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Lattice Boltzmann simulations have been very successful in simulating liquid-gas and other multiphase fluid
systems. However, the underlying second-order analysis of the equation of motion has long been known to be
insufficient to consistently derive the fourth-order terms that are necessary to represent an extended interface.
These same terms are also responsible for thermodynamic consistency—i.e., to obtain a true equilibrium
solution with both a constant chemical potential and a constant pressure. In this article we present an equilib-
rium analysis of nonideal lattice Boltzmann methods of sufficient order to identify those higher-order terms
that lead to a lack of thermodynamic consistency. We then introduce a thermodynamically consistent forcing
method.
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I. INTRODUCTION

The standard lattice Boltzmann approach leads to an
ideal-gas equation of state. Several different approaches to
simulate nonideal fluids with lattice Boltzmann have been
introduced in the past. The main application has been to
simulate phase separation, although other applications like
an increase in the speed of sound have also been considered.
There are two different philosophies to introduce the non-
ideal terms. The first is guided by an atomistic picture, and
local interactions are introduced through a forcing term �1,2�.
The second starts from the Navier-Stokes equation for a non-
ideal gas and tries to match the hydrodynamic limit of the
lattice Boltzmann equation with this macroscopic equation
�3,4�. An analysis of these different models up to second
order is given by Aurell and Do-Quang �5�.

Whatever the underlying philosophy, each approach leads
to some nonideal equation of state. Knowing the equation of
state is sufficient to predict the phase behavior from equilib-
rium thermodynamic arguments. The equilibrium densities
are determined through the Maxwell construction �6�. Many
approaches fail this test, and the resulting phase diagrams
deviate from the theoretical one. There is one brilliant analy-
sis of the failure of the Shan-Chen model to recover thermo-
dynamic equilibrium by Shan and Chen themselves �2�.
Other authors have remained quiet on the subject.

For many simple applications where phase separation is
only required to form a nearly immiscible system, these ther-
modynamic details may be of limited importance. For simu-
lations of phase separation, however, such details can be cru-
cial. In this paper we will examine why lattice Boltzmann
approaches using a force to introduce the nonideal equation
of state fail to obtain the correct thermodynamic behavior.
We explicitly identify the terms that lead to the nonthermo-
dynamic behavior of these methods.

The paper is organized as follows: we first identify the
hydrodynamic equations that we intend to simulate. We then
discuss the equilibrium behavior of these equations. We then
introduce a general lattice Boltzmann method which intro-
duces nonideal terms through either forcing or pressure
terms. The hydrodynamic limit of this approach is presented.
This allows us to identify how we can incorporate the non-

ideal pressure contributions by either incorporating a bulk
force or by altering the pressure moment of the equilibrium
distribution.

These two different methods for nonideal systems are
equivalent to the method of Chen et al. �4� or the more recent
extension by He et al. �7,8� when we use the bulk force and
the Holdych correction to the Swift model �9� when we di-
rectly alter the pressure moment. However, we are not able
to consistently introduce surface tension effects at this point
since those appear as higher-order derivatives that are not
derivable by a second-order expansion �10�.

These higher-order derivatives, however, are necessary to
achieve thermodynamic consistency. We introduce a near-
equilibrium analysis of sufficient order to consistently derive
these higher-order gradient terms. This analysis uncovers
correction terms for pressure and forcing methods. Despite
the fact that we only perform a fifth-order analysis we are
able to identify the correction terms exactly when the fluid is
not advected with respect to the lattice. With this knowledge
we are then able to formulate a forcing method that achieves
thermodynamic consistency.

II. EQUATIONS OF MOTION FOR A NONIDEAL GAS

As a simple example of a nonideal fluid we will examine
a single-component fluid that can undergo a liquid-gas phase
transition. For simplicity an isothermal system is considered.
Such a system has an underlying free energy of the form

F =� �f��� + I���,�2�, . . . ��dx , �1�

where � is the density, f��� is the bulk free energy, and
I��� ,�2� , . . . � is a gradient expansion of the interfacial free
energy. The lowest-order term for the free energy is �

2 ����2,
and usually only this term is considered. The equations of
motion for a nonideal gas are given by the continuity equa-
tion

�t� + ���û� = 0, �2�

where û is the velocity of the fluid and the Navier-Stokes
equation of a nonideal gas,
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��tû + �û · �û = � � � + �� . �3�

Here �= �F
�� is the chemical potential of the nonideal gas and

�=�û+ ��û�T− 2
3 � · û1 is the Newtonian stress tensor.

Let us consider how this system will approach equilib-
rium. The equilibrium will be time independent, and the flow
will be uniform—i.e., û=const. So Eq. �3� reduces to

�� = 0, �4�

so that the chemical potential will be constant in equilibrium.
Condition �4� only guarantees that the chemical potential

is constant in both phases. Bulk thermodynamics, however,
requires that the pressure be also constant in equilibrium.
This is guaranteed through the thermodynamic relation

� � � = �P , �5�

where P is the pressure tensor. This pressure tensor is defined
through the properties that it is equal to the bulk pressure in
the absence of density gradients P= p1= ����f���− f����1 and
through condition �5� in the interfacial areas �11�. With this
relation a uniform chemical potential is equivalent to a
divergence-free pressure tensor.

As an aside it is interesting to note that this statement is
more general than bulk thermodynamics. It can even be ap-
plied to finite systems with curved interfaces. An example is
an equilibrium drop that will have a constant chemical po-
tential, but the pressure inside the drop will differ from the
pressure outside by the Laplace pressure �p= �

� , where � is
the surface tension. Despite this difference in the pressures
inside and outside the drop, the divergence of the pressure
tensor vanishes everywhere. For such a system with a curved
interface the equilibrium liquid and gas densities will differ
slightly from the bulk thermodynamic values �12�.

