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Three-dimensional monochromatic optical beams of uniform polarization interacting with a planar boundary
between two homogeneous, isotropic, and lossless media are analyzed. Generalized Fresnel transmission and
reflection coefficients for beam spectra are given. Interrelations induced by cross-polarization coupling be-
tween beam profile and phase and beam polarization, or between spin and orbital angular momentum of beams
are derived. Beam transmission for normal incidence is discussed in detail. It is shown that elegant Hermite-
Gaussian beams of linear polarization and Laguerre-Gaussian beams of circular polarization, all projected on
the interface, are normal modes at this interface. Creation and annihilation of these modes at the interface are
shown with total angular momentum being conserved on a single photon level.
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I. INTRODUCTION

There are two basic families of three-dimensional �3D�
solutions of the paraxial wave equation—Hermite-Gaussian
�HG� beams of rectangular symmetry and Laguerre-Gaussian
�LG� beams of cylindrical symmetry. Both of them form two
separate, complete, orthogonal, infinite-dimensional bases
for any paraxial beam field with its transverse distribution
represented by a square integrated function. In particular, any
HG beam can be expressed by a linear combination of LG
beams and vice versa �1�. There are also two basic two-
dimensional �2D� bases for beam polarization—linear, with
transverse magnetic �TM� and transverse electric �TE� states,
and circular, with right-handed �CR� and left-handed �CL�
states. Any linear state of beam polarization can be repre-
sented by a linear combination of circular states and vice
versa �2�.

Transformations of beam spatial structure and beam po-
larization are usually implemented optically by astigmatic
mode converters and birefrigent plates, respectively �3�.
Equivalence of their action is similar to the same extent as
analogies between orbital angular momentum �OAM�, asso-
ciated with helical phase fronts of beams, and spin angular
momentum �SAM�, associated with circular polarization of
beams �4�. This paper deals with such transformations pro-
duced by interaction of 3D beams with planar discontinuity
�interface� between two optically transparent semi-infinite
media and with interrelations between OAM and SAM that
appear as a result of this process.

Spatial profile of the beam intensity and phase of a 3D
paraxial beam is independent of beam polarization during
propagation in a homogeneous, isotropic, and lossless me-
dium. However, when the beam is incident on a planar dis-
continuity of medium parameters, its spatial structure and
polarization become interrelated. These interrelations result
from the action of cross-polarization coupling �XPC� that
occurs for incidence of beams of finite cross sections �5�.
They cannot be explained only with the help of the standard
Fresnel transmission and reflection coefficients, well known

for 2D plane wave incidence. Their generalization to the 3D
case appears necessary to deal properly with the beam-
interface interactions.

Behavior of beams at medium planar interfaces has been
under intense studies for many decades �2,6�, and recently,
also in the context of several aspects of singular optics �7�.
Spatial shifts and deformations of a 3D beam spatial struc-
ture have been attracting attention as well �8–10�. This issue,
however, remains outside the scope of this contribution. The
analysis, although being valid for general incidence of arbi-
trary beams, will be concentrated mainly on the case of nor-
mal incidence of the symmetric HG and LG beams. Such a
case can be treated exactly, without the need of resorting to
the approximate notions of beam shifts and deformations.

The beams will be considered narrow, with a beam radius
of the order of one wavelength at a beam waist. Beam polar-
ization and shape coupling will be defined in a spectral or
momentum domain for arbitrary distribution of beam field
magnitude, phase, and polarization. In a spatial or direct do-
main specific cases of the higher-order HG beams of linear
TM/TE uniform polarization and LG beams of circular
CR/CL uniform polarization will be analyzed in detail. These
sets of HG and LG beams will be considered in their bior-
thogonal versions of complex arguments, known as complex-
valued or “elegant” �EHG� and �ELG� beams, respectively
�11–13�. Moreover, their commonly known definitions will
be further modified by their projection at the interface plane.
It appears that such an elegant form of the projected HG and
LG transmitted and reflected beam modes is naturally en-
forced by the interface being illuminated by an arbitrary in-
cident 3D beam. The same process specifies uniquely the
coupling between SAM and OAM of circularly polarized
ELG beams. These phenomena will be traced here step by
step by exact derivation of analytical expressions for the
beam field spectral components.

Characteristic features of OAM of LG beams are well
known �14�. Let us only mention that, due to the beam sym-
metry, an average of their transverse momentum is zero and
their �mean� OAM, averaged over the total beam field, is
intrinsic with respect to their beam axes �15�. On the other
hand, the projected ELG beams introduced in this paper are
defined with respect to a normal to the interface, not with
respect to their beam axes. Therefore, OAM of the projected*Electronic address: wnasal@ippt.gov.pl
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ELG beams is extrinsic for oblique incidence of beams and
intrinsic for their normal incidence. Mainly the latter, intrin-
sic case of beam incidence is discussed in this paper. Note,
however, that contrary to the averaged OAM of LG beams,
densities of their OAM depend on position of the axis about
which they are measured. That means that OAM density of a
LG beam reveals a quasi-intrinsic character of averaged
OAM of this beam �16� and that the “intrinsic” and “extrin-
sic” cases of the beam incidence are interrelated.

Both spin and orbital parts of beam total angular momen-
tum �TAM� attain considerable attention recently due to their
possible applications as carriers of information on classical
and quantum levels �17–20�. The spin or polarization part
can be described in the 2D basis of circular polarization and
provides a physical realization of a qubit. The orbital part,
usually associated with beam helical wave fronts, has an in-
finite number of eigenstates and thus may serve as a suitable
mean for encoding information in quNits in an
N-dimensional space, with N restricted only by a finite aper-
ture of an optical system. Both HG and LG beams may be
used in these processes as they are interrelated uniquely by
HG-LG mode converters �1,3�.

Optical coding of information needs sorting beam modes
or single photons on the basis on SAM, OAM, and/or TAM.
It can be accomplished by interferometric methods capable
measuring angular momentum by rotating devices build from
prisms, cylindrical lenses, half-wave plates, or other types of
phase shifters �21�. It would be interesting to see also appli-
cation of layered optical structures, composed only of several
layers and interfaces, in these processes. This contribution
may be regarded as a preliminary step toward such applica-
tions. A solution to the problem at hand may appear also
useful in analyzing phenomena of transfer of the angular and
linear momentum of light beams to a dielectric material
�22,23�. Nevertheless, discussion on other, more direct appli-
cations, for example, within the range of optical visualization
or near-field optics, is out of the scope of this work.

In Sec. II, theoretical analysis of 3D beams in a spectral
domain leads to generalization of the standard, p and s,
Fresnel coefficients. That summarizes results derived by the
author in the past in another context �5,24,25� still given for
arbitrary beam profile, phase, and polarization. In Sec. III,
decomposition of beam transmission and reflection into parts
characteristic to normal and critical incidence of total inter-
nal reflection �TIR� will be presented, together with distinct
properties of their transmission and reflection partial coeffi-
cients. Beam field redistribution between opposite orthogo-
nal polarization TM and TE or CR and CL components will
be exactly derived in a spectral domain.

Transmission of the projected elegant higher-order HG
and LG beams of uniform polarization, incident at normal
incidence upon the interface will be analyzed in a spatial
domain in Sec. IV. Theoretical results will be illuminated by
numerical simulations. The beam mode conversion through
the XPC effect at the interface will be described in detail.
Definitions of beam normal modes at the interface will be
given. Coupling between OAM and SAM of beams at the
interface will be explained in Sec. V in terms of a conserva-
tion principle of their TAM. It will be shown that the analysis

accounts this principle on both macroscopic and single pho-
ton levels. Conclusions close the paper in Sec. VI.

