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Mushroom billiards have the remarkable property to show one or more clear cut integrable islands in one or
several chaotic seas, without any fractal boundaries. The islands correspond to orbits confined to the hats of the
mushrooms, which they share with the chaotic orbits. It is thus interesting to ask how long a chaotic orbit will
remain in the hat before returning to the stem. This question is equivalent to the inquiry about delay times for
scattering from the hat of the mushroom into an opening where the stem should be. For fixed angular momen-
tum we find that no more than three different delay times are possible. This induces striking nonperiodic
structures in the delay times that may be of importance for mesoscopic devices and should be accessible to
microwave experiments.
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I. INTRODUCTION

Two-dimensional billiards play a central role in the devel-
opment of chaos theory ever since the early work of Sinai
�1�. In physics they have acquired increasing importance as
they are seen to emulate properties of systems as different as
quantum dots �2� or planetary rings �3�. Particularly quantum
or wave realizations of such objects have become popular,
since flat microwave cavities, so-called microwave billiards,
are used by experimentalists at different laboratories �4–10�,
and these experiments mimic some properties of mesoscopic
devices. From a mathematical point of view one of the ad-
vantages of billiards is that, in many instances, chaotic prop-
erties can be proven for cases of complete chaos �1,11–13�
and more recently even for mixed systems �14,15�.

Microwave billiards serve as an analog system for the
experimental study of the wave behavior of the correspond-
ing classical billiard, and permit a direct test of hypotheses
proposed concerning connections between the quantum and
the corresponding classical dynamic �16,17�. In particular the
spectral behavior and properties of the wave functions of
quantum systems, whose classical analogue is chaotic
�18–23�, integrable �24,25� or intermediate �26–28� can be
investigated experimentally with such systems. In scattering
systems similar matters have been discussed mainly for sys-
tems that are chaotic and hyperbolic �12,29�, or mixed
�30–34�. The role of parabolic manifolds has also received
considerable attention �7,35�.

Mixed systems typically have the property, that in some
border region integrable and chaotic areas intermingle as a
fractal. Such a scenario is well illustrated by the twist map
�36�. It may help to detect some characteristics of the dynam-
ics in certain cases �34�. Bunimovich �14� has proposed a
family of mushroom billiards with mixed phase space which
have the unusual property that chaotic areas and integrable
ones are not separated by a fractal set of integrable islands
extending into the chaotic sea. Such billiards are character-
ized by circular or elliptic hats connected to a stem or stems
composed of straight walls; we shall concentrate on the case
with only one hat and one stem. Typical examples are shown

in Fig. 1. The stem pertains entirely to the chaotic area, while
the hat houses both chaotic and integrable trajectories. Sev-
eral studies on the classical dynamics in mushroom billiards
have already been presented �37,38�.

It is clear, that the relevant properties of such a billiard are
determined by the hat of the mushroom, and in view of the
successful theoretical �33� and experimental �34� analysis of
phase space structures in the context of scattering echoes we
wish in the present paper to analyze the hat of the mushroom
alone, viewed as a scattering system with an opening where
the stem used to be; yet to establish contact with other work,
we shall also keep the possibility of a stem in mind. In the
spirit of scattering echoes we ask how long a particle stays in
the hat, if injected from the opening of the billiard or from
the stem. Note that in the case of a semicircle mushroom hat
with a symmetric stem, the limit of the area of stable
bounded orbits is a caustic, which forms a circle segment
connecting the points where the stem starts, as seen in the
mushroom billiard in Fig. 1�a�. The usual Smale horseshoe
construction �15� fails, because there is no hyperbolic peri-
odic orbit along this line. We have therefore numerically in-
vestigated the distribution of the classical delay times of such
a billiard and found a surprising selectivity in the allowed
delay times.

As the angular momentum is a constant of motion in the
scattering process as long as a particle stays within the hat
we shall first consider fixed angular momenta and we find
that generically only three delay times occur. On a subset of
measure zero, one and two delay times are also possible;
a larger set of different delay times is outright forbidden.
This result is intimately related to old results on the circle
map �39� and allows to understand the above mentioned se-
lectivity.

