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Phenomena following a rapid mechanical quench of liquid 4He from its normal to its superfluid phase are
reported and discussed. The mechanical expansion apparatus is an improved version of that described previ-
ously. It uses a double-cell geometry to effect a partial separation of the sample from the convolutions of the
bellows that form the outer wall of the cell. Consistent with earlier work, no evidence is found for the
production of quantized vortices via the Kibble-Zurek �KZ� mechanism. Although the expansion is complete
within 15 ms, the second-sound velocity and attenuation continue to increase for a further �60 ms; corre-
spondingly the temperature decreases. Subsequently, the temperature rises again toward its final value as the
second-sound velocity and attenuation decrease. It is shown that this unexpected behavior is apparently asso-
ciated with a large-amplitude second-sound oscillation produced by the expansion, and it is suggested that the
observed vortices are created by the normal fluid–superfluid counterflow that constitutes the second-sound
wave. If production of large-amplitude second sound is inherent to the mechanical expansion of liquid 4He
through the superfluid transition, as appears to be the case for final temperatures more than 3 mK from the �

transition, the phenomenon sets a lower bound on the density of KZ vortices that can be detected in this type
of experiment.
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I. INTRODUCTION

The work reported below has grown from our attempts to
improve on earlier experiments �1� designed to model the
grand unification theory �GUT� symmetry-breaking phase
transition of the early Universe by investigation of fast
quenches of liquid 4He from its normal to its superfluid state.
At the GUT transition, the original symmetry of the Universe
was lost: the vacuum entered a state of spontaneously broken
symmetry and, correspondingly, the forces of nature sepa-
rated. The transition is believed to have been of second order
and to have occurred �10−35 s after the Big Bang, as the
Universe fell through a critical temperature of �1027 K.

Near a second-order transition, the potential contribution
V to the free-energy density can be approximated by

V = ����2 +
1

2
����4 �1�

where �=��T−T�� with ��0. Thus � is positive above the
transition and negative below it. A variety of topological de-
fects is believed to have been created in the transition �2�,
including point defects, corresponding to magnetic mono-
poles; surface defects, called domain walls; and, of particular
interest, stringlike defects, called cosmic strings. Cosmic
string will be able to form when the order parameter �Higgs
field� � is complex. In the broken-symmetry phase � is nega-
tive and V��� takes the shape of a sombrero hat.

Liquid 4He undergoes a comparable second-order transi-
tion into its superfluid state at T��2 K. The potential con-
tribution to the free energy can be written in the same fash-
ion �using the Ginzburg-Landau free energy equation �3��.
Quantized vortices in superfluid helium are thus the analog
of cosmic strings in cosmology �4� and the mechanism re-

sponsible for the creation of topological defects in the early
Universe can in principle be modeled in the laboratory
through a fast transition of liquid 4He into its superfluid
phase. The main aim of these experiments is to effect a fast
passage of a small sample of liquid 4He through the super-
fluid transition, and then to seek evidence of quantized vor-
tices created in the quench. The vortices correspond to meta-
stable excited states of the superfluid, so their density is
expected to decrease rapidly following the quench.

The first experiment of this kind �5� yielded evidence of
vortex creation, but subsequent investigations using an ex-
perimental cell of improved design �1� showed that vortices
were not created at measurable densities; in fact, the upper
limit on the density was more than two orders of magnitude
below the theoretical expectation �6�. The analogous experi-
ment on 3He �7�, however, provided evidence of vortex pro-
duction at about the expected density. Likewise, the results
of experiments on liquid crystals �8,9� and on superconduct-
ors �10,11� appear to be consistent with predictions based on
the Kibble-Zurek �KZ� scenario �2,4�.

The present project was undertaken to try to clarify the
seemingly anomalous position of 4He and, in particular, to
reduce still further the upper bound on the initial density of
KZ vortices. We also had in mind, however, that the normal-
superfluid transition in liquid helium 4He is an accessible and
very interesting example of a second-order phase transition.
By studying it, we can seek information about the associated
critical fluctuations as well as—in principle—defect creation.
We might thus hope to check our understanding of the two-
fluid model of He II under critical conditions, as well as
investigating vortex creation at the transition and the subse-
quent evolution of the vortex tangle. As we will see, how-
ever, the results obtained differ from expectation. They dem-
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onstrate the existence of an additional vortex creation
mechanism, perhaps inherent to expansion experiments of
this kind, that would obscure the possible production of KZ
vortices at a low density.