The connection between bulk thermodynamics and the
equilibrium condition ���=�P=0 can be established by
considering a flat interface between the liquid and gas
phases. Assume that this interface is orthogonal to the x axis.
In this case �P=�xPxxex is just the derivative of a scalar
function. Therefore it follows from �P=0 that in the bulk
phase pl= pg. Therefore the solution of the differential equa-
tion �P=���=0 for a flat interface implies the standard
bulk thermodynamic equilibrium conditions �l=�g and pl
= pg.

Let us consider the condition ���=0 in some more de-
tail. For concreteness’ sake let us assume that I��� , . . . �
= �

2 ����2. We then obtain �=��f���−��2� and P= ����f���
− f���−���2�− �� /2�����2�1+�����. Then the differen-
tial equation for a single flat interface becomes

��x
3� = �x��f��� , �6�

subject to the boundary conditions that

lim
x→±�

�x� = 0. �7�

Because Eq. �6� is equivalent to both ��=0, and �P=0, the
limiting values for the density will be the equilibrium densi-
ties �g and �l. This conclusion, however, is independent of
the form of the interfacial energy term I��� ,�2� , . . . �, and as
long as the new differential equation has a solution that ful-

fills the boundary condition �7�, the limiting densities �g and
�l will be the same.

The important corollary of this argument is that while
there are many possible forms of the chemical potential and
corresponding pressure tensor that lead to the correct bulk
phase behavior, arbitrary derivative terms �which might arise
because of unintentional higher-order corrections to the nu-
merical method� will in general not be derivable from an
interfacial energy term I��� , . . . �. In such a situation the dif-
ferential equation �4� can lead to bulk densities that do not
correspond to the equilibrium densities. These situations are
the main concern of this paper.

III. LATTICE BOLTZMANN METHOD

The lattice Boltzmann method can be viewed as a dis-
cretization of the Boltzmann equation. And in the same way
that the Boltzmann equation describes a gas that at long
wavelength obeys the hydrodynamic equations, the same is
true for the lattice Boltzmann method. In the lattice Boltz-
mann method both the space and velocity space are dis-
cretized and the basic variables are the densities f i�x , t� asso-
ciated with the velocity vi. The hydrodynamic variables are
then the local density

��x,t� = �
i

f i�x,t� �8�

and the momentum

��x,t�u�x,t� = �
i

f i�x,t�vi. �9�

Most lattice Boltzmann methods do not conserve energy and
instead enforce a constant temperature. A remarkable model
that includes energy conservation for a fluid with an ideal gas
equation of state has recently been presented by Ansumali
and Karlin �13�. For fluids with a nonideal equation of state,
however, no satisfactory models have been developed to
date. One caveat is that u is not necessarily the local velocity,
as we will see below.

The evolution equation for a nonideal fluid can be written
as

f i�x + vi,t + 1� = f i�x,t� + Fi�x,t� +
1

	
�f i

0��� + Ai�x,t�

− f i�x,t�� . �10�

Here f i
0 is the equilibrium distribution for the ideal gas. The

Ai represent nonideal contributions to the pressure tensor �3�,
and Fi are contributions of an external force. The force can
also be used to mimic interactions in a mean-field manner.

In the lattice Boltzmann method the Navier-Stokes equa-
tions are not discretized directly; instead, the moments of the
equilibrium distribution as well as Ai and Fi are chosen such
that the momentum moment of a second-order expansion of
the lattice Boltzmann equation will give the desired Navier-
Stokes equation �3�. A dilemma occurs when the pressure
tensor itself contains second-order derivative terms since
these terms are formally higher than second order in the
Navier-Stokes equations. These terms are not consistently
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derived in standard lattice Boltzmann expansion techniques.
So the question arises: how can these terms be consis-

tently incorporated into a lattice Boltzmann method? One
may consider simply expanding the lattice Boltzmann equa-
tion to higher order, but this will lead to Burnett level equa-
tions, which is not the desired result. The reason that these
higher-order density derivatives appear in the Navier-Stokes
equation is because the density derivatives are not small near
an interface and these terms are responsible for the surface
tension.

It is difficult and rather cumbersome to extend the expan-
sion of the lattice Boltzmann equation to higher orders in a
general way. So instead we will consider an equilibrium �or
at least stationary state� interface instead and develop a
higher-order analysis for this situation. Doing so uncovers
the additional terms that lead to a lack of thermodynamic
consistency for forcing methods. Incorporating these terms
allows for thermodynamic consistency as will be discussed
below.

There are two expansion methods that are regularly used
to derive the hydrodynamic limit of the lattice Boltzmann
equations: they are referred to as the Taylor expansion and
the Chapman-Enskog methods. Up to second order the meth-
ods give identical results, but there is debate about the
equivalence of the two methods for higher-order results �14�.
In this paper we will utilize the first method.

To establish a starting point for a higher-order expansion
we will first present the standard second-order expansion. We
will then show how to choose the moments of f i

0, Ai, and Fi
to simulate a van der Waals gas.

IV. SECOND-ORDER EXPANSION

To obtain the hydrodynamic equations that govern the
evolution of the slow dynamics of the conserved quantities
we use a Taylor expansion of Eq. �10� to second order. As
usual we will only conserve mass, defined through the den-
sity �8� and momentum defined through �9�.