II. DEFINITIONS AND PRELIMINARY RESULTS

The circular hats of mushrooms are characterized by two
quantities: The position and size of the hole and the angle
between the straight walls that constitute the underside of the
hat. In Fig. 1 we show various hats of mushroom billiards
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with different properties: circular mushroom hats ��a� and
�c��, mushroom billiards with a shifted stem or an elliptic hat
�b� and mushroom billiards whose hat is a circle sector of an
angle different from 180° �d�. The stem is always chosen in
triangular form to avoid the trivial parabolic manifold of
so-called “bouncing ball” orbits between parallel walls of a
rectangular stem.

In Fig. 1�c� we show 180°-mushroom billiards with a
wide and a narrow stem, respectively. Here a narrow stem is
one narrow enough, that orbits which are triangular in the
full circle remain within the hat irrespective of the orienta-
tion of the triangle. This implies, that all polygons, which do
not form stars with intersecting line segments are confined to
the hat. Moreover, the delay time, i.e., the time a particle

entering the mushroom hat stays there, is approximately de-
termined by the number of its bounces off the circle bound-
ary. This is clearly not the case for a wide stem, where some
polygons are no longer confined to the hat. In the following
we will restrict ourselves to mushroom billiards with a nar-
row stem and count bounces of particles entering and leaving
the mushroom hat, instead of determining delay times.

We also show mushroom billiards where the two straight
walls constituting the underside of the hat have angles
smaller than 180° in Fig. 1�d�. Note that it is essential that
the two straight walls are parts of radii of the circle, i.e., form
an angle of 90° with the tangent to the circle boundary at
their intersection. Otherwise we lose the properties of the
mushroom billiard. If the angle is larger than 90°, such that
the extensions of the two straight walls meet in a point below
the center of the circle, the system becomes ergodic and
chaotic �40�. For an angle smaller than 90° we get a more
complex coexistence of integrable and chaotic dynamics.

In the following we first will consider open 180°-
mushroom billiards with a semicircular hat and a symmetric
stem. We are interested in the number of bounces a particle
entering a mushroom hat through the opening experiences at
the circle boundary before exiting again. Bounces with the
straight part of the boundary are not counted. Whenever the
particle hits it, we may use the principle of mirror images
�41�, i.e., reflect the semicircle across its straight boundary,
thereby obtaining a complete circle and continue the orbit
into its lower half. Accordingly, we may introduce a conve-
nient alternative system, the so-called � billiard �37� shown
in Fig. 2, which consists of a circle billiard, whose radius R
equals that of the mushroom hat, and a straight line of length
2r where the opening of the corresponding semicircle mush-
room hat is. The only purpose of the straight line is, that it
defines the starting and the endpoints of those particle orbits
we are interested in. In the mushroom billiard these corre-
spond to particles entering and leaving the semicircle hat.

FIG. 1. Different shapes of mushroom hats. Circular mushroom
billiards consist of a hat with a circular boundary and a stem, which
has been chosen in triangular form for all mushroom billiards here.
Stable orbits in a circular mushroom hat never enter the stem. They
form a caustic in the hat, and the radius of the smallest possible
caustic is one-half the width of the stem, as indicated in �a�. Other
shapes of mushroom billiards may display an elliptic hat or a
shifted stem �b�, very wide or narrow stems �c� or hats which are a
circle sector of an angle smaller than 180° �d�, in this case 90° and
180 ° � ��5−1� /2.

FIG. 2. The � billiard is a circle billiard with a straight line of
length 2r along a diameter of the circle of length 2R, which defines
the starting and ending points of the particle orbits taken into con-
sideration. In a semicircle mushroom hat with the opening located
at the position of the straight line these orbits correspond to those of
particles entering and leaving it. In this sketch, a particle starts from
the straight line at PS, undergoes four reflections with the boundary
at P1, P2, P3, and P4 before it finally ends on the straight line at PE.
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Accordingly, in order to compute delay times, we consider
particle orbits starting on the straight line in the � billiard
and count the number of bounces of the particle with the
circle boundary, until it again reaches the straight line. We
shall see that the � billiard can be readily generalized to
describe arbitrary mushroom hats. While the � billiard is
convenient for mathematical purposes physically it seems of
little direct use.