II. ACTION OF THE INTERFACE
IN A SPECTRAL DOMAIN

Spectral components of 3D beams at the interface are de-
fined in three local reference frames Oxpyszk, each one for
the incident �b= i�, reflected �b=r�, and transmitted �b= t�
beams �5�. These three frames are defined for separate spec-
tral �plane-wave� components of the beams. The total field of
the beams is defined in frames Oxyz, one frame for each
beam. There is also an interface frame OXYZ, for the total
field of all three beams at the interface, here placed at the
plane Z=0. The zk axes indicate propagation directions of the
plane waves, the z axes coincide with the propagation direc-
tions of the beams, and the Z axis is normal to the interface.
Geometry of the problem is outlined in Fig. 1.

The plane xp−zk is the local incidence plane and the
planes x−z or X−Z define the beam or main incidence plane
�5�. There are also three transverse planes: the local trans-
verse plane xp−ys, for one spectral beam field component,
the beam transverse plane x−y, for the total beam field, and
the interface plane X−Y, transverse to the normal êZ to the
interface. For normal incidence the beam transverse plane
x−y coincides with the interface plane X−Y. For oblique
incidence the z-axis makes with the Z axis an incidence angle
��i� of the incident beam.

In the local reference frames Oxpyszk, one transverse spec-

tral component Ẽ�b� of the beam field is given by the scalar

multiplication ê�p,s�Ẽ�p,s�
�b� of beam polarization ê�p,s�= �êp , ê�s�

and field amplitude Ẽ�p,s�
�b� = �Ẽp

�b� , Ẽs
�b��T vectors; T means

transpose. The amplitude vector is composed of p and s field

components Ẽp
�b� and Ẽs

�b� in the local transverse plane xp
−ys. A pair of the unit vectors—êp placed in this plane and ês
orthogonal to this plane—spans the local 2D polarization

FIG. 1. Interface OXYZ and beam Oxyz reference frames
for transmission and reflection viewed in a beam plane of incidence
X−Z; local frames Oxpyszk are given by rotation of the plane
X−Z by an azimuthal angle � around the axis Z. Beam waists are
placed in centers of beam frames, incidence of internal reflection is
assumed.
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space transverse to the wave vector k�b�= �k� ,kZ
�b�� of one

spectral field component �5�.
The Fresnel transmission and reflection coefficients, gen-

eralized to the case of beams with finite cross sections, have
been exactly derived in the beam frames Oxyz �25�. How-
ever, the beam-interface interactions are more conveniently
described in the interface reference frame OXYZ �24�. In this
frame, the transverse k�; k�

2 =kX
2 +kY

2, and longitudinal kZ
�b�;

�kZ
�b��2= �k�b��2−k�

2 , components of k� �b� determine, through
k�=k�b� sin ��b�, kX=k� cos � and kY =k� sin �, the polar
��b� and azimuthal � incidence angles in the local cylindrical
coordinate frame Ok��kZ

�b�. For �=0 and ��i�=��i�, the local
plane xp−zk coincides with the beam incidence plane x−z.

For brevity, dependence of the field vectors Ẽ�b� and Ẽ�p,s�
�b� on

kX, kY, and Z are taken through the paper as implicit.

A. Beam transmission

For each spectral transverse components Ẽ�b� of the inci-
dent �b= i� and transmitted �b= t� beam fields,

Ẽ�b� = Ẽp
�b�êp + Ẽs

�b�ês, �1�

Ẽ�p,s�
�t� = t=�p,s�Ẽ�p,s�

�i� , �2�

the field vector amplitudes Ẽ�p,s�
�b� are composed of the trans-

verse field components Ẽp
�b� and Ẽs

�b�. The elements of the
diagonal transmission matrix t=�p,s� are the well-known
Fresnel coefficients tp� tp���i�� and ts� ts���i��, which al-
ready account for the Snell law. The total field of the beam is
composed of continuum of plane waves defined in different
local incidence planes xp−zk. However, all spectral compo-
nents of the beam field need to be presented in one reference
frame, usually taken as the beam frame Oxyz �26�. Here, the
interface frame OXYZ is chosen instead. In this frame, the
definitions �1� and �2� should read

Ẽ�b� = ẼX
�b�êX + ẼY

�b�êY , �3�

Ẽ�X,Y�
�t� = t=�X,Y�Ẽ�X,Y�

�i� , �4�

with new polarization vector ê�X,Y�= �êX , êY�, amplitude vec-

tor Ẽ�X,Y�= �ẼX
�b� , ẼY

�b��T, and transmission matrix t=�X,Y�.
Further analysis aims to find field amplitudes and trans-

mission coefficients for each spectral field component in the
frame OXYZ by conversion of the expressions �1� and �2�,
given in any local incidence plane ��0, to their counter-
parts �3� and �4� in the global incidence plane. It can be
accomplished by two 3D rotations: R= Y about the Y axis by

��b� and R= Z about the Z axis by � or by projection of Ẽ�p,s�
�b� on

the plane X−Z �5,24�. However, after taking into account the

divergence equation ẼZ
�b�kZ

�b�=−Ẽ�X,Y�
�b�

�k�, only the 2D rota-

tion matrices,

R= Y���b�� = �k�b��−1�kZ
�b� 0

0 k�b� � = �cos ��b� 0

0 1
� , �5�

R= Z��� = k�
−1�kX − kY

kY kX
� = �cos � − sin �

sin � cos �
� , �6�

may be used instead in evaluation of the field components
and transmission matrix elements,

Ẽ�X,Y�
�b� = R= Z���R= Y���b��Ẽ�p,s�

�b� , �7�

t=�X,Y� = R= Z���R= Y���t��t=�p,s�R= Y
−1���i��R= Z

−1��� . �8�

That yields

�ẼX
�b�

ẼY
�b� � = �k�b�k��−1�kXkZ

�b� − kYk�b�

kYkZ
�b� kXk�b� ��Ẽp

�b�

Ẽs
�b� � , �9�

t=�X,Y� = k�
−2� �tpkX

2 + tskY
2 ��tp − ts�kXkY

��tp − ts�kXkY �tpkY
2 + tskX

2 � , �10�

where �=cos ��t� / cos ��i�. Still, by introduction of the linear
polarization parameter in the spectral domain of the incident
beam

�̃�X,Y�
�b� =

ẼX
�b�

ẼY
�b�

, �11�

b= i, the transmission matrix t=�X,Y� can be rewritten into the
diagonal form �24�:

t=�X,Y� = ��tTM 0

0 tTE
� = ��tp + �TM 0

0 ts + �TE
� , �12�

�a � �a���i�,�� = ��tp − ts�k�
−2kY���̃�X,Y�

�i� ��1�kX � kY�� ,

�13�

where a=TM �a=TE� for the upper �lower� signs in �13�. In
the following, the parameter �̃�X,Y�

�i� will be assumed as inde-

pendent of kX and kY, that it remains common for all points
of the interface plane. That means that the incident beam is
considered in an arbitrary uniform polarization state.