For this isothermal model, which does not include a con-
served energy moment, we require knowledge of the first
three velocity moments of the equilibrium distribution func-
tion. These are given by

�
i

f i
0 = � , �11�

�
i

f i
0�vi − u� = 0, �12�

�
i

f i
0�vi − u��vi − u� = �
1 , �13�

�
i

f i
0�vi� − u���vi� − u���vi
 − u
� = Q��
. �14�

Galilean invariance would require the third-order tensor Q to
vanish. In most standard lattice Boltzmann methods this term
does not vanish, however, because these models contain too
small a velocity set. For these models vix

3 =vix, which pre-

cludes the presence of the third power of u in the �i f i
0vix

3

moment. It also fixes the temperature to be 
= 1
3 . Therefore

most models have a Q term given by the third-order tensor
Q=�uuu. The effects of the Galilean invariance violation
caused by this term become noticeable only at large veloci-
ties u �15�.

The nonideal contributions from the Ai need to conserve
mass and momentum, and the moments are given by

�
i

Ai
0 = 0, �15�

�
i

Ai
0�vi − u� = 0, �16�

�
i

Ai
0�vi� − u���vi� − u�� = A��, �17�

�
i

Ai
0�vi� − u���vi� − u���vi
 − u
� = A��u
 + A�
u� + A�
u�.

�18�

The forcing term Fi needs to conserve mass; therefore,

�
i

Fi = 0. �19�

It also needs to change the momentum by an amount F;
therefore, we choose

�
i

Fi�vi − u� = F . �20�

The second moment of the forcing term is usually taken to be
zero, but we leave a general term � which we will use later
to contain a correction term:

� Fi�vi − u��vi − u� = � . �21�

At this point it is worthwhile to note that the distinction
between the A and � terms is somewhat artificial. Both
terms enter the lattice Boltzmann equation in the same way,
so that instead of �, we can insert the term A=	� and vice
versa. We distinguish between these terms to connect our
analysis to established methods. Pressure methods �3,9� only
use A and forcing methods �4,7,8,10,16� only F and �.

Now we need to derive the hydrodynamic limit of the
lattice Boltzmann equation �10� to link this method to the
hydrodynamic equations �2� and �3� which we want to simu-
late.

A. Hydrodynamic limit

While the Taylor expansion method is in principle well
known, we will present it here again because the higher-
order analysis presented later in this paper uses the results
and techniques of this approach. The main premise of the
Taylor expansion approach is that the distribution function
can be expressed by a Taylor expansion
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f i�x + vi�t,t + �t� = �
k

��t�k

k!
Dkfi�x,t� , �22�

where we have defined the derivative operator Di= ��t

+vi� �. For this expansion to be useful we must make the
assumption that derivatives are small. One could phrase the
same argument in terms of �t, but it will be convenient to set
�t=1 in Eq. �10�. To order our terms we will therefore use
the derivatives as a small parameter � so that O��n�=O��n�.
We obtain, for Eq. �10� to second order,

Difi +
1

2
Di

2f i + Fi + O�D3� =
1

	
� f̂ i

0 − f i� , �23�

where we have introduced f̂ i
0= f i

0+Ai. This relates nonlocal f i
to local f i and their derivatives. However, the f i remain un-

known and we only know the f̂ i
0 in terms of the macroscopic

quantities. We can use Eq. �23� to express f i in terms of the
equilibrium distribution and higher-order derivatives:

f i = f̂ i
0 − 	Fi − 	Difi + O��2� = f̂ i

0 − 	Fi − 	Di� f̂ i
0 − 	Fi�

+ O��2� . �24�

Using this approximation we can now express the lattice
Boltzmann equation purely as a differential equation in terms
of the equilibrium distribution and the collision term:

Fi + Di� f̂ i
0 − 	Fi� − �	 −

1

2
�Di

2� f̂ i
0 − 	Fi� =

1

	
� f̂ i

0 − f i� + O��3� .

�25�

Taking the zeroth-order velocity moment �i, Eq. �25�, we
obtain �borrowing the Euler level terms—i.e., the terms of
O���—of the momentum equation �29�� the continuity equa-
tion

�t� + ���u −
1

2
F� = O��3� . �26�

This leads us to identify the mean fluid velocity as

û = u −
1

2�
F . �27�

We then obtain the continuity equation

�t� + ���û� = O��3� . �28�

Taking the first-order velocity moment �ivi, Eq. �25�, we
obtain the Navier-Stokes level equation

��tû + �û · �û = − ���
 + A� + F + �� + �R + O��3� ,

�29�

where the Newtonian stress tensor � is given by

� = ����û + ��û�T� �30�

and unphysical terms have been collected in the remainder
tensor

R = 	� − 3��û � · A + �û � · A�T + û · �A1 + �Q� + O��2� .

�31�

The kinematic viscosity is given by �= �	− 1
2

�
. Note that
while we wrote û in Eqs. �30� and �31� it cannot be distin-
guished from u here because the forcing term is O��� and
therefore û=u+O���. We also note that most of the unphysi-
cal terms in Eq. �31� violate Galilean invariance �9,15�.