As already noted above and indicated in Fig. 1�a�, for
every particle orbit in the circle billiard the line segments
connecting subsequent reflection points form a caustic of cir-
cular shape around the center of the billiard. The radius of
the caustic equals the distance of these line segments from
the circle center. Therefore it gives the angular momentum of
the particle where we set the absolute value of the momen-
tum to unity, as it is a conserved quantity. If the angular
momentum of the particle is large enough, the corresponding
orbit will never hit the straight line in the � billiard. Such
orbits belong to the integrable part of the phase space of the
mushroom billiard. If they are periodic they may be poly-
gons or stars. If they are aperiodic they will correspond to
slowly rotating stars or polygons, i.e., they would be periodic
in some rotating frame of reference. The limiting angular
momentum corresponds to the radius of that caustic, which
just touches one or both ends of the straight line. Any aperi-
odic orbit with angular momentum smaller than the limiting
value will eventually reach the straight line after some num-
ber of bounces. For periodic orbits we can have the particular
case, where a star or polygon will intersect the straight line in
certain orientations and not in others. The orientations that
do not lead to intersections will yield a parabolic manifold in
the chaotic sea as explained in Ref. �37�. This paper focuses
on orbits that do cross the straight line.

We now come to a really surprising result. Using a simple
reflection program, which computes orbits of a particle in a
billiard based on the law of specular reflection, we counted
the bounces off the circle boundary a particle starting from
the straight line with randomly chosen initial conditions ex-
periences until it reaches the straight line again. We found a
strange selectivity in these numbers, which resembled a gen-
eralized Fibonacci sequence. Indeed for r=R /3 the first ob-
served numbers of bounces are 1, 4, 5, 9, 14, 23, 37. The
next number in this sequence, 51, does not continue the Fi-
bonacci series, but is the sum of 37 and 14. Similar results
have been found for other ratios r /R. We shall call the pos-
sible numbers of bounces.

The purpose of this paper is to understand the observed
selectivity. For this we will introduce a map, which generates
the dynamics in the mushroom hat in an efficient way and
then shall proceed in two steps utilizing this map. First we
shall analyze the problem for a fixed angular momentum,
considering that angular momentum is a conserved quantity
both in the open mushroom hat and in the � billiard. We
shall obtain the surprising result that typically only three
magic numbers termed a magic triplet are possible for each
angular momentum. To understand the entire delay time
structure, we then analyze how these triplets evolve when
changing the angular momentum. Based on the map, we de-
veloped a very efficient algorithm for the computation of the
magic numbers.

III. MAGIC NUMBERS FOR FIXED ANGULAR
MOMENTUM

Let the radius of the � billiard be R and the straight line
of length 2r be oriented symmetrically along the horizontal
axis. A particle orbit is characterized by the particle’s angular
momentum M, which is just the radius of its caustic. Orbits
with angular momentum M �r never intersect the straight
line, whereas orbits with M �r intersect it �up to a set of
marginally unstable orbits of measure zero as stated above�
at some time and therefore correspond to chaotic trajectories
in the mushroom billiard. The angular momentum can be
expressed in terms of the angle between the orbit of the
reflected particle and the tangent to the circle boundary at the
point of impact, which also is a constant for each particle
orbit; we will call this angle �, where 0���� /2 �see Fig.
3�. Then, the radius of the caustic, i.e., the angular momen-
tum M equals

M = R cos � . �1�

A particle orbit is also characterized by its initial orientation.
Generally, the orientation of the particle orbit after n reflec-
tions at the circle boundary may be given in terms of the
orbit’s angle with the positive horizontal axis. Equivalently,
its orientation may be defined in terms of the total angle

FIG. 3. A � billiard with the straight line chosen symmetric
with respect to the center of the circle. Initial conditions for a par-
ticle orbit in the � billiard are the angular momentum M, i.e., the
radius of its caustic �dotted line circle�, and the orientation �0 of its
first line segment. The orientation of each line segment of a particle
orbit is defined in terms of the total angle covered by the vector
pointing from the center of the circle to the point of contact of the
line segment with the caustic during its rotation while the particle
propagates. In this example the orientation �0 of the initial line
segment is negative and determined by extending the latter back
beyond its point of contact with the caustic as indicated in the figure
by the dotted line. The angle � between the reflected particle orbit
and the tangent to the circle boundary at the point of reflection is a
constant. At each reflection the orientation angle increases by 2�.
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covered by the vector pointing from the circle center to the
point of contact between the caustic and the orbit during its
rotation while the particle is being reflected at the circle
boundary. For our purposes it is more convenient to define it
in terms of the latter. We denote this angle by �n for the nth
line segment of a particle orbit, which connects the nth point
of impact with the �n+1�th. At each reflection the angle in-
creases by 2� �see Fig. 3�. Then, for a particle orbit starting
from the straight line with an initial orientation �0 measured
with respect to the positive horizontal axis and an initial
angular momentum M, which defines �, �n reads

�n = �0 + n2� . �2�

Note, that the angle �n is not restricted to the interval �0,2��,
as it also contains the information on the number of times the
particle travelled around the circle center. In conclusion, each
particle orbit is completely characterized by the initial values
�� ,�0�, the radius of the caustic �Eq. �1�� and the orientation
of each of its line segments �Eq. �2��.