II. EXPERIMENTAL DETAILS

A quick transition of liquid helium from its normal phase
�He I� into its superfluid one �He II� by cooling is impos-
sible, given the logarithmic infinity in its heat capacity at T�.
The experiment therefore moves the liquid into its superfluid
phase by a rapid expansion. The phase diagram of 4He al-
lows such an adiabatic transition because T� is weakly pres-
sure dependent �Fig. 1�. The compressed, thermally isolated,
small volume of He I �at pressure Pi and temperature Ti� is
allowed to expand freely to a final point where it has become
He II �at Pf and Tf�. Zurek’s original estimate of the vortex
density �in cm−2� created in the expansion was

Li =
1.2 � 108

��Q/100�2/3 �2�

where the quench time �Q is in milliseconds. To maximize
the opportunity of observing KZ vortices, one should there-
fore try to minimize �Q. The main experimental problems lie
in the speed of the process, which can be enhanced by mini-
mizing the mass of the components moving during the ex-
pansion; the short distance Tf from T�, which can lead to
difficulties including internal fluid fluxes caused by nonide-
alities of the expansion process; the mechanical shock of the
expansion, which leads to vibration, noise in the electronics,
and a “dead period” immediately following the expansion
during which no measurements can be made.

Compared to our first- �5� and second- �1� generation ver-
sions of the expansion apparatus, the present cell differs in
four important respects.

�1� To reduce the original dead period of �50 ms, provi-
sion was made for damping out vibrations and oscillations.
The reconstructed measuring cell allowed us to get informa-
tion about possible vortices after about 10–15 ms.

�2� A different method was used to minimize flow caused
by nonidealities in the expansion. Rather than using a very
short cell as in �1� a longer cell with bellows was employed,

similar to that in �5�, but an inner cell was used to protect the
measurement region from possible vortices generated hydro-
dynamically by the convolutions of the bellows.

�3� The modified geometry of the inner cell of our experi-
mental chamber created good conditions for the study of
relatively high-amplitude second-sound waves. In particular,
its cylindrical construction allowed us to study wave attenu-
ation in an effectively one-dimensional geometry, where the
damping arises mainly from processes that occur within the
bulk helium.

�4� More sensitive bolometry was employed, in which the
resistive carbon paper of �5,1� was replaced with a Cu-Sn
superconducting bolometer �12� biased to the middle of its
transition by a magnetic field.

We now discuss the experimental arrangememts in more
detail.

The expansion chamber is illustrated in Fig. 2. Its walls
were formed from phosphor-bronze concertina bellows. It
was filled with isotopically pure 4He through a capillary
tube, and then sealed with a needle valve. The top of the
chamber was fixed rigidly to the cryostat but its bottom sur-
face could be moved to compress the liquid, or released to
expand it, using a pull rod from the top of the cryostat. The
chamber was suspended in vacuum, surrounded by a reser-
voir of liquid 4He at about 2 K. A capacitance gauge re-
corded the pressure in the chamber and carbon resistance
thermometers were used to measure the temperatures in the
reservoir and on the outside of the chamber.

A trigger mechanism on the mechanical linkage released
the pull rod, allowing the cell to increase its volume by
�20% rapidly under its own initial internal pressure. A typi-
cal time dependence of the length of the bellows is plotted in
Fig. 3. After completion of the expansion, the time taken for
the chamber oscillations to subside was �5 ms.

As in the earlier work �1,5�, second-sound attenuation was
used as the tool for quantifying the vortex line density L. The
inner cell took the form of a quartz cylinder of diameter D
=15 mm, length Lc=3 mm, with slots in its sides to maintain
the same constant pressure inside and outside the cell; the
expectation was that vortices produced at the convolutions,
and any vortices created by outflow through the slots during
the quench, would remain in the outer part of the cell on the
time scale of the measurements. A meander film heater and a
superconducting film bolometer were positioned on the top
and bottom of the cylinder respectively. This inner cell was
embedded within the expansion chamber, as shown in Fig.
2�c�.

