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In this paper, we propose a susceptible-infected model with identical infectivity, in which, at every time step,
each node can only contact a constant number of neighbors. We implemented this model on scale-free net-
works, and found that the infected population grows in an exponential form with the time scale proportional to
the spreading rate. Furthermore, by numerical simulation, we demonstrated that the targeted immunization of
the present model is much less efficient than that of the standard susceptible-infected model. Finally, we
investigate a fast spreading strategy when only local information is available. Different from the extensively
studied path-finding strategy, the strategy preferring small-degree nodes is more efficient than that preferring
large-degree nodes. Our results indicate the existence of an essential relationship between network traffic and
network epidemic on scale-free networks.
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I. INTRODUCTION

Since the seminal works on the small-world phenomenon
by Watts and Strogatz �1� and the scale-free property by
Barabási and Albert �2�, the studies of complex networks
have attracted a lot of interest within the physics community
�3,4�. One of the ultimate goals of the current studies on
complex networks is to understand and explain the workings
of the systems built upon them �5,6�. The previous works
about epidemic spreading in scale-free networks present us
with completely new epidemic propagation scenarios in
which a highly heterogeneous structure will lead to the ab-
sence of any epidemic threshold �see the review papers �7,8�
and references therein�. These works mainly concentrate on
the susceptible-infected-susceptible �SIS� �9,10� and
susceptible-infected-removed �SIR� �11,12� models. How-
ever, many real epidemic processes cannot be properly de-
scribed by the above two models. For example, in many
technological communication networks, each node not only
acts as a communication source and sink, but also forwards
information to others �13,14�. In the process of broadcasting
�15,16�, each node can be in two discrete states, either re-
ceived or unreceived. A node in the received state has re-
ceived information and can forward it to others like the in-
fected individual in the epidemic process, while a node in the
unreceived state is similar to the susceptible one. Since the
node in the received state generally will not lose information,
the so-called susceptible-infected �SI� model is more suitable
for describing the above dynamical process. Another typical
situation in which the SI model is more appropriate than SIS
and SIR models is the investigation of the dynamical behav-
iors in the very early stage of epidemic outbreaks when the
effects of recovery and death can be ignored. The behaviors

of the SI model are not only of theoretical interest, but also
of practical significance beyond the physics community.
However, this has not been carefully investigated thus far.

Very recently, Barthélemy et al. �17,18� studied the SI
model in Barabási-Albert �BA� scale-free networks �2�, and
found that the density of infected nodes, denoted by i�t�,
grows approximately in the exponential form, i�t��ect,
where the time scale c is proportional to the ratio between
the second and the first moments of the degree distribution,
c��k2� / �k�. Since the degree distribution of the BA model
obeys the power-law form P�k��k−� with �=3, this epi-
demic process has an infinite spreading velocity in the limit
of infinite population. Following a similar process on ran-
dom Apollonian networks �19–21� and the Barrat-
Barthélemy-Vespignani networks �22,23�, Zhou et al. inves-
tigated the effects of clustering �19� and weight distribution
�24� on SI epidemics. And by using the theory of branching
processes, Vázquez obtained a more accurate solution of i�t�,
including the behaviors with large t �25�. The common as-
sumption in all the aforementioned works �17–19,24� is that
each node’s potential infection-activity �infectivity�, mea-
sured by its possibly maximal contribution to the propaga-
tion process within one time step, is strictly equal to its de-
gree. Actually, only the contacts between susceptible and
infected nodes have possible contributions in epidemic pro-
cesses. However, since in a real epidemic process an infected
node usually does not know whether its neighbors are in-
fected, the standard network SI model assumes that each
infected node will contact every neighbor once within one
time step �17�, thus the infectivity is equal to the node de-
gree.

The node with very large degree is called a hub in net-
work science �3–6�, while the node with great infectivity in
an epidemic contact network is called the superspreader in
the epidemiological literature �26–28�. All the previous stud-
ies on the SI network model have a basic assumption, that is,
hub�superspreader. This assumption is valid in some cases
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in which the hub node is much more powerful than the oth-
ers. However, there are still many real spreading processes,
which cannot be properly described by this assumption.
Some typical examples are as follows.

�i� In the broadcasting process, the forwarding capacity
of each node is limited. Especially, in wireless multihop ad
hoc networks, each node usually has the same power and
thus almost the same forwarding capacity �29�.

�ii� In epidemic contact networks, the hub node has many
acquaintances; however, he/she could not contact all his/her
acquaintances within one time step. Analogously, although a
few individuals have hundreds of sexual partners, their
sexual activities are not far beyond a normal level due to the
physiological limitations �30–32�.