The coefficients tTM � tTM���i� ,� ; �̃�X,Y�
�i� � and tTE

� tTE���i� ,� ; �̃�X,Y�
�i� � of transmission should be understood as

the Fresnel coefficients �tp and ts modified, due to the 3D
character of the beams, by the modification terms �TM and
�TE, respectively, both proportional to the difference �tp− ts
of these coefficients. They consist of the first-order and the
second-order ingredients with respect to kY and disappear at
the beam incidence plane, i.e., for kY =0. For pure TM and
TE incident polarization ��̃�X,Y�

�i� �−1=0 and �̃�X,Y�
�i� =0, respec-

tively, and the coefficients �tp and ts are modified only by the
second-order terms ���tp− ts�kY

2k�
−2 �24�.
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B. Beam reflection

Similar considerations to those given in Sec. II can be
repeated for the reflected beam �cf. Fig. 1�. The transverse
field spectral components

Ẽ�r� = Ẽp
�r�êp + Ẽs

�r�ês �14�

are defined in the local frame Oxpyszk by the field amplitude

Ẽ�p,s�
�r� = �Ẽp

�r� , Ẽs
�r��T and polarization ê�p,s� vectors. The new

amplitude Ẽ�−X,Y�
�r� and polarization ê�X,Y� vectors, defined in

the interface OXYZ frame, can be obtained by the rotation
�5� and �6� and inversion R= I; −R= I,XX=1=R= I,YY, transforma-

tions applied to Ẽ�p,s�
�r� and ê�p,s� in the appropriate order, or

equivalently, by projection of Ẽ�p,s�
�r� on the plane X-Z �5,24�,

Ẽ�−X,Y�
�r� = R= IR= Z���R= Y���r��R= IẼ�p,s�

�r� , �15�

�− ẼX
�r�

ẼY
�r� � = �k�r�k��−1� kXkZ

�r� kYk�r�

− kYkZ
�r� kXk�r� ��Ẽp

�r�

Ẽs
�r� � . �16�

The reflection matrix r=�−X,Y� can be then evaluated from the
local or Fresnel reflection matrix r=�p,s�, with its diagonal ele-
ments rp�rp���i�� and rs�rs���i��, by the application the
inversion and rotation matrices in appropriate order, what
yields the definition the reflection matrix in the frame ê�X,Y�
�5�,

r=�−X,Y� = R= IR= Z���R= Y���r��R= Ir=�p,s�R= Y
−1���i��R= Z

−1��� , �17�

r=�−X,Y� = k�
−2� rpkX

2 − rskY
2 �rp + rs�kXkY

− �rp + rs�kXkY − rpkY
2 + rskX

2 � , �18�

where Ẽ�−X,Y�
�r� =r=�−X,Y�Ẽ�X,Y�

�i� .

Next, introduction of the polarization parameter �̃�X,Y�
�i�

makes r=�−X,Y� diagonal �24�

r=�−X,Y� = �rTM 0

0 rTE
� = �rp − �TM 0

0 rs + �TE
� , �19�

where rTM �rTM���i� ,� ; �̃�X,Y�
�i� � and rTE�rTE���i� ,� ; �̃�X,Y�

�i� �
mean the Fresnel coefficients rp and rs modified by the terms
�TM and �TE �12� and �13�, both proportional to the sum rp
+rs of these coefficients. Equation �12� for transmission and
�19� for reflection, together with the definition �13� of the
beam spectra modifications, explicitly show differences be-
tween the 3D beam and 2D beam cases. The terms �TM and
�TE disappear for plane waves and 2D beams. Such effects
as XPC, interrelations between beam spin and orbital angular
momentum, transverse modifications of beam profile, phase,
and polarization are specific only to the 3D case.

Note that the transmission �12� and reflection �19� matri-
ces are exact for any plane wave of which the incident beam
is composed. They are dependent on each other and interre-
lated through the continuity of the field components tangent
to the interface �24�

1 − rp = �tp, 1 + rs = ts, �20�

1 − rTM = �tTM, 1 + rTE = tTE. �21�

Equation �21� is given in the main plane of incidence, that is
for �=0, and Eq. �20� is given in the local plane of inci-
dence, that is, in general, for ��0.

III. NORMAL VERSUS CRITICAL INCIDENCE
OF BEAMS

The Fresnel coefficients defined for plane waves are in-
terrelated through the field continuity relations �20� at the
interface or equivalently by

1

2
��tp + ts� = 1 −

1

2
�rp − rs� , �22�

1

2
��tp − ts� = −

1

2
�rp + rs� . �23�

For normal incidence Eqs. �22� and �23� read �tp= ts=1−rp
=1+rs and 0=0, respectively. Moreover, they read 1=1 for
critical incidence of TIR. That suggests that Eq. �22� can be
associated with normal incidence and Eq. �23� with critical
incidence of one separate spectral component of the beams.
This form of the field continuity relations leads to a special
type of beam field decomposition, particularly suitable in
treatment of beams at the interface.

A. Field decomposition in the linear polarization basis

The transmission �12� and reflection �19� matrices can be
decomposed in such a way that the separate terms of the
relations �22� and �23� stand for the amplitudes of separate
parts of the decomposition of these matrices. In the TM/TE
polarization basis ê�X,Y�, this decomposition takes the follow-
ing form:

t=�X,Y� = +
1

2
��tp + ts��1 0

0 1
�

+
1

2
��tp − ts�k�

−2�kX
2 − kY

2 2kXkY

2kXkY − kX
2 + kY

2 � , �24�

r=�−X,Y� = −
1

2
�rp − rs��− 1 0

0 1
�

+
1

2
�rp + rs�k�

−2� kX
2 − kY

2 2kXkY

− 2kXkY kX
2 − kY

2 � , �25�

now explicitly dependent on the azimuthal angle � through
the relations kX

2 −kY
2 =k�

2 cos 2� and 2kXkY =k�
2 sin 2�. The

matrix decomposition �24� and �25�, together with a Z com-
ponent of the field

ẼZ
�b� = −

ẼX
�b�kX + ẼY

�b�kY

kZ
�b� �26�

describe explicitly characteristic properties of beam trans-
mission and reflection. They depend on the beam incidence
angle, polarization and transverse field structure, and on the
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type of media of which the interface is composed.
The diagonal part of the transmission �24� matrix is pro-

portional to the identity matrix. Therefore, it does not change
the polarization state of the beam and remains common for
any polarization base used in the beam field representation.
The same concerns, up to the sign changes, the reflection
matrix �25�. For critical incidence of TIR, the amplitudes of
the diagonal ingredients amount 1

2 ��tp+ ts�=1 and 1
2 �rp−rs�

=0, respectively; that is, they describe total transmission of
the beams. On the contrary, the amplitudes of the second,
XPC parts of the matrices �24� and �25� yield 1

2 ��tp− ts�
=−1 and 1

2 �rp+rs�=1 for critical incidence of TIR. For nor-
mal incidence, both of them equal zero. Therefore, the first
parts in Eqs. �24� and �25� can be associated with normal
incidence and the second, with critical incidence of TIR. For
incidence other than normal and critical, all amplitudes in the
decompositions in �24� and �25� take nonzero values.