B. Forcing and pressure methods for the nonideal
gas

If we set both A and F to zero, we obtain the, Navier-
Stokes equation for an ideal gas. To obtain the Navier Stokes
equation for a nonideal gas previous research has identified
two different strategies. One option is to use the forcing term
to introduce the nonideal contribution to the equation of state
�4�. The form presented here was first presented in the el-
egant work of He et al. �7,8�. In this case, which we will
refer to as the forcing method, we define

F = − � · Pnid,

� = 0,

A = 0, �32�

where Pnid= P−n
1 is the nonideal part of the pressure ten-
sor. The second approach is based on the idea of including
the nonideal pressure in the second moment of the equilib-
rium distribution �3,9�. To do this we define

F = 0,

� = 0,

A = P − �
1 + ��û · �� + �û · ���T + û · ��
1� , �33�

where the � terms have been introduced by Holdych et al. �9�
and later by Inamuro et al. �17�. To do this we have to use
the near-equilibrium approximation of A=−�
+O���, as dis-
cussed by Kalarakis �18�.

Up to second order in the derivatives both of these ap-
proaches lead to the same hydrodynamic equations

�t� + ���û� = 0, �34�

��tû + �û · �û = − �P + �� . �35�

For the van der Waals pressure for a critical density of 1
and a temperature 
= 1

3 the pressure tensor is given by

P = � �

3 − �
−

9

8
�2
c�1 . �36�

Using this pressure for the two methods we observe phase
separation below the critical temperature as shown in Fig. 1.
There are, however, a number of peculiarities.

Let us first discuss the results for the pressure method.
There is no unique solution. Three different profiles for the
pressure method are shown in Fig. 1�a�. All of them are
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stable solutions which are stable against small perturbations.
Also the density profiles are sharp, switching from the liquid
to the gas density in only one lattice spacing. These profiles
correspond to a constant-pressure profile �Fig. 1�b��, which is
exact to machine accuracy. The chemical potential profiles,
however, are vastly different as shown in Fig. 1�c�. Only the
middle profile corresponds to a constant chemical potential
and therefore to the thermodynamic equilibrium. In Fig. 1�d�
we show the phase diagrams. Only in the white area in this
diagram can liquid and gas phases have equal pressures. We
show the results of simulations which are initialized with a
near-constant pressure in the gas and liquid phases. The �
triangles correspond to simulations initialized with the low-
est possible constant pressure, and the � triangles correspond
to simulations initialized with the highest possible constant
pressure. All these simulations are stable to small perturba-
tions. It appears that all states with equal pressures, including
but not limited to the true equilibrium state, are stable solu-
tions.

The forcing method leads to a unique profile which has an
interface extending over several lattice spacings. The bulk
pressures of the liquid and gas phases agree, but there are
variations of the pressure �36� around the interface in Fig.
1�b�. The bulk values of the chemical potential, however, are
not equal. It is therefore not surprising that the phase dia-
gram differs from the true equilibrium profile as shown in
Fig. 1�d�.

To understand these results let us recall that expression for
the pressure, Eq. �36�, does not contain any gradient terms.
This corresponds to I��� ,�2� , . . . �=0 in the expression for
the free energy, Eq. �1�. This means that we have not input

any interfacial free energy contributions, and we therefore
expect a sharp interface. But without interfacial contributions
the differential equation �P=0 is no longer a differential
equation. Instead this only requires that the pressure for both
phases be the same, pl= pg. Any such pressures will fulfill
�P=0, as shown in Fig. 1�b�. In this figure numerical solu-
tions at the maximum and minimum of the coexistence liquid
and gas pressures as well as the true equilibrium pressure are
shown. Only for the true equilibrium densities will �l=�g be
true as can be seen in Fig. 1�c�. So clearly �P=��� is no
longer generally valid. There is no guarantee that a system
without interfacial energy obeying the dynamic equations �2�
and �3� will move towards true equilibrium. This explains
why the pressure method, which leads to the expected sharp
interface, can fail to recover the equilibrium densities.

This, however, is not enough to understand the stability of
the interfaces to small perturbations. To change the liquid
and gas densities it is in general necessary to move the in-
terface. Because the method leads to a sharp interface, mov-
ing this interface will lead to states that have one lattice point
with a density between the gas and liquid densities. If the gas
density is slightly increased, the pressure will also increase,
favoring a return to the original density. Likewise, if at one
point the liquid density is reduced, this will lead to a lower
pressure inducing the return to the original density commen-
surate with the surrounding pressure. So the stability of these
nonequilibrium structures occurs because moving an inter-
face requires different discretizations of the interface. And
these discretizations lead to position-dependent pressures
which counteract the movement of the interface.

The results shown in Fig. 1 are at a mean velocity of zero.
The situation changes when a mean velocity is added to the

FIG. 1. �Color online� Comparison of the profile �a� and the phase diagram �b� for the van der Waals pressure of Eq. �36� obtained by
the forcing method of Eq. �32� with the pressure method from Eq. �33�. There is no unique solution to the pressure method. The unique
solution of the forcing method is not in agreement with the theoretical phase diagram. The critical temperature used in �a�–�c� was 
c

=0.37 at a temperature of 
=1/3. In �d� no liquid-gas phase boundaries can lie outside the white area and still have equal pressures for the
liquid and gas phase.
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system. In these cases we do not find advected stationary
solutions, but instead large oscillations are observed for
sharp interfaces. This violation of Galilean invariance is re-
moved by increasing the width of the interface, as shown in
�15�.

In the case of the forcing method the situation is more
complicated. The forcing method leads to a unique extended
interface as shown in Fig. 1�a�. Since we do not obtain a
sharp interface, the pressure P of Eq. �36� is not constant, as
seen in Fig. 1�b�. Therefore higher-order gradient terms must
be present in the pressure for this lattice Boltzmann method.
These gradient terms arise because of higher-order terms in
the lattice Boltzmann method that were not picked up by our
second-order expansion. The bulk values of the pressure in
Fig. 1�b� are the same for the liquid and gas phases as is to
be expected from the condition of mechanical equilibrium.
The same, however, is not true for the chemical potential in
Fig. 1�c�. Because the bulk values of the chemical potential
are not the same, the densities also do not correspond to their
equilibrium values.