�iii� In some email service systems, such as the Gmail
system schemed out by Google �33�, one can be a client only
if he/she received at least one invitation from some existing
clients. And after he/she becomes a client, he/she will have
the ability to invite others. However, the maximal number of
invitations he/she can send per a certain period of time is
limited.

�iv� In network marketing processes, the referral of a
product to potential consumers costs money and time �e.g., a
salesman has to make phone calls to persuade his social sur-
rounding to buy the product�. Thus, generally speaking, the
salesman will not make referrals to all his acquaintances
�34�.

In addition, since the infectivity of each node is assigned
to be equal to its degree, one cannot be sure which �the
power-law degree distribution, the power-law infectivity dis-
tribution, or both� is the main reason that leads to the virtu-
ally infinite propagation velocity of the infection.

II. MODEL

Different from the previous works, here we investigate the
SI process on scale-free networks with identical infectivity.
In our model, individuals can be in two discrete states, either
susceptible or infected. The total population �i.e., the net-
work size� N is assumed to be constant; thus, if S�t� and I�t�
are the numbers of susceptible and infected individuals at
time t, respectively, then

N = S�t� + I�t� . �1�

Denote by � the spreading rate at which each susceptible
individual acquires infection from an infected neighbor dur-
ing one time step. Accordingly, one can easily obtain the
probability that a susceptible individual x will be infected at
time step t to be

�x�t� = 1 − �1 − ����x,t−1�, �2�

where ��x , t−1� denotes the number of contacts between x
and the infected individuals at time t−1. For small �, one has

�x�t� 	 ���x,t − 1� . �3�

In the standard SI network model �17–19�, each infected
individual will contact all its neighbors once at each time
step, thus the infectivity of each node is defined by its degree

and ��x , t� is equal to the number of its infected neighbors at
time t. In the present model, we assume every individual has
the same infectivity A, in which, at every time step, each
infected individual will generate A contacts where A is a
constant. Multiple contacts to one neighbor are allowed, and
contacts between two infected ones, although having no ef-
fect on the epidemic dynamics, are also counted just like the
standard SI model. The dynamical process starts by selecting
one node randomly, assuming it is infected.

III. SPREADING VELOCITY

In the standard SI network model, the average infectivity
equals the average degree �k�. Therefore, in order to compare
the proposed model with the standard one, we set A= �k�. As
shown in Fig. 1, the dynamical behaviors of the present
model and the standard one are clearly different: The veloc-
ity of the present model is much less than that of the standard
model.

In the following discussions, we focus on the proposed
model. Without loss of generality, we set A=1. Denote by
ik�t� the density of infected k-degree nodes. Based on the
mean-field approximation, one has

dik�t�
dt

= �k�1 − ik�t��

k�

1

k�

k�P�k��ik��t�



k�

k�P�k��
, �4�

where P�k� denotes the probability that a randomly selected
node has degree k. The factor 1

k�
accounts for the probability

that one of the infected neighbors of a node, with degree k�,
will contact this node at the present time step. Note that the
infected density is given by

i�t� = 

k

ik�t�P�k� , �5�

so Eq. �4� can be rewritten as

FIG. 1. �Color online� The infected density i�t� vs time, where
i�t�= I�t� /N. The black and red curves result from the standard SI
network model and the present model. The numerical simulations
are implemented based on the BA network �2� of size N=5000 and
with average degree �k�=6. The spreading rate is given as �=0.01,
and the data are averaged over 5000 independent runs.

ZHOU et al. PHYSICAL REVIEW E 74, 056109 �2006�

056109-2



dik�t�
dt

=
�k

�k�
�1 − ik�t��i�t� . �6�

Manipulating the operator 
kP�k� on both sides, and neglect-
ing terms of order O�i2�, one obtains the evolution behavior
of i�t� as follows:

i�t� � ect, �7�

where c�� is a constant independent of the power-law ex-
ponent �.

In Fig. 2, we report the simulation results of the present

model for different spreading rates ranging from 0.0001 to
0.01. The curves i�t� vs t can be well fitted by a straight line
in a single-log plot for small t with slope proportional to �
�see also the inset of Fig. 2�b�, where the curves for different
values of � collapse to one curve in the time scale �t�, which
strongly supports the analytical results. Furthermore, based
on the scale-free configuration model �35,36�, we investi-
gated the effect of network structure on epidemic behaviors.
Different from the standard SI network model �17,18�, which
is highly affected by the power-law exponent �, as shown in
Fig. 3, the exponent � here has almost no effects on the
epidemic behaviors of the present model. In other words, in
the present model, the spreading rate �, rather than the het-
erogeneity of degree distribution, governs the epidemic be-
haviors.