B. Field decomposition in the circular polarization basis

In the circular polarization frame ê�R,L�= �êR , êL�, com-
posed of CR and CL polarization vectors êR and êL, respec-

tively, the basis ê�R,L� and the field amplitudes Ẽ�R,L�
�b�

= �ẼR
�b� , ẼL

�b��T in this basis are obtained from the linear basis
ê�X,Y� and the field amplitudes E�±X,Y�

�b� by the unitary transfor-

mation U= ; URX=2−1/2=ULX and −URY = i2−1/2=ULY, that is by

ê�R,L�= ê�X,Y�U=
+ and Ẽ�R,L�

�b� =U= E�±X,Y�
�b� �the superscripted plus

sign means Hermitian conjugate�. This yields

Ẽ�b� = ẼR
�b�êR + ẼL

�b�êL, �27�

ê� �R,L� = 2−1/2�êX + iêY, êX − iêY� , �28�

with transverse and longitudinal field components expressed
by

Ẽ�R,L�
�t� = 2−1/2�ẼX

�t� − iẼY
�t� ẼX

�t� + iẼY
�t��T, �29�

Ẽ�R,L�
�r� = 2−1/2�− ẼX

�r� − iẼY
�r� − ẼX

�r� + iẼY
�r��T, �30�

ẼZ
�b� = � 2−1/2�ẼR

�b� exp�±i�� + ẼL
�b� exp��i���tan ��b�.

�31�

The upper �lower� signs in �31� pertain the transmitted
�b= t� �reflected; b=r� beam. Note that exp�±i��
= �kX± ikY�k�

−1 and tan ��b�=k��kZ
�b��−1. The winding number

of the Z components of all beams—incident, transmitted, and
reflected—is larger �lower� by 1 than that of the transverse
field component of the CR �CL� polarization. The transmis-
sion t=�R,L�=U= t=�X,Y�U=

+ and reflection r=�R,L�=U= r=�−X,Y�U=
+ matri-

ces

t=�R,L� =
1

2
��tp + ts��1 0

0 1
� +

1

2
��tp − ts�

��0 exp�− 2i��
exp�+ 2i�� 0

� , �32�

r=�R,L� =
1

2
�rp − rs��0 1

1 0
� +

1

2
�rp + rs�

��exp�+ 2i�� 0

0 exp�− 2i�� � , �33�

can be then decomposed into two parts: diagonal and antidi-
agonal, with distinct polarization properties.

The diagonal part of the transmission matrix t=�R,L� does
not change the beam polarization. It modifies only ampli-
tudes of beam spectral components by the factor 1

2 ��tp+ ts�.
The antidiagonal part of t=�R,L�, with its amplitude 1

2 ��tp− ts�,
represents the pure XPC effect of the beam-interface interac-
tion; the CR polarization of the incident beam is replaced by
the CL polarization under beam transmission and vice versa.
Moreover, this part of the transmission matrix changes, in the
beam center, a topological charge of the beam by two. For
the incident CR �CL� polarization the topological charge is
increased �decreased� by two in the CL �CR� polarization of
the transmitted beam.

For the beam reflection, due to the inversion R= I, the diag-
onal and antidiagonal components of the reflection matrix
are replaced with respect to their roles in the beam transmis-
sion. The first part of r=�R,L�, this with the amplitude
1
2 �rp−rs�, changes the beam polarization state to the opposite
one, but without changes in the beam topological charge. On
the contrary, the second part of r=�R,L�, this with the amplitude
1
2 �rp+rs�, does not change the beam polarization. Instead,
due to the XPC effect at the interface, it increases �decreases�
the topological charge of the reflected beam by two for the
CR �CL� polarization of the incident beam.

The transmission t=�R,L� �32� and reflection r=�R,L� �33� ma-
trices in the circular CR/CL basis are equivalent to their
counterparts t=�X,Y� �24� and r=�−X,Y� �25� in the linear TM/TE
basis. All of them describe completely, in the spectral do-
main, the transmission and reflection phenomena of 3D
beams of arbitrary shape and polarization incident upon the
interface at an arbitrary incidence angle.

IV. ACTION OF THE INTERFACE IN A SPATIAL DOMAIN

Consider now characteristic features of the beam-interface
interactions in the spatial domain. 3D beams of finite cross
sections are usually expressed by their spectral representa-
tion, which in the reference frame OXYZ yields

E�b��X,Y,Z� = �ww

2	
	2

exp�±ik�b�z� 
 dkX
 dkYẼ�b�

��kX,kY,Z�exp�i�kXX + kYY�� , �34�

where harmonic dependence on time exp�−i
t� is assumed
and suppressed. Note that, although the representation �34� is
exact, for clarity of further considerations the beam vector

amplitudes Ẽ�b� are now defined as dependent on Z, the con-
vention typical for paraxial beams �27�. In this way, the rep-
resentation �34� is valid for paraxial and nonparaxial beams,
provided that in the second choice the paraxial beam profile
and phase distribution are imposed only at one transverse
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plane, for instance, as taken below, at the interface plane Z
=0.

The representation �34� translates characteristic features
of beams from the spectral domain to the spatial domain. In
general, the integration can be accomplished only numeri-
cally. Sometimes, however, for some specific incident beam
distributions, it can be obtained also directly by analytical
evaluation of the beam fields in some specific polarization
basis. For HG or LG beams of arbitrary order, this evaluation
is possible under fulfilment of some additional conditions,
evident from further considerations.

The analysis will be restricted only to a single interface.
However, due to the diagonal form of matrices �12� and �19�,
the results can be directly generalized to the case of beams at
isotropic layered structures �25�. The derivations are exact in
the spectral domain and approximate in the spatial domain,
with really high accuracy obtained for paraxial beams. Direct
integration of Maxwell equations �28� serve as a numerical
illustration of the analytical expressions derived. In numeri-
cal simulations a dielectric constant equal two is assumed at
the interface for the case of internal reflection. Only the case
of beam transmission and normal incidence will be analyzed
�cf. also �29��—beam reflection and arbitrary beam incidence
can be treated on the same footing �28�.

A. Fundamental Gaussian beam

Let us start from the incident beam with its transverse

field distribution E�x,y�
�i� = ê�x,y�G and Ẽ�x,y�

�i� = ê�x,y�G̃ at the plane

z=const in a form of the fundamental Gaussian function:

G�x,y,z� = � ww

v�z��2

exp�−
1

2
�x2 + y2�v−2�z�� , �35�

G̃�kx,ky,z� = 2	 exp�−
1

2
�kx

2 + ky
2�v2�z�� , �36�

v2�z� = ww
2 �1 + izzD

−1� , �37�

specified by a position of the waist center, here at �x ,y�
= �0,0�, a beam complex half width v and a diffraction
length of the beam zD=k�i�ww

2 , ww being a beam �real� half
width at the waist. The complex half width v; v−2=w−2

− iR−1, defines two real quantities: the beam half width
squared w2=ww

2 �1+z2zD
−2� and the radius of the phase-front

curvature R=ww
2 �z−1zD+zzD

−1�. Unit amplitude of the beam
field at the beam center is assumed as a normalization con-
dition for the fundamental, as well as for all higher-order,
HG and LG beams. Note also that in all field expressions in
�35�–�37� the longitudinal z coordinate can be normalized to
zD and the two, x and y, transverse coordinates can be nor-
malized to ww, respectively.

Higher-order HG and LG beams are considered here in
their elegant version �11� and, thus, are hereafter referred to
as the EHG and ELG beams. The beams are defined in the
spatial domain by appropriate differentiation of the funda-
mental Gaussian field distribution �35�–�37�. For the discus-
sion of such definitions of the EHG and ELG beams, the

reader is referred to a recent report �30�, where definitions of
the, standard and elegant, HG and LG beams were rederived
and compared. However, meanwhile the fundamental mode
may be here defined in its transverse plane �x−y� or the
interface plane X−Y, the higher-order modes are defined
only in the interface plane; that is, the projected definitions
of the elegant beams will be used. For this reason, we also
hereafter use the replacements in the notation in �34�:
G�x ,y ,z�→G�X ,Y ,Z� and G̃�kx ,ky ,z�→ G̃�kX ,kY ,Z�. All ex-
pressions for these beam modes are explicitly derived below.