Due to the symmetry of the system it is sufficient to deal
with orbits proceeding from the straight line into the right
upper quarter of the � billiard. For a given initial orientation
�0 the orbit starts on the horizontal line at a distance
M / cos �0 from the circle center �see Fig. 3�. As we are only
interested in orbits starting from the straight line, which
reaches from −r to r, we obtain as a necessary condition for
the initial angle �0,

− 	 � �0 � 	 �3�

with the notation

	 = arccos�M/r� , �4�

where with Eq. �1�,

0 � 	 � � . �5�

For an angular momentum M and length 2r of the straight
line, ±	 in Eq. �4� correspond to the initial orientation of
those particle orbits which start at the endpoints of the
straight line. For a particle starting with an initial orientation
�0, the nth line segment of its orbit intersects the horizontal
line at M / cos �n, if measured with respect to the circle cen-

ter. Hence, it crosses the straight line, if −r�M / cos �n�r,
i.e., if �with Eq. �4��

�n mod 2� � �0;	� � �� − 	;� + 	� � �2� − 	;2�� ,

�6�

or equivalently if there is an integer number m such that

m� − 	 � �n � m� + 	, m = 0,1, . . . , �7�

that is, if the distance between �n and an integer multiple of
� is smaller than 	. In order to determine all possible num-
bers of bounces that particles starting from the straight line
perform until they reach it again, we must evaluate this in-
equality for all allowed initial orientations �0 �see Eq. �3��
and resulting orientations �n. With Eq. �3� and Eq. �2� the
latter take values from intervals of length 2	 around integer
multiples of 2�,

n2� − 	 � �n � n2� + 	, n = 0,1, . . . . �8�

While this inequality defines the range of possible values for
the orientations �n, that in Eq. �7� gives the condition for the
intersection of a particle orbit with the straight line after n
reflections. Whenever one of the intervals defined in Eq. �8�
has common values with one of those given in Eq. �7�, a part
of all possible orbits reaches the straight line. Thus, the only
information we need for the computation of the magic num-
bers are the orientations of the line segments of a particle
orbit. This procedure for the computation of the magic num-
bers is fast and much more efficient than the reflection pro-
gram.

For a given angular momentum M, which defines the
angle �, and length of the straight line 2r giving the angle 	,
an illustrative graphical representation of this inequality is
obtained as follows: All possible initial orientations �0 of the
particle orbits we are interested in take a value from an in-
terval of length 2	 situated symmetrically around 0 �see Eq.
�3��. According to Eq. �8� the orientation �n of the nth line
segment of a particle orbit then takes a value from an interval
of length 2	 shifted by n2� with respect to the initial interval
and by 2� with respect to that of the preceding line segment,
�n−1. Hence, the orientations of the line segments of all those
particle orbits, which start from the straight line, resume val-
ues from a string of angle intervals of length 2	 situated at

FIG. 4. Illustrative representation of particle orbits starting from the straight line in the � billiard in terms of the orientations of their line
segments. The orientations of the ensemble of all particle orbits starting from the straight line are restricted to the interval �−	 ,	� �see Eq.
�3� in the main text�. Their evolution is illustrated by shifting this interval by 2� at each reflection of the particle with the billiard boundary,
thereby obtaining the range of values of the orientations of successive line segments of the particle orbits �see Eq. �8��. Thus, a string of
“orbit intervals” is obtained. The straight line is represented by a string of “line intervals” of size 2	 around each multiple of � on the angle
axis. When an overlap of a line and an orbit interval occurs, the overlapping part of the orbit interval corresponds to angles �n, which fulfill
the inequality Eq. �7�, that is, to initial angles �0, for which the particle orbit ends after n reflections. Accordingly, the overlapping part is cut
off the orbit interval in the subsequent iterations.
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distances of 2� along the angle axis as depicted in Fig. 4. We
call these intervals orbit intervals. Next, let us draw a string
of intervals of length 2	 at distances � along the angle axis
below the string of orbit intervals; we will call these intervals
line intervals. While the orbit intervals refer to the inequality
Eq. �8� the latter refer to the inequality Eq. �7�. The inequal-
ity Eq. �7� is fulfilled for a part of the interval of allowed
initial angles, whenever one of the orbit and one of the line
intervals have common values, i.e., partially overlap. As we
are only interested in orbits which start from the straight line,
the first orbit interval completely overlaps with the first line
interval.