The superconducting transition temperature of the film
bolometer �12� was adjusted by means of an external mag-
netic field. Its sensitivity of �10 V/K then allowed tempera-
ture changes in the second-sound wave amplitude to be mea-
sured to better than 1 	K. The distance from T� was deduced
from the second-sound velocity, determined from the transit
time of the first reflected pulse.

The vortex density in the He II following the expansion
was measured by recording the attenuation of a sequence of
second-sound pulses propagated through the superfluid he-
lium. An important feature of our present experimental cell is
that it provides excellent conditions for probe wave propaga-
tion. The reason is connected to the marked differences be-

FIG. 1. Phase diagram of 4He showing schematically �dashed
line� a trajectory from an initial temperature and pressure �Ti , Pi� in
He I to a final state �Tf , Pf� in He II. The dotted line separates
regions of positive and negative nonlinear coefficients of second-
sound velocity.
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tween second-sound pulse propagation in one-dimensional
�1D� and three-dimensional �3D� geometries.

Where the distance between the heater and bolometer �or
the net distance after allowing for reflections� exceeds the
linear size of the heater, the wave evolves as though in a 3D
geometry. For first �i.e., ordinary� sound the pulse shape of
the probe signal then transforms, with a rarefaction wave
following a wave of compression �13�; in the case of second
sound, the heat pulse transforms into a heating-cooling pair
�14–17�. The quench experiments are necessarily conducted
near the normal-superfluid transition, where the second-
sound nonlinearity coefficient �2 is large and negative �ap-
proaching −
 as T→T��. The heating-cooling pair produced
in a three-dimensional geometry consequently tends to create

breakdown conditions at its center, resulting in a decrease in
amplitude that has no connection with the vortices that the
test pulse is intended to probe.

In the 1D case, however, a second-sound wave at tem-
perature near T� in a medium with dissipation can be de-
scribed by the nonlinear Burger’s equation

ut + �u20 + �2u�ux = �uxx �3�

where u20 is the second-sound velocity of vanishing ampli-
tude wave and � is the coefficient of wave damping in media.
Because �2 close to T� is so large and negative, a rectangular
heat pulse transforms into a triangular temperature one at a
short distance from the heater. Its width increases as it propa-
gates, with a corresponding decrease in amplitude �Fig. 4�.
Thus a diminution of the energy of the propagating pulse
�i.e., its area Q=�Adt, not its amplitude� provides a measure
of the vortex line density L in the liquid traversed by the
pulse.

In our experiments we used a sequence of relatively in-
frequent rectangular probe pulses of length �10 	s. Their
repetition interval was in the range 10–50 ms. In each case,
we recorded a sequence of reflected second-sound signals.
Then we calculated the average ratio Qi+1 /Qi for the first few

FIG. 2. Schematic diagrams of the expansion apparatus showing
�a� the arrangements for filling and compressing the cell; �b� the
outer cell; �c� the inner cell. The cylindrical cell was of quartz,
closed by two plates holding the heater and bolometer, respectively.
It was placed inside the expansion chamber, which had phosphor-
bronze concertina walls. Slots in the cell walls allowed for equal-
ization of the internal and external pressures. The sample filling
capillary was closed off by means of a hydraulically operated
needle valve after the chamber had been pressurized. A capacitance
gauge was used to determine the pressure.

FIG. 3. Time dependence of the chamber length during typical
expansions: from Ti=4.2 K, Pf =3 bar �top curve� ending in He I;
and from Ti=2.1 K, Pf =4 bar �lower curve�.

FIG. 4. Typical train of reflected second-sound pulses as de-
tected by the bolometer, becoming more attenuated on successive
passages through the vortex tangle. Note that the test pulses are
superimposed on top of a slow oscillatory temperature oscillation.
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reflected pulses as a function of time �the average time
elapsed since the superfluid transition was passed during the
expansion�. Their attenuation is of course determined by the
sum of the attenuation on reflection �including geometrical
effects� and the bulk dissipation due to vortices �the intrinsic
bulk dissipation in the absence of vortices being negligible�.
We estimated the equilibrium energy dissipation on reflection
experimentally from a sequence of reflected pulses at the
same temperature Tf and pressure Pf as were reached in an
expansion, but in the absence of the expansion: the attenua-
tion during a path taking in a double reflection �bolometer-
heater-bolometer� was less than 5%.