For the pressure method there are two potential remedies
for us to recover the equilibrium bulk densities for the liquid
and gas phases. The most obvious one, in light of the present
discussion, is to explicitly include the correct gradient terms
in the pressure, and we will follow that route below. A sec-
ond potential remedy lies in including fluctuation terms in
the Navier-Stokes equations. Incorporating equilibrium fluc-
tuations allows the interfaces to move and to select the cor-
rect equilibrium bulk densities for the pressure method. This
approach, however, is outside the scope of the current paper.

While derivatives in the pressure tensor are not consistent
with the second-order expansion, it appears reasonable to
include the full derivative terms in the pressure tensor. This
is indeed what was done in the original pressure method �3�,
and since the numerical simulations do not indicate the pres-
ence of any spurious interfacial terms, it is not surprising that
this approach is successful for the pressure algorithm.

The usefulness of including the full gradient terms in the
pressure tensor is less obvious for the forcing method where
there are clearly already significant, spurious interfacial
terms present that lead to an extended interface.

So we will now replace Eq. �36� with

P = 	 �

3 − �
−

9

8
�2
c − ����2� +

1

2
� � · ���
1 + � � � � � .

�37�

For a numerical implementation the gradient and Laplace
operator have to be replaced by discrete versions. This is
problematic because it will in general break the relation
�P=��� and, thereby, also the exact thermodynamic con-
sistency. For interfaces that are wide enough, though, this
relation will still hold to good approximation. We have not
yet been able to identify a discrete derivative operator and an
expression for the pressure that preserves �DP=��D�. Such
an expression could guarantee that a constant pressure is ex-
actly equivalent to a constant chemical potential, and there-
fore it would exactly recover equilibrium thermodynamics.

For the simulations presented in this paper we require the
one-dimensional discrete gradient and Laplace operator. We
use the discretization

��D�f�x� =
1

2
�f�x + 1� − f�x − 1�� , �38�

�2�D�f�x� = f�x + 1� − 2f�x� + f�x − 1� . �39�

For �=0 expression �37� leads to Eq. �36�. But for finite �
we now expect to find an extended interface for the pressure
method. We also expect that a constant pressure will now
reduce the difference in the chemical potential for the two
phases. The results are shown in Fig. 2.

For a sufficiently large interfacial energy contribution of
�=0.1 there is now a unique solution for the pressure
method. This solution also agrees very well with the analyti-
cal phase diagram. We find that the pressure is constant up to
machine accuracy and the chemical potential is very nearly
constant. In particular the deviation in the bulk value of the
chemical potential in the gas and liquid phases is less than
3�10−4.

FIG. 2. �Color online� The phase behavior for a liquid gas sys-
tem when the explicit interfacial energy is included. For this set of
simulations we used �=0.1 in the expression for the pressure, Eq.
�37�. All other parameters are the same as for Fig. 1.
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In the continuous situation the nondefiniteness of the sta-
tionary state is limited strictly to �=0. For a discrete ap-
proach �DP=��D� is not generally valid, and therefore it is
not a priori clear that an arbitrarily small interfacial term in
the pressure will guarantee a convergence to the equilibrium
solution. As we have seen before it is not even guaranteed
that it will converge to a unique solution. We therefore per-
formed a set of simulations for different values of � from 0
to 0.1 with initial conditions that correspond to extreme val-
ues of the equal pressure as well as the equilibrium solution.
The simulation results are shown in Fig. 3. We see that nonu-
niqueness survives for finite �. The range of possible pres-
sures is rapidly reduced until a near-unique solution is found
at � larger than about 0.08.

The origin of this nonuniqueness even in the presence of
an interfacial energy lies in the discretization of the interface.
Moving the interface over the lattice requires a re-
discretization of the interface. Each of these discretizations
will have a different interfacial free energy �i�� /2�����2. To
visualize this imagine a sharp interface of Fig. 1�a�. This
interface has only two points with nonvanishing gradient and
Laplace operators. If this interface moves, there will have to
be at least one point with intermediate value of � and now
there are at least three points with nonvanishing gradient and
Laplace terms. Therefore moving the interface will change
the total free energy. Mass conservation generally implies
that changing the liquid and gas densities requires changing
the relative gas and liquid volumina. Therefore changing the
densities requires that the interfaces move. But if moving the
interface requires passing a local maximum in the free en-
ergy, this implies that the system is at least in a metastable
state. And a lattice Boltzmann method without fluctuations
cannot escape such a metastable state. So to move an inter-
face that is well aligned with the lattice one has to overcome
a free energy barrier with respect to the less favorable dis-
cretization of the interface and the simulation can get stuck
in a nonequilibrium configuration.

The forcing method is also noticeably improved through
the inclusion of the gradient terms. The difference in the bulk
chemical potential is about halved from 0.03 to 0.015. This is
still about 50 times larger than the difference for the pressure
method. This difference in the chemical potential translates
to a deviation of the liquid and gas densities from their equi-

librium values. This can be clearly seen in Fig. 2�d�. In order
to understand the origin of the large deviations of the forcing
method from the thermodynamic equilibrium we need to un-
cover the spurious gradient terms in the effective pressure.
To do this we need to improve our expansion method to
consistently derive those derivative terms.