B. Elegant Hermite-Gaussian modes at the interface

Define the EHG mode Gm,n
�EH� of the order m+n by the

partial X and Y derivatives of the order m and n in the hori-
zontal and vertical directions, respectively, applied to the
fundamental Gaussian �30�

G̃m,n
�EH��kX,kY,Z� = �iww�m+nkX

mkY
nG̃�kX,kY,Z� , �38�

Gm,n
�EH��X,Y,Z� = ww

m+n�X
m�Y

nG�X,Y,Z� . �39�

The definitions �38� and �39� are given here up to arbitrary
normalization constant factor and imply a unit amplitude of
the Gaussian beam at its waist center �cf. Eqs. �35�–�37��.
Hence, the partial derivatives �X and �Y increase the EHG
mode indices m and n along the X and Y directions, respec-
tively,

ww�XGm,n
�EH��X,Y,Z� = Gm+1,n

�EH� �X,Y,Z� , �40�

ww�YGm,n
�EH��X,Y,Z� = Gm,n+1

�EH� �X,Y,Z� , �41�

and the transmission matrix �24� can be directly applied.
For the incident EHG beam of the TM polarization E�i�

= ẼX
�i�êX, with its spectral amplitude ẼX

�i�= G̃m,n
�EH�, or for the

incident EHG beam of the TE polarization E�i�= ẼY
�i�êY, with

its spectral amplitude ẼY
�i�= G̃m,n

�EH�, the transmitted beams be-
come, respectively,

�ẼX
�t�

ẼY
�t� �

TM

=
1

2
��tp + ts��G̃m,n

�EH�

0
� − ��tp − ts�

��k�ww�−2�0

G̃m+1,n+1
�EH� � + ��̃X

�̃Y

�
TM

, �42�

�ẼX
�t�

ẼY
�t� �

TE

=
1

2
��tp + ts��0

G̃m,n
�EH� � − ��tp − ts�

��k�ww�−2�G̃m+1,n+1
�EH�

0
� + ��̃X

�̃Y

�
TE

. �43�

In Eqs. �42� and �43�, the labels TM and TE indicate the type
of polarization of the incident beam and

��̃X

�̃Y

�
TM

= −
1

2
��tp − ts��k�ww�−2�G̃m+2,n

�EH� − G̃m,n+2
�EH�

0
� ,

�44�
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��̃X

�̃Y

�
TE

= +
1

2
��tp − ts��k�ww�−2�0

G̃m+2,n
�EH� − G̃m,n+2

�EH� � .

�45�

As for the normal, or close to normal, incidence the term

�tp− ts is much less than �tp+ ts, the contributions �̃TM and

�̃TE in Eqs. �42� and �43�, will be further neglected. This
approximation is quite reasonable under paraxial approxima-
tion assumption, that is roughly for k�i�ww�2	. Equations
�44� and �45� indicate that the transmitted beams attain finite
values also in the polarization components opposite to those
of the incident beam. They are approximately EHG beams
with their indices being increased, with respect to the inci-
dent beam, by one along both, X and Y, transverse directions.

On the grounds of Eq. �26�, one index �in X or Y direc-
tion� is further increased by one in the longitudinal field
component

�ẼZ
�t��TM � i�2wwkZ

�t��−1���tp + ts�G̃m+1,n
�EH�

− 2��tp − ts��k�ww�−2G̃m+1,n+2
�EH� � , �46�

�ẼZ
�t��TE � i�2wwkZ

�t��−1���tp + ts�G̃m,n+1
�EH�

− 2��tp − ts��k�ww�−2G̃m+2,n+1
�EH� � . �47�

For normal or close to normal incidence in the paraxial
range, the longitudinal field components in Eqs. �46� and
�47� are approximately proportional to the term �tp+ ts.
Therefore, the spatial shape of the Z component of the trans-
mitted beam follows the spatial shape of the Z component

of the incident beam. Moreover �ẼZ
�t��TM � tZ

�EH��ẼZ
�i��TM

and �ẼZ
�t��TE� tZ

�EH��ẼZ
�i��TE, where tZ

�EH�= 1
2 ��tp+ ts�kZ

�i� /kZ
�t� may

be regarded as the transmission coefficient of the Z compo-
nent of the EHG beam.

Beam field distribution in the spatial domain can be now
obtained by analytical evaluation, after substitution Eqs. �42�
and �43� to the representation �34�, or by direct numerical
integration of Maxwell equations. The numerical approach
was described and demonstrated in �28� for critical incidence
of TIR. In analytic evaluation of �34�, for normal incidence
of paraxial beams, the Fresnel coefficients can be evaluated
at ��i�=0. Field intensity plots are presented in Figs. 2 and 3,
for k�i�ww=2	, that is for two wavelengths in the beam di-
ameter at its waist, and for normal incidence of the EHG1,1
beam with the indices in the X and Y directions equal 1.

The incident beam of the EHG1,1 spatial pattern and of
TM polarization is shown in Fig. 2�a�, the pattern of the
transmitted beam component of the opposite, TE polarization
is shown in Fig. 2�b�. The plots clearly confirm predictions
of Eq. �42�; the pattern of the TE transmitted field compo-
nent is of the EHG2,2 spatial shape. Note that for normal
incidence the case is symmetric in X and Y coordinates, for
the TE polarization of the incident beam, the TM component
of the transmitted beam possesses the same EHG2,2 pattern
as that of the TE component of the transmitted beam for the
TM polarization of the incident beam. The interface, how-
ever, still differentiates these two cases in the longitudinal, Z

components of the transmitted beams as it is shown in Fig. 3.
The Z component of the transmitted beam exhibits the
EHG2,1 pattern for incident TM polarization, as shown in
Fig. 3�a�, and the EHG12 pattern for incident TE polarization,
as shown in Fig. 3�b�. Figure 3 entirely confirm theoretical
predictions of Eqs. �46� and �47�.

C. Elegant Laguerre-Gaussian modes at the interface

Let us turn now into the case of beams of a cylindrical
symmetry and describe them in the cylindrical reference
frames Or�Z and Ok��kZ

�b� in the spatial and spectral do-
mains, respectively, where X=r� cos , Y =r� sin , kX
=k� cos � and kY =k� sin �. Action of the interface on the
incident beams can be then described more compactly in new
frames O��̄Z and O��̄Z of complex coordinates and their
complex conjugates �denoted by the overbar�. These coordi-
nates are defined in the spatial domain

� = 2−1/2�X + iY�, �� = 2−1/2��X − i�Y� , �48�

where ��̄=2−1r�
2 and ����̄=2−1��X

2 +�Y
2�, and in the spectral

domain

� = 2−1/2�kX + ikY�, �� = 2−1/2��kX
− i�kY

� , �49�

where ��̄=2−1k�
2 and ����̄=2−1��kX

2 +�kY

2 �. Note that in
cylindrical coordinates �=2−1/2r� exp�i�, �=2−1/2k�

�exp�i��. The fundamental Gaussian �35� and �36�
now reads G�� , �̄ ,Z�= �ww /v�2exp�−��̄v−2� and G̃�� , �̄ ,Z�
=2	 exp�−��̄v2� and the beam representation �34�, with new
dependence on the new complex coordinates, yields