III. EXPERIMENTAL RESULTS

Our second-sound attenuation results following a quench
are plotted in Fig. 5. Each point represents the averaged en-
ergy ratio Qi+1 /Qi for a sequence of reflected pulses over a
period of a few milliseconds, and is plotted at the average
propagation time. In carrying out this procedure, we re-
corded at least three �rarely more than five� reflected signals.
Despite the scatter of the data, it is evident that bulk dissi-
pation of energy following a transition into the superfluid
state is much higher than under equilibrium conditions �hori-
zontal line�. Furthermore, the dissipation clearly increases at
first following the quench. The implication is that the vortex
density also increases at first, in marked contrast to the origi-
nally expected evolution, which would be a monotonic de-
crease in attenuation if a tangle of Kibble-Zurek vortices had
been created during the quench itself and was decaying
away.

Figure 6 plots the evolution of the second-sound velocity
�left-hand ordinate� and corresponding distance from T�

�right-hand ordinate� following a quench. The same symbols
are used in Figs. 5 and 6 for data obtained from a particular
expansion. The open and filled symbols correspond to two
sets of quenches with different initial and final conditions. It
is evident that, with the exception of the data plotted as open
circles, the velocity v and distance from T� at first increase,
and then start to decrease again, with the two stages corre-
sponding approximately in time to the two stages of second-
sound attenuation shown in Fig. 5.

IV. DISCUSSION

A. Evolution of vortex density and temperature

The relationship between vortex density L and second-
sound amplitude �here energy� S=S0 exp�−�x� may be writ-
ten as �18�

L =
6u2 ln�Qi/Qi+1�

Bx
�4�

where =h /m4=9.98�10−4 cm2 s−1 is the quantum of circu-
lation, u2 is the second-sound velocity, x is the distance over
which the signal decreases from Qi to Qi+1, and the numeri-
cal constant B�2–5 was taken from earlier experiments on
rotating helium. We estimate the maximum vortex line den-
sity from the energy dissipation Qi+1 /Qi�0.5 as �106 cm−2.
If we suppose that there is a one-to-one relationship between
the attenuation of the second-sound probe pulses and the
vortex density within the cell, we must conclude that the
vortex system after an expansion evolves through two dis-
tinct stages: �1� Immediately after the expansion there is a
low �or zero� vortex line density L, which increases during
the first �100 ms, reaching a value of �106 cm−2; and �2�
the vortex tangle then decays.

As a consistency check, we can also estimate the vortex
density attained in another way. In every experiment we ob-
served a relatively slow temperature oscillation after the
quench �see Fig. 7�, which decayed over �20 ms. We return
later to consider its possible origins. The propagation of a
harmonic wave through a vortex tangle may �19� be de-
scribed as

�T = F���e−�Kt/2 �5�

where x=� for t=0, and F�x� gives the initial temperature
disturbance. In the present case, the oscillation deviates from
harmonic but we suppose the same picture applies to a good
approximation. The amplitude of the oscillation decreases
exponentially as exp�−�Kt /2�, due to mutual friction, with
characteristic time �K�2�10−2 s. The coefficient K can
�20� be written as

FIG. 5. Energy attenuation of successive second reflections,
plotted as a function of time after the quench, providing a measure
of the inverse vortex density. The relative attenuation in the absence
of vortices is shown by the horizontal line at Qi+1 /Qi=0.9.

FIG. 6. Time dependence of the second-sound velocity v�t ,T�
�left hand scale� after the quench for different initial temperatures
Ti. The right hand scale shows the temperature difference from the
superfluid transition, T�−T.

EFIMOV et al. PHYSICAL REVIEW E 74, 056305 �2006�

056305-4



K =
B

3�
L �6�

and we can ask whether or not the corresponding L is con-
sistent with that calculated from Eq. �4�. Accordingly, we can
substitute the characteristic decay constant of the sine wave
in Fig. 7. When we do so, we obtain a vortex line density
L�106 cm−2, which represents reassuring consistency.

The mechanism responsible for the decay of a tangle of
vortex lines is well-understood for the case when, as here,
there is significant normal fluid density. The self-driven mo-
tion of the vortex cores through the viscous normal fluid is
dissipative, resulting in line shrinkage, a process that is
strongly amplified by the appearance of sharp cusps pro-
duced where lines have reconnected �21,22�. It is the first
stage of the evolution, with an increasing vortex density, that
was for us unexpected and requires an explanation. We note
immediately that the epoch during which the vortex line den-
sity is increasing vastly exceeds the expected creation time
for KZ vortices during the expansion �which are expected to
appear spontaneously at the superfluid transition�.