In the example shown in Fig. 4, an orbit interval overlaps
with a line interval after the first shift of the orbit interval.
Hence, a part of the incoming particles reaches the straight
line after one bounce with the circle boundary and the cor-
responding orbits end there. Accordingly, the orbit interval is
shortened by this part. After four reflections, another part of
all possible particle orbits reaches the straight line, i.e., the
orbit interval is further shortened. The remaining part of the
orbit interval overlaps with a line interval after five reflec-
tions. Thus, in this example the magic triplet consists of the
numbers 1, 4, and 5.

The Eqs. �2� and �6� are related to old results on the
so-called circle map �39�. On the basis of these results it can
be shown that, for a fixed angular momentum, there are at
most three magic numbers, and that if there are three magic
numbers the largest one is the sum of the two smaller ones.
We found an alternative proof of this result which in fact
generalizes the translation of orbit and line intervals as de-
picted in Fig. 4. Using this approach we also obtained the
following results: There is a subset of measure zero, where
we have only two magic numbers. Further, in the case of the
parabolic manifolds described in Ref. �37� only one magic
number is finite, whereas the others are infinite and corre-
spond to marginally unstable orbits which never leave the
mushroom hat. Finally, in the case of angular momentum
zero, all particle orbits intersect the straight line after a single
bounce. We thus have exhausted all possibilities. We give in
Table I the magic triplets for different angular momenta for
r=R /3 used in Fig. 1�a�, and we readily recognize the num-
bers therein.

IV. MAGIC NUMBERS AS A FUNCTION OF ANGULAR
MOMENTUM

As the appearance of only one or two magic numbers is
restricted to a subset of measure zero in the set of possible

angular momenta we must vary the angular momentum in
order to investigate them. In Fig. 5 we show the magic num-
bers as a function of angular momentum for the semicircle
mushroom hat with radius R and half-opening r=R /3. We
observe discontinuities in the behavior of the triplets of time
delays �some are marked with arrows in the figure�. Precisely
there one member of a magic triplet vanishes, such that there
are just two magic numbers, and a new magic triplet
emerges. The new magic number equals the sum or differ-
ence of the other two. This apparently explains the prelimi-
nary result that within the whole spectrum of magic numbers
each except the two smallest is the sum of two smaller ones.

Moreover, we observe a singularity in Fig. 5. It is located
at an angular momentum, which is associated with a family
of marginally unstable periodic orbits �37�. These periodic
orbits are marginally unstable, because the smallest change
in angular momentum will cause them to rotate about the

TABLE I. Magic triplets for different values of angular momentum M for a circular mushroom hat with radius R and half-opening r
=R /3.

M 0.1000 0.5000 0.9000 0.9500 0.9800 0.9950 0.9980 0.9990 0.9992

n1 1 1 1 4 5 9 14 14 37

n2 4 4 4 5 9 14 23 37 51

n3 5 5 5 9 14 23 37 51 88

FIG. 5. Magic numbers plotted as a function of angular momen-
tum for a semicircle mushroom hat with radius R and a half-
opening r=R /3 chosen symmetrically with respect to the circle
center. The angular momentum is given in units of R as the absolute
momentum is set to unity. One observes lines where a magic num-
ber remains constant over a certain range of angular momentum
values, and sudden discontinuities �arrows�, where one member of
the triplet changes its value. Note further a singularity, where two of
the three members of the triplet tend to infinity. Singularities of this
kind are observed at angular momenta of unstable periodic orbits,
which do not intersect the straight line in the � billiard in some
orientations and do it in others. Between singularities of this kind,
every magic number except the first and second, is the sum of two
smaller ones, as proven in the text. Note that the chosen interval of
angular momentum is small and corresponds to particles which
reach the straight line close to one of its ends.
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circle center and thus eventually to hit the straight line in the
� billiard. The smaller the change in angular momentum, the
slower this rotation will be, and this must lead to the delay
times diverging to infinity as we approach the angular mo-
mentum of the periodic orbit. This is clearly seen in Fig. 5.
Note that the slopes of the flanks formed by the discontinui-
ties to the left and the right of the angular momentum asso-
ciated with the singularity are different. Between zero angu-
lar momentum and the first singularity as well as in each
interval between two singularities only discontinuities of the
type discussed above may happen. Therefore, within an in-
terval, each magic number except the two smallest ones at
the minimum equals the sum of two smaller magic numbers.
However, there is no such relation between magic numbers
from two different intervals.