E�b���, �̄,Z� = �ww

2	
	2

exp�±ik�b�z�i
 d�
 d�̄Ẽ�b�

���,�̄,Z�exp�i���̄ + �̄��� , �50�

where ��̄+ �̄�=k�r� cos�−��.
Next, define at the interface plane X−Y the ELG beam of

the order 2p+ l in the similar manner as it has been done for
the EHG beams in the spectral domain

G̃p,l
�EL���,�̄,Z� = �iww�2p+l�p+l�̄pG̃��,�̄,Z� , �51�

where integers p and l are the radial and azimuthal non-
negative indices of the ELG beam �30�. In the spatial do-
main, the definition �51� yields

Gp,l
�EL���, �̄,Z� = ww

2p+l��
p��̄

p+lG��, �̄,Z� . �52�

For negative values of l Eqs. �51� and �52�
yield G̃p,l

�EL��� , �̄ ,Z�= G̃p,−l
�EL���̄ ,� ,Z� and Gp,l

�EL��� , �̄ ,Z�
=Gp,−l

�EL���̄ ,� ,Z�. Note also that �p+l�̄p= �2−1/2k��2p+lexp�il��.
Hence, the definition �51� directly implies changes in the
indices of the ELG beams under transmission

G̃p,l
�EL���,�̄,Z�exp�±2i�� = G̃p�1,l±2

�EL� ��,�̄,Z� , �53�

G̃p,l
�EL���,�̄,Z�exp�±i�� = G̃p�1/2,l±1

�EL� ��,�̄,Z� , �54�
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including also fractional values admitted in the radial indices
of the ELG beams. Eqs. �53� and �54� are central results of
this section. They lead to exact description of the LG beams
of circular polarization interacting with the interface, as will
be shown below.

Let the incident beam be of the ELG shape with its spec-

tral amplitude ẼR
�i�= G̃p,l

�EL� for the CR polarization, i.e., for

E�i�= ẼR
�i�êR, or with its spectral amplitude ẼL

�i�= G̃p,l
�EL� for the

CL polarization, i.e., for E�i�= ẼL
�i�êL, respectively. Then the

rules �53� and �54�, together with the definition of the trans-
mission matrix �32�, lead in the spectral domain to exact
evaluation of the transmitted ELG beams at the interface,
with the following outcome:

�ẼR
�t�

ẼL
�t� �

CR

=
1

2
��tp + ts��G̃p,l

�EL�

0
� +

1

2
��tp − ts��0

G̃p−1,l+2
�EL� � ,

�55�

�ẼR
�t�

ẼL
�t� �

CL

=
1

2
��tp + ts��0

G̃p,l
�EL� � +

1

2
��tp − ts��G̃p+1,l−2

�EL�

0
� ,

�56�

for the CR and CL polarization of the incident beam, respec-
tively. Similarly, the longitudinal components of the incident

beams are of the form ẼZ
�i�=−2−1/2G̃p−1/2,l+1

�EL� tan ��i� for the

FIG. 2. �Color online� Beam intensity trans-
verse distribution of the EHG beam at the inter-
face; the incident beam of the EHG1,1 pattern and
of TM polarization �a� and the transmitted beam
TE component of the EHG2,2 pattern �b�; X and Y
coordinates normalized to ww, normal incidence,
k�i�ww=2	.
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CR polarization and ẼZ
�i�=−2−1/2G̃p+1/2,l−1

�EL� tan ��i� for the CL
polarization and that yields for the transmitted beam, respec-
tively,

�ẼZ
�t��CR = − 2−1/2�tp tan ��t�G̃p−1/2,l+1

�EL� , �57�

�ẼZ
�t��CL = − 2−1/2�tp tan ��t�G̃p+1/2,l−1

�EL� . �58�

Therefore, the Z components of the transmitted beams, i.e.,

ẼZ
�t�= tZ

�EL�ẼZ
�i�, with the transmission coefficient tZ

�EL�

=�tp tan ��t� / tan ��i�, possess the same topological charge
l±1 as the incident beam �cf. also Eq. �31��. Note that, con-
trary to the EHG beam case, all expressions derived above in
the spectral domain for ELG beams are exact and the longi-

tudinal field component resolves into one ELG beam func-
tion with fractional value p�1/2 of the radial index.

The interface changes indices of the incident ELG beam
in the opposite transverse field component. For the incident
CR �CL� polarization the radial index of the beam mode
decreases �increases� by one and the azimuthal index in-
creases �decreases� by two in the CL �CR� polarization com-
ponent of the transmitted beam. In the longitudinal field
component, the radial index decreases �increases� by half and
the azimuthal index increases �decreases� by one with respect
to the indices of the transverse component of the incident
ELG beam of the CR �CL� polarization. Examples of the
ELG beam transverse field distribution at the interface is
presented in Figs. 4–7 for narrow beams �k�i�ww=2	�. Inci-
dence always is normal and the incident beam always has a
pattern of the ELG1,3 function.

FIG. 3. �Color online� Beam intensity trans-
verse distribution of the EHG beam at the inter-
face; the Z component of the transmitted beam of
the EHG2,1 pattern for the incident EHG1,1 beam
of TM polarization �a� and the Z component of
the transmitted beam of the EHG1,2 pattern for
the incident EHG1,1 beam of TE polarization �b�;
normal incidence, k�i�ww=2	.
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Figures 4 and 5 display intensity profiles of the ELG
beams. The profile of the incident beam of the ELG1,3 pattern
and of CR polarization is displayed in Fig. 4�a� and that of
the CL component of the ELG0,5 pattern of the transmitted
beam is shown in Fig. 4�b�. The profile of the incident beam
of the ELG1,3 pattern and of CL polarization is displayed in
Fig. 5�a� and that of the CR component of the ELG2,1 pattern
of the transmitted beam is shown in Fig. 5�b�. Dependence of
a number and radii of the beam annular rings on the incident
beam polarization and azimuthal index l is clearly vivid.
However, a value of the radial index remains uncertain due
to a limited accuracy of the numerical integration for points
of diminishing intensity of the beams.

Also, nothing specific can be inferred from Figs. 4 and 5
about the azimuthal indices of the beams. The intensity pro-
files are not sufficient to describe beams of complex struc-

ture, especially the beams with singularities in their phase
fronts. To complete these figures, phase patterns of the inci-
dent and transmitted beams are drawn in Figs. 6–8. Values
of the azimuthal index are counted as the number of 2	
cycles in phase around the beam axis. This number distin-
guishes the ELG phase patterns of the beams shown in these
figures.

The phase transverse distribution of the incident ELG1,3
beam of CR polarization is shown in Fig. 6�a�, the phase of
the transmitted beam component of the opposite, CL polar-
ization is shown in Fig. 6�b�—its pattern is of the ELG0,5
function. On the other hand, even for normal incidence this
case is not symmetric with respect to the replacement of CR
polarization by CL polarization in the incident beam—values
of the SAM about the Z axis have opposite signs in these two
cases. Therefore, the beam incidence of CL polarization is

FIG. 4. �Color online� Beam intensity trans-
verse distribution of the ELG beam at the inter-
face; the incident beam of the ELG1,3 pattern and
of CR polarization �a� and the transmitted beam
CL component of the ELG0,5 pattern �b�; normal
incidence, k�i�ww=2	.
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also described in Fig. 7. The phase of the incident ELG1,3
beam is shown in Fig. 7�a� and the phase of the CR compo-
nent of the transmitted beam of the ELG2,1 shape is shown in
Fig. 7�b�.