So the question arises: If these vortices are not created in
the expansion itself, where do they come from, and why does
their line density continue to increase long after completion
of the quench?

A possible clue as to what else may be going on in the
liquid can be seen in the slow oscillatory background tem-
perature level of the signal in Fig. 4; for clarity it is shown
again on an extended timescale in Fig. 7. Very similar behav-
ior was observed in both of the earlier chambers �1,5�. The
oscillation period is of the order of the second-sound propa-
gation time across the cell, �5 ms. For comparison, the pe-
riods of longitudinal oscillations in the 1 m rod ��2
�1/5000=0.4 ms�, and that of pressure relaxation inside the
�2 cm diameter chamber ��2�0.02/200=0.2 ms� are con-
siderably shorter. We calculated the average period of the
temperature oscillation �T and determined its dependence on
the second-sound velocity. From two set of quenches with
different beginning and finishing points �Fig. 6�, the results
were �T=4.94±0.52 ms for u2=3.2 m s−1 and �T
=4.12±0.91 ms for u2=4.4 m s−1, which correspond to
wavelengths of 18 and 17 mm, respectively. These are com-

parable with the dimensions of our cell. Such a temperature
wave could correspond to nonequilibrium internal counter-
flows of the normal and superfluid components after expan-
sion: in effect a decaying second-sound standing wave of
large amplitude.

B. Vortex dynamics

We hypothesize that, as in the case of pulsed second
sound �23�, the superfluid–normal fluid counterflow velocity
in the standing wave may be sufficient to cause growth of
vortices that are initially present following the expansion. It
is highly likely that the liquid will contain such vortex
“seeds:” there will presumably be the usual remanent vortex
lines �24� that are believed to exist in all samples of He II,
however prepared; added to which there may be vortices
created via the Kibble-Zurek mechanism, albeit at an unde-
tectably low density. Would the normal fluid–superfluid
counterflow involved in the second-sound standing wave be
likely to increase this initial vortex density?

Immediately after the quench, the amplitude of the tem-
perature oscillations is �0.5 mK when the liquid is �5 mK
below T�. This corresponding counterflow velocity of �25�
w= �v̄n− v̄s� is defined by

�T =
u2�n

S
�v̄n − v̄s� �7�

which yields w�17 cm s−1. Because vs= ��n /�s��vn, the
normal component remains almost immobile. This counter-
flow velocity would indeed be sufficient to cause vortex
growth, generating a tangle as described by the Hall-Vinen
equation �26,27�

dL

dt
= �wL3/2 − �L2. �8�

Here � and � are Hall-Vinen constants, which have been
extracted from experiments with heat pulse propagation �23�.
The latter were conducted at temperatures far from T� �T
=1.4 to 1.85 K�. They resulted in the formation of a vortex
density of L�107 cm−2 for w	40 cm s−1 during a time span
of 10 ms, corresponding to the equilibrium density

L0 = 
�w

�
�2

. �9�

Extrapolating the data of �23� to near T� we find �=� /�
�200 s cm−2 which, taken with the above value of w
�17 cm s−1, yields L0�107 cm−2. This is considerably
larger than our above estimate of �106 cm−2 based on the
experiments. The most probable reason lies in the complex
changes in vortex behavior that take place near T�.

The force acting on a unit length of a vortex can be writ-
ten as

f = �s � �vL − vs� − � � � � �vn − vL�� + �� � �vn − vL� .

�10�

Here the indices L, n, and s refer to the velocities of the
vortex line and normal and superfluid components, respec-

FIG. 7. Temperature oscillation in the cell after a quench. Ver-
tical lines indicate the times when probe pulses were excited from
the heater. The direct signal picked up by the bolometer, and some
reflections, are indicated in each case. SS indicates second sound.
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tively, and  stands for the circulation quantum �where re-
peated within a term, the additional one stands for a unit
vector in the direction of �. The first term on the right-hand
side is the Magnus force, and the second and third terms are,
respectively, the dissipative and nondissipative mutual fric-
tion forces.