V. HIGHER-ORDER NEAR-EQUILIBRIUM EXPANSION

To identify the higher-order terms of the equilibrium
structure we perform a fifth-order expansion around an equi-
librium profile which is stationary, but possibly advected
with a constant velocity U. As before we make the assump-
tion that derivatives are small �O���=O����. From Eq. �29�
we already know that O�F�=O���=O���. To avoid obtaining
too many terms we will limit our analysis here to small ve-
locities, so we also postulate O�U�=O���. Note that since we
will only neglect terms of order O��5�, we will not lose any
of the terms present in the lower-order expansion, with the
single exception of the �2Q term in Eq. �30�.

Performing a Taylor expansion to fifth order in the deriva-

tives of Eq. �10� and expressing the f i in terms of f̂ i
0= f i

0

+Ai we obtain

Fi + D� f̂ i
o − 	Fi� − �	 −

1

2
�D2� f̂ i

0 − 	Fi� + �	2 − 	 +
1

6
�

�D3� f̂ i
0 − 	Fi� − �	3 −

3

2
	2 +

7

12
	 −

1

24
�D4 f̂ i

0 + O��5�

=
1

	
� f̂ i

0 − f i� , �40�

which is the extension of Eq. �25� to two more orders. Here
the derivative operator is

D � �t + vi · � . �41�

For a stationary profile, advected with velocity U, we
have the operator identity

�t + U · � = 0. �42�

This simplifies the derivative operator

D = �vi − U� · � . �43�

We now need to take the zeroth- and first-order moments of
this expression to obtain the expressions for the continuity
and Navier-Stokes level equations in the stationary advected
limit. The expectation is that the continuity equation takes
the form

���û − �U� = O��5� , �44�

and the Navier-Stokes level equation will become

��P� = O��5� . �45�

This then allows us to identify the effective mean fluid ve-
locity û to fifth order and the effective pressure tensor P also
to fifth order. It is highly desirable, although far from obvi-
ous, that these quantities be independent of the relaxation

FIG. 3. �Color online� Convergence of the pressure in the two-
phase system for different initial conditions for 
=0.37. A unique
solution is only found for large enough values of �. For a detailed
discussion of this effect see the main text.
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time 	. Otherwise, the equilibrium properties would be
coupled to the transport coefficients.

This task is cumbersome since it involves up to fifth-order
velocity moments of the equilibrium distribution function.
We will restrict ourselves here to the analysis of a projection
of the most common models �D2Q7, D2Q9, D3Q15, D3Q19,
and D3Q27� to one dimension. This projection is the D1Q3
model, a one-dimensional model with three velocities. It is
important to note that this analysis is entirely sufficient to
determine the phase behavior of all the above models. The
only issue not addressed by this analysis is the isotropy of
the models. One caveat is that this analysis will only be able
to make statements of the equilibrium behavior of the
method, not about the approach to equilibrium.

A. Analysis of the D1Q3 model

The D1Q3 model is a one-dimensional lattice Boltzmann
model with three velocities: vi= �−1,0 ,1
. In this model
there are only three distinct velocity moments at each lattice
point, corresponding to the three densities f i. The moments
of the equilibrium density are

�
i

� f̂ i
0 + Ai� = �, �

i

� f̂ i
0 + Ai�vi = �u ,

�
i

f̂ i
0vi

2 = �uu +
�

3
+ A . �46�

Because vi
3=vi ,vi

4=vi
2, etc., all higher-order velocity mo-

ments are given by these first three moments. The three mo-
ments of the forcing term are given by

�
i

Fi = 0, �
i

Fivi = F, �
i

Fivi
2 = 2Fu + � . �47�

The higher-order moments are similarly given by these first
three moments.

The algebra involved in calculating the higher moments is
quite extensive, so I will only outline the method here with-
out giving lengthy intermediate results. Summing �i, Eq.
�40�, gives an expression for the continuity involving all mo-

ments of f̂ i
0 and Fi. Similarly we obtain such an expression

containing all moments by summing �i, Eq. �40�, vi to obtain
the momentum equation. We can then use the momentum
equation to express A in terms of the other moments and
higher-order derivatives of A. Then we insert this expression
repeatedly into itself �similarly to what we did for Eq. �24��
to express A completely in terms of the other moments and
their derivatives.

This expression for A is then used to eliminate any A
dependence in the continuity equation. We then use the re-
sulting continuity equation to express u in terms of the other
moments and higher-order derivatives of u. This expression
for u is then inserted for all but the lowest-order derivatives
of u of the continuity equation. The resulting continuity
equation has the form

���u −
1

2
F − �U� −

1

4
� �	FU +

1

3
� ��U�
 = O��5� ,

�48�

which only contains one term of u and no terms with A. We
use this version of the continuity equation to express u in
terms of U, �, and F and replace all occurrences of u in the
momentum equation. We then remove all but the lowest-
order occurrences of A in the momentum equation and obtain

F + �	�

3
+ A − �	 −

1

2
��3FU + ���U�� +

1

4�
FF +

1

12
� F

− 	�FF

�
+ ��
 = O��5� . �49�

Now we apply these results to our pressure and forcing meth-
ods.

B. Pressure method

For the pressure method we use the moments defined in
Eq. �33� and obtain, for the continuity equation,

���u − �U� − ��	 1

12
� ��U�
 = O��5� . �50�

Comparing this to Eq. �44� we see that the mean fluid veloc-
ity is

û =
u

1 +
1

12

�2�

�

. �51�

The gradient term is a new correction for the measurement of
the velocity for the pressure method. For the momentum
equation we obtain

�P = O��5� . �52�

There are no additional pressure terms for the pressure
method, which is consistent with the fact that we found a
constant input pressure for simulations with the pressure
method in Figs. 1�b� and 2�b�.