IV. TARGETED IMMUNIZATION

An interesting and practical problem is whether the epi-
demic propagation can be effectively controlled by vaccina-
tion aiming at part of the population �7,8,37�. The simplest
case is to select some nodes completely randomly, and then
vaccinate them. By applying the percolation theory, this case
can be solved exactly �38,39�. The corresponding result
shows that it is not an efficient immunization strategy for
highly heterogeneous networks such as scale-free networks.
Recently, some efficient immunization strategies for scale-
free networks have been proposed. On the one hand, if the
degree of each node cannot be known clearly, an efficient
strategy is to vaccinate the random neighbors of some ran-
domly selected nodes since the node with a larger degree has
a greater chance to be chosen by this double-random chain
than the one with a small degree �40,41�. On the other hand,
if the degree of each node is known, the most efficient im-
munization strategy is the so-called targeted immunization
�42,43�, wherein the nodes of highest degree are selected to
be vaccinated �see also a similar method in Ref. �44��.

Here, we compare the performance of the targeted immu-
nization for the standard SI model and the present model. To

FIG. 2. �Color online� The infected density i�t� vs time in nor-
mal �a� and single-log �b� plots. The black solid, red dot, green
dash, and blue dash-dot curves correspond to �=0.01, 0.001,
0.0005, and 0.0001, respectively. In single-log plot �b�, the early
behavior of i�t� can be well fitted by a straight line, indicating the
exponential growth of the infected population. The inset shows the
rescaled curves i��t�. The four curves for different � collapse to one
curve in the new scale �t. The numerical simulations are imple-
mented based on a BA network of size N=5000 and with average
degree �k�=6, and the data are averaged over 5000 independent
runs.

FIG. 3. �Color online� The infected density i�t� vs time for dif-
ferent �. The black squares, red circles, blue up-triangles, green
down-triangles, and pink diamonds �from up to down� denote the
cases of �=2.0, 2.5, 3.0, 3.5, and 4.0, respectively. The numerical
simulations are implemented based on the scale-free configuration
network model. The networks are of size N=1000 and with average
degree �k�=6, the spreading rate is given as �=0.01, and the data
are averaged over 10 000 independent runs.
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implement this immunization strategy, a fraction of the popu-
lation having the highest degree, denoted by f , is selected to
be vaccinated. That is to say, these Nf nodes will never be
infected but the contacts between them and the infected
nodes are also counted. Clearly, in both models, the hub
nodes have more chances to receive contacts from their in-
fected neighbors, thus this targeted immunization strategy
must slow down the spreading velocity. In Figs. 4�a� and
4�b�, we report the simulation results for the standard SI
model. The spreading velocity decreases remarkably even if
only a small fraction, f =0.001, of the population gets vacci-
nated, which strongly indicates the efficiency of the targeted
immunization. Relatively, the effect of the targeted immuni-
zation for the present model is much weaker �see Figs. 4�c�
and 4�d��. The difference is more obvious in the single-log
plot �see Figs. 4�b� and 4�d��: The slope of the curve i�t�
� t, which denotes the time scale of the exponential term that
governs the epidemic behaviors, sharply decreases even if
only a small amount of hub nodes are vaccinated in the stan-
dard SI process, while it changes slightly in the present
model.

V. FAST SPREADING STRATEGY

As mentioned in Sec. IV, previous studies about network
epidemic processes focus on how to control the epidemic
spreading, especially for scale-free networks. In contrast, few
studies aim at accelerating the epidemic spreading process.
However, a fast spreading strategy may be very useful for
enhancing the efficiency of network broadcasting or for mak-
ing profits from network marketing. In this section, we give

a primary discussion on this issue by introducing and inves-
tigating a simple fast spreading strategy. Since the whole
knowledge of network structure may be unavailable for
large-scale networks, here we assume only local information
is available.

In our strategy, at every time step, each infected node x
will contact its neighbor y �in the broadcasting process, this
means to forward a message to node y� at a probability pro-
portional to ky

�, where ky denotes the degree of y. There are
two ingredients that simultaneously affect the performance
of the present strategy. On the one hand, the strategy prefer-
ring a large-degree node �i.e., the strategy with ��0� corre-
sponds to a shorter average distance in the path searching
algorithm �45,46�, thus it may lead to faster spreading. On
the other hand, to contact an already infected node �i.e., to
forward a message to a node having already received this
message� has no effect on the spreading process, and the
nodes with larger degrees are more easily infected according
to Eq. �6� in the case of �=0. Therefore, the strategy with
��0 will bring many redundant contacts that may slow
down the spreading. For simplicity, we call the former the
shorter path effect �SPE� and the latter the redundant contact
effect �RCE�.