Figures 6 and 7 confirm predictions of Eqs. �55� and �56�
concerning the phase distribution of the beams. However,
Figs. 6�b� and 7�b� display additional ring of zero field am-
plitude far away from the beam axes. This discrepancy be-
tween numerical results and theoretical predictions might be
originated by the approximation assumed in evaluation of the
Fresnel coefficients �at the beam mean direction� in the field
representation �34� or by limited accuracy of the numerical
evaluation of this equation for points of diminishing intensity
of the beam fields. Note, however, that the beam phase or the
azimuthal index l, not the beam magnitude or radial index p,
is usually used in sorting the beam modes �21�.

Figure 8 shows the phase distribution of the longitudinal
field components predicted by Eqs. �57� and �58�. For the CR
polarization of the incident beam of the ELG1,3 shape, Fig.
8�a� displays the phase distribution for the longitudinal field
component of the transmitted beam—that is of the pattern of
the ELG1/2,4 function. For CL polarization of the incident
beam of the same shape ELG1,3 the phase of the transmitted
beam changes to the ELG3/2,2 function as shown in Fig. 8�b�.
For both these polarization states of the incident ELG beam,
the phase structure of the Z components of the transmitted,
and the reflected as well, beams appears the same as that of
the incident beams.

As numerical simulations applied in this section are based
on direct integration of Maxwell equations �28�, the ex-
amples of beam intensity and phase distribution at the inter-
face, as shown in Figs. 2–8, evidently confirm theoretical

FIG. 5. �Color online� Beam intensity trans-
verse distribution of the ELG beam at the inter-
face; the incident beam of the ELG1,3 pattern and
of CL polarization �a� and the transmitted beam
CR component of the ELG2,2 pattern �b�; normal
incidence, k�i�ww=2	.
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predictions given by analytical expressions �42�–�47� for
EHG beams and �55�–�58� for ELG beams. Efficiency of the
XPS effect can be estimated from the expressions �24�, �25�,
�32�, and �33� for the beam field and its amplitudes �22� and
�23� in the spectral domain. The standard Fresnel coefficients
are there replaced by their partial counterparts: t�p,s�

�DP�= 1
2 ��tp

+ ts� and r�p,s�
�DP�= 1

2 �rp−rs� of the direct polarization �DP�, that

is that of the incident beam, and t�p,s�
�XP�= 1

2 ��tp− ts� and r�p,s�
�XP�

= 1
2 �rp+rs� of the opposite polarization �XP�, which is that

produced by the XPC effect. The DP and XP coefficients do
not depend on the incident beam polarization. They are in-
terrelated at the interface by the field continuity relations
t�p,s�
�DP�=1−r�p,s�

�DP� and t�p,s�
�XP�=−r�p,s�

�XP� separately for the beam com-

ponents of opposite polarization of the transmitted

beams—TM or TE for EHG beams and CR or CL for ELG
beams.

The efficiency of the XPC effect is determined by the
ratio t�p,s�

�XP� / t�p,s�
�DP�, here given for beam transmission. For nor-

mal incidence this ratio is small—of the order 10−2. On the
other hand, for beam reflection at critical incidence, magni-
tude of the ratio r�p,s�

�XP� /r�p,s�
�DP� is about two orders greater, as

expected. However, the case of critical incidence does not
seem satisfactory for the ELG beam incidence, as the cylin-
drical symmetry of the beam-interface configuration be-
comes then broken and the beams become deformed. There-
fore, the problem of the efficiency of the XPC effect for
beam normal incidence still remains to be solved. It seems
that a planar boundary of a doubly negative medium �31–33�
may appear to be a proper solution to this problem.

FIG. 6. �Color online� Phase transverse distri-
bution of the ELG beam at the interface; the in-
cident ELG1,3 beam of CR polarization �a� and
the transmitted beam CL component of the
ELG0,5 pattern �b�; normal incidence, k�i�ww

=2	.
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D. Beam normal modes at the interface

Within the paraxial approximation, the scalar HG and LG
functions are solutions of the scalar wave equation. The vec-
tor HG and LG beams are paraxial solutions of the Maxwell
equations and build two orthogonal basis sets for any
paraxial beam mode of free propagation. In the analysis pre-
sented in this section these sets comply four additional con-
ditions, that is the vector �HG and LG� Gaussians: �i� should
be considered in their elegant version, �ii� their vectorial
form should be defined in the linear �TE/TM� basis for the
EHG beams, �iii� their vectorial form should be defined in
the circular �CR/CL� basis of the ELG beams, and �iv� the
beams should be defined with respect to the interface plane.
That is, at least for beams other than the fundamental Gauss-
ian, their spatial and polarization structures should be defined

in the interface plane X−Y, and not, as usual, in the beam
transverse plane x−y.

The HG and LG beams, which obey the conditions �i�–
�iv�, that is the projected EHG and ELG beams, may be
regarded as normal modes of vector beams at the interface.
For any member of one from these two sets incident on the
interface, the reflected and transmitted beams also belong to
this set. The beams are defined by one pair of their spatial
indices—m and n for the EHG beam or p and l for the ELG
beam, in each of the two opposite beam polarizations—TM
and TE or CR and CL for the EHG or ELG beam, respec-
tively. The interface acts almost exactly in this manner. For
ELG beams, only one approximation necessary in the deri-
vations above was assumed in the spatial domain, concerning
mean values of the Fresnel coefficients. Still even this as-

FIG. 7. �Color online� Phase transverse distri-
bution of the ELG beam at the interface; the in-
cident ELG1,3 beam of CL polarization �a� and
the transmitted beam CR component of the
ELG2,1 pattern �b�; normal incidence, k�i�ww

=2	.
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sumption can be neglected if nonuniform polarization of the
beams is admitted.

The interface redistributes incident energy, momentum,
and angular momentum into a pair of beams of two orthogo-
nal polarization states, one pair for each of the transmitted
and reflected beams. One element of this pair possesses the
same polarization and spatial structure as those of the inci-
dent beam. The spatial structure of the second element, that
of the opposite polarization, appears also spatially biorthogo-
nal to the first element. This process may be understood as
creation and annihilation of beam modes at the planar inter-
face. For ELG beams, it also means creation and annihilation
of optical vorticies placed on axes of these beams.

Having defined the biorthogonal sets of normal modes
defined above, any field with arbitrary complex amplitude

and polarization distribution can be readily expanded in a
standard manner in terms of these modes. Until now EHG
and ELG beams have been used mainly in the context of
propagation in the free-space, infinite bulk material, or non-
self-adjoint optical systems �34,35�. This contribution pro-
vides, to the best of my knowledge, first analytical and exact
derivation of the decomposition of an arbitrary 3D beam
field at the planar interface in terms of the �projected� elegant
HG and LG normal beam modes.

V. ANGULAR MOMENTUM OF BEAMS
AT THE INTERFACE

Let now look into the beam transmission from a slightly
different point of view. It is well known that beams carry

FIG. 8. �Color online� Phase transverse distri-
bution of the ELG beam at the interface; the
transmitted beam Z component of the ELG1/2,4

pattern for the incidence of the ELG1,3 beam of
CR polarization �a�, the transmitted beam Z com-
ponent of the ELG3/2,2 pattern for the incidence
of the ELG1,3 beam of CL polarization �a�; nor-
mal incidence, k�i�ww=2	.