To test the correction for the velocity predicted in Eq. �51�
we have to consider a situation in which U is not zero. We
set up a profile that is initiated with a velocity of U=0.01. In
Fig. 4�a� we plot both the standard velocity u from Eq. �9�
and our approximation of the true fluid velocity û from Eq.
�51�. First we note that the gas phase is advected faster than
the liquid phase, which is a problem of Galilean invariance
�15�. The gas is advected faster than the liquid, and a con-
stant evaporation on the leading edge of the droplet and a
condensation at the trailing interface of the liquid lead to a
mean interface velocity that is less than the imposed mean
fluid velocity of 0.01. This evaporation and condensation
lead to an additional velocity � of the interface. For such an
interface velocity we have an additional contribution to the
change of the density, the rate of evaporation given by
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��t + U · ��� = − � · �� = ����U − û�� . �53�

So to compare the original definition of û from Eq. �27� with
the corrected definition of Eq. �51� we plot ����û−U� for the
two definitions of û and ��� in Fig. 4�b�. We see that the
corrected version of the velocity allows a very good fit with
the theoretical expression. The best fit for � is −0.0002 which
corresponds to a 2% correction for the observed domain ve-
locity.

While the Galilean invariance violations are small, in this
case it is still worthwhile to correct the Galilean invariance
violations of the lattice Boltzmann method. To do that we
need an expansion that does not make the assumption u
=O���. This investigation of higher-order Galilean invari-
ance violations will be reported elsewhere.

C. Forcing method

For the forcing method �32� we obtain the continuity
equation

���u −
1

2
F − U� = O��5� . �54�

This implies that the mean fluid velocity is given by û=�u
−F /2, in agreement with the lower-order expression �27�.

There are no further corrections to the velocity for the forc-
ing method to this level of approximation.

To evaluate the higher-order terms for the pressure in Eq.
�49� we need to insert the specific form of the force. We have

�F = �DPnid = �
k=0

�
�2k+1

�2k + 1�!
Pnid. �55�

With this expression for F the momentum equation becomes

�	P − �	 −
1

4
�FF

�
+

1

4
�2F
 = O��5� , �56�

where we have again expressed some of the higher-order
contributions in terms of the force. We conclude that the
effective pressure is given by

Pef f = P − �	 −
1

4
�FF

�
+

1

4
�2F + O��4� . �57�

This explains why the input pressure is not constant for the
current forcing method. To verify this analytical result we
can plot both the input pressure P and the predicted effective
pressure Pef f for a phase-separated stationary profile ob-
tained from the forcing version of the lattice Boltzmann
simulation. The result is shown in Fig. 5.

Somewhat surprisingly, the pressure Pef f is not simply a
fifth-order approximation to the true pressure. Instead, for
U=0, this gives a pressure that is constant to machine accu-
racy. To be exact what is constant is the discretization

Pef f = P − �	 −
1

4
�FF

�
+

1

4
�2�D�P −

1

12
�2�D�� . �58�

This is, presumably, due to the fact that the higher-order
moments are just repeats of the lower-order moments and
this allows the higher-order moments to consist of higher-
order derivatives of the lower-order moments. Unfortunately
this exact solution no longer holds if U�0, because the
higher-order moments contain higher powers of U. The fact
that we know an exact pressure that we minimize may prove

FIG. 4. �Color online� Comparison of the expression for the
mean fluid velocity from original definition �9� and the corrected
version �51� for the pressure method in �a�. The system was initial-
ized with a constant velocity of U=0.01. While the correction term
clearly removes some spurious velocity terms, there is a more no-
ticeable violation of Galilean invariance which advects the gas
phase faster than the liquid phase with respect to the lattice. In �b�
we compare the measured expression for the evaporation ����U
− û�� for the original and corrected expressions for û and compare it
with the theoretical one of ��� for �=−0.0002. This simulation
was performed with 
c=0.35, 
=1/3, and �=0.1.

FIG. 5. �Color online� Comparison of the input pressure P from
Eq. �37� and the effective pressure Pef f of Eq. �57� for the forcing
method for two values of �. We see that the effective pressure Pef f

is constant to machine accuracy in both cases. This agreement is
better than expected since expansion predicted this pressure only up
to fifth order. The critical temperature for this simulation is 
c

=0.37 at 
=1/3 so that the true equilibrium pressure is 0.09.

THERMODYNAMIC CONSISTENCY OF LIQUID-GAS… PHYSICAL REVIEW E 74, 056703 �2006�

056703-9



to be very useful for diffusive systems, though, for which we
have U=0.

This may also open the door for an important application
of mimetic calculus. If we were able to find some discrete
gradient operators �� for which ��P=���� holds, we would
be able to devise a method that always recovers the correct
equilibrium behavior.

D. Forcing method

Now that we have identified the effective pressure Pef f

that is constant in the steady state we can identify a method
that will have a constant input pressure P. Investigating Eqs.
�48� and �49� we can identify a choice of � that will allow us
to cancel the additional pressure terms due to the force. We
can amend the original forcing method �32� with

	� = �	 −
1

4
�FF

�
+

1

12
����D� . �59�

We then obtain the continuity equation

���u −
1

2
F − U� = O��5� �60�

and the momentum equation

�P = O��5� . �61�

The choice of � is not unique regarding the exact choice of
the correction terms. We could replace ����D� with −3�DF
and still remain correct up to O��5�. However, the above
choice again leads to a pressure that is constant up to ma-
chine accuracy for U=0, just as we did with the pressure
method.