In He II at low temperature both the dissipative ��� and
nondissipative ���� mutual friction coefficients are negligibly
small and vortex lines move with the superfluid velocity �and
also due to the curvature of the line, which is not considered
here as for simplicity we assume the vortex line to be
straight�.

It is relevant and interesting to consider the equivalent
situation in 3He-B, where the highly viscous normal compo-
nent is effectively clamped by the walls in a container of
conventional laboratory dimensions. Quantized vortices in
the flow can be thought of as arranged in such a way that the
coarse-grained hydrodynamic equation

�vs

�t
+ �	 = �1 − ���vs � � + ��̂ � �� � vs� �11�

obtained from the Euler equation after averaging over vortex
lines �28�, written in the frame of reference of the normal
fluid, provides a sufficiently accurate description of the su-
perflow. The normal fluid thus provides a unique frame of
reference �at rest in the laboratory frame� and we have to
deal only with the superfluid velocity v. By rescaling the
time such that t̃= �1−��t�, and then dropping the tilde, one
gets �29�

�v

�t
+ �	 = v � � + q�̂ � �� � v� �12�

where � denotes the �superfluid� vorticity and the important
parameter q=� / �1−���. Values of � and �� in 3He are given
in �30�. It has been shown that this equation �written in the
continuous approximation� describes the dynamics of vortex
motion in that when q�1 the dynamics is “regular,” while
when q�1, nonlinear multiplication of vortices may take
place leading to the generation of a vortex tangle, i.e., super-
fluid turbulence. The experiment �31� showed a crossover
between those two regimes as a function of T only at T /Tc
	0.6, where q is about 1.

In He II, however, the kinematic viscosity of the normal
fluid is very low: the normal fluid moves easily and therefore
does not provide the necessary unique reference frame, sta-
tionary in the laboratory. We plot the dimensionless quantity
q versus temperature in Fig. 8, using tabulated values of ��T�
and ���T� from �32�. In He II q becomes of order 1 close to
T�, approximately 5 mK below the transition. So the expan-
sion trajectories terminate just in the region where the cross-
over occurs. We conclude the following.

�1� Far below T�, where q�1, the vortex density can be
magnified by normal fluid–superfluid counterflow according
to Eq. �8� �corresponding to the range T /Tc�0.6 in the case
of superfluid 3He�.

�2� At temperatures close to T�, where q�1 �say, at T�

−T�2 mK�, the vortex system is overdamped, so that there
is no vortex amplification even for large w �corresponding to

the range T /Tc�0.6 in the case of superfluid 3He�.
�3� In the temperature region of our experiments, where

q�1, the vortex density may increase, but to a smaller ex-
tent than predicted by �9�.

Note that a similar deviation of measured from theoretical
values was observed in �23�.

It must be emphasized that the above estimates are ap-
proximate. Additional factors to those already mentioned are
that a heat flux is known to cause a decrease �33� in T� and
that, for a sufficient heat flux, the superfluidity may become
thermodynamically unstable �34,35�. Nonetheless, it appears
that production of vorticity in the second-sound oscillation
following the expansion is the most likely explanation of the
experimental results of Fig. 5.

C. Use of expansion experiments for modeling the KZ
scenario

If the observed second-sound oscillation is inherent to ex-
pansion experiments of the kind discussed here, then it must
set a limit on the KZ vortex line density that can be mea-
sured in this way. The empirical evidence, based on three
expansion cells of different design �see above�, is that such
an oscillation always follows the expansion. Where does it
come from?

Up to now we have supposed that the liquid in the cell
expands uniformly, but of course this assumption represents
an approximation. In reality, the expansion must be accom-
panied by gradients of pressure and temperature. When the
bottom plate of the chamber �mass �1 kg; see Fig. 2� is
released, it begins to accelerate under a force �200 N. The
changing pressure propagates across the chamber ��5 mm�
at the velocity of first sound. Consequently, the superfluid
transition near the plate occurs �25 	s earlier than it does
on the other side of chamber, and there must be correspond-
ing gradients in the normal and superfluid densities of con-
centration, �n and �s. The expansion over a distance of
�1 mm takes place in a characteristic time ��3 ms, and the
final velocity reached by the plate is v0�0.6 m/s. The ex-
pansion is then stopped almost discontinuously by an attach-
ment on the pull rod hitting a room-temperature stop. This
sudden termination of the motion of the plate must generate

FIG. 8. The parameter q=� / �1−��� �dimensionless units� plot-
ted versus T�−T for He II.
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a return wave of pressure, temperature, and normal and su-
perfluid concentrations.