The fact that most magic numbers can be decomposed
into two smaller ones, immediately explains why we observe
a strong selectivity in the spectra of magic numbers. In Fig.
6 we show the counts of bounce numbers for r=R /3 in a
double logarithmic plot up to 50 000 bounces obtained using
Eq. �7�. We clearly see that scarcity dominates the picture.
Note that the sequence of the magic numbers starts with the
Fibonacci like behavior as discussed above. Large magic
numbers are dominated by the marginally unstable periodic
orbits, which cause two organized sequences of magic num-
bers with a certain periodicity for each singularity, one for
angular momentum values below, the other for values above
the singularity. Therefore we understand, why magic num-
bers may consist of subsets which show a periodicity as ob-
served in Ref. �37�. For our purpose, Fig. 6 teaches us two
facts. First, that we are really able to solve the problem also
for very large bounce numbers. Second, that the small
bounce numbers display a selectivity, that may be accessible
to experiments as the allowed numbers typically translate
into fairly distinct physical times.

It turned out that some magic numbers of a mushroom hat
can actually be calculated analytically. For every mushroom
with a central stem the first magic number equals one, n1
=1, as in the limiting case of vanishing angular momentum,
every orbit leaves the mushroom hat after one reflection.
Furthermore, the second magic number of all triplets, whose
first magic number is n1=1 is given by

n2 = �� − 2	

� − 2�
� , �9�

where �x� denotes the integer part of x. This result is ob-
tained by evaluating the inequality Eq. �7�. It is valid for all
triplets with first magic number one, i.e., if

M �
1

�1 + 1/r2
.

Using the sum rule, the third magic number is given by n3
=n2+1.

For very small angular momenta, the angles ��M� and
	�M� can be expanded in a Taylor series, leading with Eq.
�9� to the simple expressions n1=1, n2= �1/r�+1, and n3

= �1/r�+2 for the very first magic triplet within a spectrum
of magic numbers of an arbitrary mushroom hat.

V. GENERALIZATIONS TO OTHER MUSHROOM
BILLIARDS

All results presented so far were given for a 180°-
mushroom billiard implying a period of � for the line inter-
vals. For hats with an angle 
 smaller than � the entire
argumentation holds as above except that the period � is
replaced by 
. Note that this corresponds to a “generalized
� billiard,” where the straight line rotates each time the
straight wall constituting the “underside” of the hat is hit. If
the mushroom hat has an asymmetric opening, the straight
line must be shifted even for the 180° billiard, as the asym-
metry is reversed each time the particle hits its underside.
The chain of arguments becomes a little more tedious, but
still goes through. Thus the description of the dynamics in-
side the mushroom hat in terms of the translation of orbit and
line intervals is indeed general, such that the results hold for
a much wider range of mushroom billiards. In Fig. 7 we
show bounce numbers in a double logarithmic plot for sev-
eral angles and openings. The important point is, that we see
no qualitative difference in the short time behavior: the se-
lectivity remains in all cases. Furthermore, the magic num-
bers again combine to triplets �not shown in the figure�.

We may finally go one step further and ask, what happens
with elliptic hats �42�. There we must remember, that such a
hat displays two families of stable particle orbits, one corre-
sponding to particles travelling between the two focal points,
the other one to particles surrounding them. We performed
numerical calculations for three different choices of the po-
sitions of the straight lines for an elliptic � billiard using the
reflection program. In the first case, the straight line was
positioned between the two focal points and in the second it

