher dimensions are strange attractors in
nonlinear dynamics. Concrete applications will be reported
elsewhere in future presentations.
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