The amplitude of the velocity oscillations in a liquid in
the first sound wave created by movement of a container
wall is proportional to the second-order time derivative of
the velocity of the wall �cf. the result obtained for conven-
tional sound generated by a moving body immersed into a
compressible liquid �13��. Estimations for a one-dimensional
sound wave excited in a container of length L during the
expansion yield

vn 	 vs �
L2

u1
2

d2v
dt2 �

L2v0

u1
2�2 ,

where v is the velocity of the moving wall and u1 is the
velocity of first sound. The temperature oscillations in such a
first sound wave �25� are

�T1 = −
��Tu1vs

C

where C is the heat capacity per unit mass of liquid helium,
� is its density, and �=−�1/����� /�T� is the thermal expan-
sion coefficient. For T�−T=3 mK and at saturated vapor
pressure one obtains �T1�1 	K, which would be beneath
the resolution of our superconducting bolometer. Similar es-
timation of the amplitude of second sound wave created in
the expansion process gives �� is the entropy per unit mass
of liquid helium�

�T2 =
��u2

3v0

�s�
2 � 4	K.

Second sound therefore appears to provide the dominant
temperature oscillation caused by a moving wall in He II, but
the effect seems to be of much smaller amplitude than the
oscillation seen in the experiments.

There exist, however, factors not so far considered that
could lead to huge increases in the amplitudes of both first
and sound under the conditions considered. During a fast
transition of liquid 4He from the normal to the superfluid
state the ��T , P� coefficient passes through a singularity at
temperatures slightly above the � line, at T−T�=3–6 mK
depending on pressure P in a liquid: the absolute value of the
coefficient is increased by a factor of 102–103 near the sin-
gularity �36�. In our case, the system must inevitably pass
through this singularity during its expansion. It could very
well cause the increase in the amplitudes of the waves by a
factor �102, which gives for the values of the amplitudes of
the of first- and second-sound waves after the expansion
�T1��T2�0.1 mK, as observed. We note in passing that, in
earlier experiments, it was the increase in the thermal expan-

sion of liquid helium near the � line at elevated pressures
that allowed bolometric detection of the temperature oscilla-
tions in the linear first-sound waves of rarefaction �heating�
created by a heater in superfluid helium at low heat loads,
and its transformation into a first-sound wave of cooling
�compression� at high heat loads �37�.

Gradients in the superfluid state, and normal-superfluid
counterflow, are clearly inherent to expansion experiments
on the second-order transition in 4He. We have seen that the
end point of the expansion currently lies in a crossover re-
gion of the phase diagram where vortices may to some extent
be expanded by superfluid-normal counterflow. For 4He un-
der its saturated vapor pressure, the parameter q=1 at T�

−T=3 mK, and we would not anticipate that raising the pres-
sure would change this number drastically. It is possible that
restriction of the final temperature of the quench to lie within
1 mK of T� would allow measurement of the vortex line
density created at the quench itself, without the ambiguity
introduced by subsequent vortex amplification in the coun-
terflow. If the scatter of the data �Fig. 5� can be reduced, a set
of quench experiments with finishing points at different dis-
tances from T� could therefore provide an interesting way of
studying the behavior of the vortex system.

V. CONCLUSIONS

Improvements of experimental technique and cell geom-
etry have allowed us to extend our measurements back to
shorter times after the quench to the superfluid state, as com-
pared to earlier experiments �1�, but we have found no evi-
dence for the expected KZ scenario. Rather than an initially
decreasing vortex density, we observe an increasing one. The
origin of the vortices detected is attributable to generation
through supercritical normal fluid–superfluid counterflow in
a second-sound standing wave produced by the expansion. It
seems likely that the generation of such a standing wave is
inherent to a fast mechanical expansion through the super-
fluid transition, and that it may in practice set a lower limit to
the density of KZ vortices that can be detected by this
method. If further improvements of technique enabled repro-
ducible termination of the expansion closer to T� and data
precision could be improved; however, the substantially re-
duced vortex growth in the counterflow might still in prin-
ciple allow the detection of KZ vortices.
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