WOJCIECH NASALSKI PHYSICAL REVIEW E 74, 056613 �2006�

056613-14



TAM composed, in general, of SAM and OAM components
�1�. The spin component is associated with beam polarization
and the orbital component results from azimuthal transverse
distribution of beam phase. For the circularly polarized
beams, the SAM component is equal to �� per photon,
where �= ±1 for the CR and CL polarization, respectively.
Since the LG beams are angular momentum eigenstates, their
OAM component, associated with the beam phase depen-
dence of the form exp�il�, is equal to l� per photon. Both
SAM and OAM contribute to the Z component of TAM per
photon

jZ
�b� = �� + l�� , �59�

separately for the incident �b= i�, transmitted �b= t�, and re-
flected �b=r� beams, where for any beam the angular mo-
mentum is measured with respect to the normal to the inter-
face �the Z axis�. Equations �55� and �56� show that TAM per
photon is conserved for ELG beam transmission at the inter-
face, and similarly also for ELG beam reflection. For any
photon, transmitted or reflected at the interface, its TAM is
conserved

jZ
�i� = jZ

�t� or jZ
�i� = jZ

�r�, �60�

respectively. Therefore, the SAM and OAM components of
TAM per photon depend of the polarization of the transmit-
ted beam.

For example, for a single photon of the incident beam

ẼR
�i�= G̃p,l

�EL�êR, of the topological charge l and of the CR po-
larization ��=1�, its TAM amounts jZ

�i�= l+1. The transmitted
�or the reflected� photon possess the same TAM jZ

�t�= l+1
independently of its polarization �cf. Eq. �55��. For the trans-
mitted photon of the CR polarization, its spin and orbital
components are the same as those of the incident photon.
However, for the opposite, CL polarization of the transmitted
beam the OAM of the photon is increased by two �from l to
l+2� as its SAM is decreased at the same time by two �from
�=1 to �=−1�.

Similar rules are also valid for the incident ELG beams

ẼL
�i�= G̃p,l

�EL�êL of the CL polarization ��=−1�. The TAM jZ
�t�

= l−1 per photon, as well the SAM �=−1 and OAM l per
photon, of the transmitted beam of the same, CL polarization
appears the same as the TAM, SAM, and OAM of the inci-
dent photon �cf. Eq. �56��. For the transmitted photon of the
opposite, CR polarization its OAM is decreased by two
�from l to l−2� as its SAM is increased at the same time also
by two �from �=−1 to �=1�. Therefore, its TAM jZ

�i�= l−1
per photon remains equal to that of the photon of the incident
ELG beam.

Equations �55� and �56�, together with their counterparts
for beam reflection, may be regarded as equivalent to the
conservation principle of TAM for a single photon at the flat
interface. With the continuity relations �22� and �23�, they
correspond also to the conservation of integrated TAM JZ

�b�

= jZ
�b�N�b� of any set of the �incident, refracted, and reflected�

projected ELG beams at the interface

JZ
�i� = JZ

�t� + JZ
�r�, �61�

where N�b�=U�b� /�
 stands for a number of photons in a
monochromatic beam of time averaged energy U per unit
length of the beam �14�. Moreover, for the ELG beam inci-
dence, the conservation of TAM of these beams follows di-
rectly from the conservation of TAM of each photon of
which these beams are composed.

Above considerations pertain to the LG beams in their
projected elegant version and of the circular polarization. In
this case, the interface is acting, through the transmission
matrices �32�, within the complete set of such beams and
produces pure eigenmodes with specified indices �p and l� of
the beam spatial structure in each one of the two �CR and
CL� states of circular polarization. For beams of other spatial
distribution of its complex amplitude and/or polarization,
such as the standard LG beams of arbitrary polarization, the
action of the interface may be understood as creating an ap-
propriate superposition of pure projected ELG beams of cir-
cular polarization. In such cases, one has to consider mean
values of TAM and OAM of these beams �19�. Still the con-
servation principles of TAM for a single photon �60� and for
the total beam �61� remain valid.

The derivation of the conservation principle �55� and �56�
for TAM of beams at the interface was possible due to the
exact form of the transmission and reflection coefficients
�32� and �33� or �12�, �13�, and �19�. Both, the first-order and
second-order transverse corrections �in kY, see Eq. �13�� to
the standard Fresnel coefficients �tp, ts, rp, and rs are neces-
sary to obtain this result. The first-order corrections to the
Fresnel coefficients, as well as these coefficients by them-
selves, are not sufficient to guarantee exactly the TAM con-
servation. Still, the TAM conservation �60� for a single pho-
ton was also approximately applied, instead of the field
continuity relations, in the treatment of beams at a dielectric
interface within a geometrical optics approach �36�.

Note also that the ELG beams considered here possess
cylindrical symmetry in the interface frame OXYZ. For inci-
dence angles ��i� different from zero, such beams are elliptic
or astigmatic in their polarization, intensity, and phase distri-
bution in their beam frames Oxyz. For instance, the polariza-
tion parameters ��X,Y�

�b� = ± i �11� of circularly polarized beams

in the interface frame OXYZ reads for the same beams
��X,Y�

�b� cos ��b�= ± i cos ��b� in their beam frames Oxyz �5�.
However, as orientation of their astigmatism is the same for
their polarization, intensity, and phase, the OAM of the
beams is originated only in the helical singularities of beam
phase �37�.

This is not so for beams of different orientation of their
intensity and phase astigmatism. More general astigmatic
beam modes may carry OAM not originated exclusively in
the beam phase singularities �37�. Such beams also form
complete sets of Gaussian solutions of the paraxial wave
equation and may serve as another basis for treatment the
problem of 3D beams impinging at the interface.

VI. CONCLUSIONS

Beam-interface interactions have been described within a
frame of the complete, biorthogonal sets of the projected
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EHG beams of linear TM/TE uniform polarization and the
projected ELG beams of circular CR/CL uniform polariza-
tion. It was shown that such beams are normal modes at the
interface and, thus, in general, at any planar layered struc-
ture. The beam transverse spatial profile, phase, and polar-
ization are interrelated through the XPC effect present at the
interface. These relations differentiate normal and critical in-
cidence of the beams and can be described by generalized
Fresnel coefficients of transmission and reflection, specific to
the incidence of beams of 3D structure and arbitrary polar-
ization.

Rigorous analytical description of beam fields at the iso-
tropic interface in terms of the projected EHG and ELG vec-
tor beam modes has been given. The interface redistributes
incident beam energy between opposite polarization states of
the beams and modifies spatial distribution of their intensity
and phase. This process is quantitatively described through
changes of indices of transverse spatial distribution of com-

plex beam fields or, for ELG beams of circular polarization,
in terms of conservation of their TAM. In the latter case,
changes of SAM are compensated by changes of OAM or
vice versa. For incidence of beams of general phase and
intensity distribution and general polarization, the interface
discriminates the beam field in favor of EHG beam modes of
linear polarization and of ELG beam modes of circular po-
larization. The process has been described by derivation of
exact analytical expressions for spectral components of the
beam field at the interface plane.

Characteristic features of the interface action may appear
useful, for example, in beam sorting on the basis of SAM
and OAM, provided that the efficiency of the XPC effect can
be increased. It seems that application of the presented ap-
proach to the case of beams at layered structures, composed
of anisotropic, photonic or metamaterials, may reveal such a
possibility.
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