Figure 5�a� shows the density of infected individuals i�t�
as a function of t for different �. Clearly, due to the compe-
tition between the two ingredients, SPE and RCE, the strat-
egies with too large �e.g., �=1,2� or too small �e.g.
�=−1,−2� � are inefficient compared with the unbiased one
with �=0. The cases in which � is around zero are shown in
Figs. 5�b� and 5�c�. In Fig. 5�b�, one can see that the RCE
plays the major role in determining the epidemic velocity
when ��0; that is, larger � leads to slower spreading. As

FIG. 4. �Color online� The in-
fected density i�t� vs time with
different vaccinating ranges. �a�
and �b� show the results of tar-
geted immunization for the stan-
dard SI process in normal and
single-log plots, respectively. Cor-
respondingly, �c� and �d� display
the results for the present model.
In all the four panels, the black
solid, red dash, blue dot, and
green dash-dot curves represent
the cases of f =0, 0.001, 0.005,
and 0.01, respectively. The nu-
merical simulations are imple-
mented based on a BA network of
size N=5000 and with average de-
gree �k�=6, the spreading rate is
given as �=0.01, and the data are
averaged over 5000 independent
runs. For comparison, the infectiv-
ity of the present model is set as
A= �k�=6.
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shown in Fig. 5�c�, the condition is much more complex
when ��0: In the early stage, the unbiased strategy seems
better; however, as time goes on, it is exceeded by the others.

VI. CONCLUSION AND DISCUSSION

Almost all the previous studies about the SI model in
scale-free networks essentially assume that the nodes of large
degrees are not only dominant in topology, but also the su-

perspreaders. However, not all the SI network processes can
be appropriately described under this assumption. Typical
examples include the network broadcasting process with a
limited forwarding capacity, the epidemics of sexually trans-
mitted diseases where all individuals’ sexual activities are
pretty much the same due to the physiological limitations,
email service systems with limited ability to accept new cli-
ents, network marketing systems where the referral of prod-
ucts to potential consumers costs money and time, and so on.
Inspired by these practical requirements, in this paper we
have studied the behaviors of susceptible-infected epidemics
on scale-free networks with identical infectivity. The infected
population grows in an exponential form in the early stage.
However, different from the standard SI network model, the
epidemic behavior is not sensitive to the power-law exponent
�, but is governed only by the spreading rate �. Both the
simulation and analytical results indicate that it is the hetero-
geneity of infectivities, rather than the heterogeneity of de-
grees, that governs the epidemic behaviors. Furthermore, we
compare the performances of targeted immunization on the
standard SI process and the present model. In the standard SI
process, the spreading velocity decreases remarkably even if
only a slight fraction of the population is vaccinated. How-
ever, since the infectivity of the hub nodes in the present
model is just equal to that of the small-degree node, the
targeted immunization for the present model is much less
efficient.

We have also investigated a fast spreading strategy in
which only local information is available. Different from
previous reports about some relative processes taking place
on scale-free networks �45,46�, we found that the strategy
preferring small-degree nodes is more efficient than those
preferring large nodes. This result indicates that the redun-
dant contact effect is more important than the shorter path
effect. This finding may be useful in practice. Very recently,
some authors suggested using a quantity called saturation
time to estimate the epidemic efficiency �47,48�, which
means the time when the infected density, i�t�, first exceeds
0.9. Under this criterion, the optimal value of � leading to
the shortest saturation time is −0.3.

Some recent studies on network traffic dynamics show
that the scale-free networks will have larger throughput if
they use routing strategies preferring small-degree nodes
�49–51�. This is because this strategy can avoid possible con-
gestion occurring at large-degree nodes. Although the quan-
titative results are far different, there may exist some com-
mon features between network traffic and network epidemic.
We believe that our work can further enlighten the readers on
this interesting subject.
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FIG. 5. �Color online� The infected density i�t� vs time for dif-
ferent �. In �a�, the black solid, blue dot, magenta dash-dot, red
dash, and green dash-dot-dot curves correspond to �=0, −1, −2, 1,
and 2, respectively. In �b�, the black solid, red dash, blue dot, green
dash-dot, magenta dash-dot-dot, and cyan short-dash curves, from
up to down, correspond to �=0, 0.1, 0.2, 0.3, 0.4, and 0.5, respec-
tively. In �c�, the black solid, red dash, blue dot, green dash-dot,
magenta dash-dot-dot, and cyan short-dash curves correspond to
�=0, −0.1, −0.2, −0.3, −0.4, and −0.5, respectively. The numerical
simulations are implemented based on the BA network of size N
=5000 and with average degree �k�=6, the spreading rate is given
as �=0.01, and the data are averaged over 5000 independent runs.
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