FIG. 6. Counts of the numbers of bounce particles starting from
the straight line of half-length r=R /3 in the �-billiard experience
with the circle boundary until they reach the straight line again;
they were obtained using the linear inequality Eq. �7� for the orien-
tation of line segments between two reflections. Note the persisting
selectivity. The organized and regular long time behavior �large
number of bounces� is dominated by unstable periodic orbits, while
the short time behavior �small number of bounces� cannot be ex-
plained by those.
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extends across the focal points. The results are shown in Fig.
8. We see no selectivity in the first case �circles� and a pic-
ture very similar to those obtained for the semicircle hats in
the second case �crosses�. In the second case particles mov-
ing on orbits, which start between the focal points all reach
the straight line again after only one bounce with the ellipse
boundary. The orbits surrounding the two focal points on the
other hand are just deformed stars. The line segments of such
stars and therefore their elliptic caustic cross the straight line
in a way similar to that of those in a circular � billiard. This
brought us to the assumption, that a necessary condition for
the selectivity is that the opening of the mushroom hat cuts a
limiting caustic from outside. In order to confirm this picture
we performed a third numerical simulation, where two
straight lines were positioned in the elliptic � billiard, which
extend from the focal points to the interior �see inset in Fig.
8�. In this case the hyperbolic caustic of those stable orbits of
particles which cross the horizontal line between the focal
points is cut by the straight line from outside, leading indeed
again to the selectivity in the magic numbers �diamonds in
Fig. 8�. Note that these calculations were performed with the
simple reflection program. An analysis similar to that for
semicircular hats is also possible for elliptic hats, but shall
not be carried out here.

VI. CONCLUSION

We have been able to show, that mushroom hats with
openings in the straight boundaries have a very selective be-
havior concerning the number of bounces a particle has with
the curved boundary before it escapes. Indeed while the
magic number one always occurs we can to some extent
design the subsequent numbers and hence the corresponding
delay times. We expect that the selectivity of the possible
delay times in the hat of the mushroom should show up not

only in classical billiards, but also in billiards excited with
microwaves. In such experiments the open hat mushroom
billiard is excited with a single pulse input signal and the
output time signal is expected to be nonperiodic, in contrast
to acoustical echoes we know from experience and scattering
echoes analyzed in some detail in Refs. �32–34�. This opens
new avenues in billiard research. An experimental device for
the measurement of delay times in open mushroom billiards
can be constructed, based on the analogy between open
mushroom hats and the � billiard, with a flat cylindric mi-
crowave resonator of circular shape. The straight line defin-
ing in the classical billiard the starting and the endpoints of
orbits which correspond to particles entering and leaving the
mushroom hat can be realized by a strip of microwave ab-
sorbing material with an emitting and a receiving antenna
positioned close to the strip. To test how the results presented
in this paper carry over to wave mechanics, we plan such a
microwave experiment with a superconducting cavity pro-
ceeding along similar lines as in the one reported in Ref. �34�
in order to investigate the time response. It is though impor-
tant to repeat, that the equivalence between time and bounce
numbers holds only for small openings. Once we have star-
like and nonstarlike polygon orbits coexisting the corre-
sponding delay times get mixed, and while the selectivity of
bounce numbers may persist, their physical importance may
be marginal in this case. Also we must be aware, that the
analogy will break down at long times, but these are prob-
ably of marginal interest anyway.

FIG. 8. Magic numbers of an elliptic � billiard, corresponding
to a mushroom billiard with an elliptic hat �see Fig. 1�b��, with the
length of the semimajor axis chosen equal to R, that of the semimi-
nor axis equal to �3/2R while the focal points have a distance of
0.5R from the center. Circles refer to a straight line chosen sym-
metrically between the focal points �length 2r=0.99R�, where no
selectivity is observed. For a straight line of length 2r=1.1R selec-
tivity is evident even for long times, because here only deformed
starlike periodic stable orbits of the ellipse survive. Those particles,
which intersect the straight line between the focal points, will inter-
sect it again after just one bounce with the elliptic boundary. The
diamonds refer to the case of two straight lines of length 0.1R,
whose outer endpoints are located in the focal points. They cut the
caustic of the stable orbits of particles crossing the horizontal line
between the two focal points from outside. Again a selectivity is
observed.

FIG. 7. Counts of magic numbers for mushroom hats with half-
opening r=0.3R and different shapes: 180°-mushroom hat �open
triangles�, 180 ° � ��5−1� /2-mushroom hat �open circles�, and
90°-mushroom hat �open squares� �see inset and Figs. 1�a� and
1�d��. Note that the selectivity is observed in all examples, as the
density of points remains almost constant in the logarithmic plot.
For wider openings there is no correspondence between the number
of reflections and the physical time any more.
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