A comparison of the pressure method and the corrected
forcing method is shown in Fig. 6. The new forcing method
is nearly indistinguishable from the pressure method. One
small difference between the two methods is that an alternat-
ing pattern in the pressure does not lead to a force and,
therefore, does not decay. In the simulation shown in Fig. 6
those pressure oscillations have an amplitude of about 10−5.
However, in some simulations these oscillations can become
large. Also for large velocities these oscillations can become
unstable and make this method less stable than the pressure
method at larger velocities.

Because the pressure and chemical potential depend only
on the profile ��x� the new forcing method gives the same
constant pressure and near-constant chemical potential as the
pressure method shown in Fig. 2. This forcing method is
therefore thermodynamically consistent. It also recovers the
analytical phase diagram, as shown in Fig. 8, below.

We also examined the behavior of the forcing method in
the limit where �→0. This limit may appear tricky because
the correction terms need to cancel the numerical derivatives
we uncovered in the expansion. This should uncover any
higher-order terms that we missed in our expansion. We find,
however, that the method described here will even recover
the sharp interfaces we observed for the pressure method.
The nonuniqueness of the solutions which we found for the
pressure method is also observed for the pressure method.
The recovery of a unique solution for larger values of �
occurs at the same pace as for the pressure method. This is
shown in Fig. 7. This surprising result is due to the fact that
the pressure P is exactly constant for both methods.

VI. DISCUSSION

In this paper we have shown that forcing terms lead to
non-negligible higher-order terms for systems with large
density gradients. We introduced an equilibrium analysis
method, which allowed us to identify correction terms up to
fifth order. This equilibrium analysis allowed us to identified
those correction terms. This analysis gave the exact pressure
for systems that are not advected with respect to the lattice.

FIG. 6. �Color online� The performance of the corrected forcing
method gives results that are identical to the results of the pressure
method. The interfaces correspond exactly. Therefore the pressures
and the chemical potentials also agree. Simulation parameters are

c=0.37, 
=1/3, and �=0.1.

FIG. 7. �Color online� The pressure and the new forcing meth-
ods give equivalent results. We see that the phase diagram for �
=0 even reproduces the nonuniqueness of the solutions. The recov-
ery of a universal profile also occurs at the same pace in the forcing
and pressure methods derived in this paper, as shown in �b�.
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Correction terms similar to, but different from, the correc-
tion terms we identified have been proposed by Guo et al.
�16�. Their analysis leads them to conclude that for a body
force we should choose �in the notation of this paper�

	� = �	 −
1

2
��FF . �62�

Comparing this to Eq. �59� we find that this term is different
in that we predict a factor of 1 /4 instead of 1/2 as well as an
additional double-derivative term of �. The correction term
�62� was derived using a multiscale analysis to second order.
We did not understand how these terms could be consistently
derived with a second-order expansion. In a Taylor expan-
sion the term ���FF� appears only as a third-order term. It is
likely that a second-order expansion would not pick up the
��2� term. If this expansion can pick up the �FF term in �
consistently, however, there cannot be a difference in the
prefactor of this term when it is derived by a Taylor expan-
sion method.

It is therefore important to compare the correction term
predicted in �16� to our correction term � of Eq. �59�. We
implemented the correction term �62�. We then performed
simulations with pressure �36� which does not include inter-
facial terms. We would therefore expect a sharp interface. We
do, however, observe that this method leads to an extended
interface, indicating that there are additional gradient terms
in the pressure not accounted for by the Navier-Stokes equa-
tion derived by Guo et al. ��16�, Eq. 18b�

We also measured the phase diagram for the original forc-
ing method, the corrections proposed by Guo, and the new
forcing method. The results are shown in Fig. 8. We see that
the correction introduced by Guo et al. improves the result
for the forcing method somewhat. However, there is still no
good agreement with the theoretical phase diagram. This is,
however, achieved by the correction derived in this paper
when we include additional gradient terms in the pressure
tensor �37�. This suggests that the prefactor derived in the
current work is correct.

There is a long-standing discussion about the suitability of
pressure methods for the simulation of nonideal fluids �8,10�.
The criticism relies on the general argument that there should
be a close correspondence between the lattice Boltzmann
equation and kinetic theory. At this level it is a somewhat
philosophical argument. And this philosophical argument is
weakened by the occurrence of lattice correction terms that
have no analogy in kinetic theory. A more useful test should
be the ability of the forcing and pressure methods to recover

correct solutions in a robust and stable manner. As far as the
recovery of equilibrium solutions is concerned, we find that
there is no fundamental difference in the suitability of in-
cluding nonlinear pressure terms into a lattice Boltzmann
method through a forcing term or a pressure term.

As a next step in this analysis we need to compare the
performance of the different methods under Galilean trans-
formations. To uncover any terms that have not been previ-
ously discussed �15� requires us to drop the assumption of
small velocities in our fifth-order expansion. Those results
will be published elsewhere.

To truly distinguish between the two approaches, how-
ever, the analysis of dynamic solutions is required. There are
very few tests in the literature of nonstationary solution for
liquid-gas lattice Boltzmann simulations. But such tests will
be required to compare the differences between pressure and
forcing approaches. Examples of such simulations include
advected fluids undergoing phase separations. For density
small compared to the equilibrium densities analytical solu-
tions exist for ��x , t�.

In closing we want to point out that the corrections for the
forcing method for phase-separated systems do also apply
for external forces. The same additional pressure terms that
we identified in Eq. �58� also occur when a truly external
force acts on the system. This is particularly important to
keep in mind when simulating liquid-gas systems in the pres-
ence of gravity.
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