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In view of the fact that microtubules exhibit strong anisotropic elastic properties, an orthotropic elastic shell
model for microtubules is developed to study buckling behavior of microtubules. The predicted critical pres-
sure is found to agree well with recent unexplained experimental data on pressure-induced buckling of micro-
tubules �Needleman et al., Phys. Rev. Lett. 93, 198104 �2004�; Biophys. J. 89, 3410 �2005�� which are lower
than that predicted by the isotropic shell model by four orders of magnitude. General buckling behavior of
microtubules under axial compression or radial pressure is studied. The results show that the isotropic shell
model greatly overestimates the bucking loads of microtubules, except columnlike axially compressed buck-
ling of long microtubules �of length-to-diameter ratio larger than, say, 150�. In particular, the present results
also offer a plausible explanation for the length dependency of flexibility of microtubules reported in the
literature.
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Microtubules �MTs� are the most rigid filaments of eu-
karyotic cytoskeleton and largely responsible for shape and
mechanical rigidity of cells �1,2�. In shape, MTs are long
hollow cylinders with outer and inner diameters of about 30
and 20 nm, respectively. MT mechanics has been the topic of
numerous recent theoretical and experimental researches, in-
cluding those on elastic buckling �3–9� and force-related
morphological instability �10–13�. For example, pressure-
induced buckling of hollow MTs has been observed in Refs.
�8,9�, and a theoretical estimate of the critical pressure based
on isotropic homogeneous elastic shell model is found to be
higher than the experimental value by four orders of magni-
tude.

Besides various discrete methods of modeling, simple
continuum elastic beam models have been effectively used to
study one-dimensional �1D� rodlike mechanical behavior of
MTs, such as flexural rigidity of MTs �14–18�, and rodlike
buckling �3–6�. In addition, an isotropic elastic shell model
has been developed earlier in Ref. �19� to study free vibra-
tion of MTs. However, recent experiments have confirmed
that the longitudinal bonds between ��-tubulin dimers along
protofilaments are much stronger than the lateral bonds be-
tween adjacent protofilaments �9,20,21�. In particular, shear
modulus of MTs is much lower than the longitudinal elastic
modulus, and the circumferential elastic modulus is lower
than the longitudinal elastic modulus by a few orders of
magnitude �22–24�. In addition, the molecular mechanics
model shows �12� that small helix of MTs is less relevant for
mechanical behavior of MTs. These results suggest that MTs
could be modeled as an orthotropic elastic shell with inde-
pendent longitudinal modulus, circumferential modulus, and
shear modulus. Inspired by valid application of elastic shell
models to carbon nanotubes �25–27�, a simple orthotropic
elastic shell model is suggested in the present paper. Since an
orthotropic shell has four independent material constants �in-
cluding longitudinal modulus Ex, circumferential modulus
E�, shear modulus Gx�, and Poisson ratio �x along the longi-
tudinal direction� �28,29�, the range of the values of these

material constants for MTs are identified from the date avail-
able in the literature, and summarized in Table I. In particu-
lar, following the literature, the cross section of MTs will be
treated as an equivalent circular annular shape, with an
equivalent thickness h�2.7 nm �see, e.g., Refs. �7,19��.
Thus all elastic moduli, in-plane stiffnesses, and the mass
density � are defined based on such a thickness h=2.7 nm.

On the other hand, the bending stiffness of MTs is deter-
mined largely by a so-called “bridge” thickness of MTs �of
1.1 nm, see Fig. 2 of Ref. �7�� which is much smaller than
h=2.7 nm. Thus similar as single-walled carbon nanotubes
�25–27,30,31�, the effective bending stiffness of MTs, mod-
eled as an elastic shell, should be considered to be an inde-
pendent material constant. According to experimental data
on shell-like buckling of individual MTs, the bending stiff-
ness of MTs can be estimated by an effective thickness de-
termined in Ref. �7�, which is about 1.6 nm. For example, if
the longitudinal modulus Ex=1 GPa, the effective bending
stiffness along the longitudinal direction Dx is given by Dx

=
Exh0

3

12�1−�x��� with the effective thickness h0=1.6 nm, which is

about 3.42�10−19 Nm.
Thus modeled as an orthotropic elastic shell, buckling of

an individual MT under axial and circumferential prestresses
Nx and N� �the former is generated by uniform axial com-
pressive force, while the latter is generated by uniform ex-
ternal radial pressure� are governed by three equilibrium
equations �32–35�,
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TABLE I. The values of orthotropic material constants for
microtubules.

Parameters Values References

Longitudinal modulus Ex 0.5–2 GPa �7,19,24�
Circumferential modulus E� 1–4 MPa �24�
Shear modulus in x-� plane Gx� �1 MPa �7,22–24�
Poisson’s ratio in axial direction �x 0.3 �19,24�
Mass density per unit volume � 1.47 g/cm3 �19�
Equivalent thickness h 2.7 nm �7,19�
Effective thickness for bending h0 1.6 nm �7�
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where x and � are the axial coordinate and circumferential
angular coordinate, respectively, u, v, and w are the axial
displacement, circumferential displacement, and radial �in-
ward� deflection, respectively, � is the mass density �per unit
volume�, R is the average radius, and �=h0

3 / �12hR2�. In ad-
dition, �x and �� are Poisson ratios satisfying �� /�x=E� /Ex,
and Kx�=Exh / �1−�x����, K��=E�h / �1−�x����, and
Kx� �=Gx�h� are in-plane stiffnesses in longitudinal and cir-
cumferential directions, and in-plane stiffness in shear, re-
spectively, and Dx�=Exh0

3 /12�1−�x����, D��=Exh0
3 /12�1

−�x����, and Dx��=Gx�h0
3 /12� are the effective bending stiff-

nesses in longitudinal and circumferential directions, and
bending stiffness in shear, respectively �32–35�. Therefore,
for given h and h0, the orthotropic shell model depends on
four material constants Ex, E�, Gx�, and �x given by Table I.
In what follows, we define �=

��

�x
=

E�

Ex
=

K�

Kx
=

D�

Dx
and �=

Gx�

Ex

�
Gx�

Ex
�1−��x

2�=
Dx�
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Kx
�� ·�x

2→0 see Table I�. Thus the
orthotropic model is characterized by four parameters Ex, �x,
�, and �. In particular, the orthotropic shell model reduces to
the isotropic elastic shell model with Poisson ratio � if �
=1 and �= �1−�� /2.

Assume that the MT is simply supported at two ends. The
buckling mode is given by u�x ,��=U cos m�

L x cos n�,
v�x ,��=V sin m�

L x sin n�, w�x ,��=W sin m�
L x cos n�, where

U, V, and W are some real constants, n is the circumferential
wave number, m is the half axial wave number, L is the
length of MT, and the dimensionless axial wavelength �nor-
malized by the diameter 2R� is calculated as L / �Rm�. Sub-
stituting them into Eq. �1� yields an eigenequation, and the
existence condition of a nonzero solution of �U ,V ,W� deter-

mines buckling load and corresponding buckling mode.
Now, let us first examine buckling of a MT under radial

pressure P. In this case, axial prestress Nx=0 and circumfer-
ential prestress are related to the pressure P by N�=−PR.
First, let us consider a long MT for which the effect of the
end conditions is irrelevant and thus we can seek for axially
uniform buckling mode of circumferential wave number n
	2 �36,37� �as usual, n=1 is excluded because it corre-
sponds to a rigid-body translation of circular cross section
and does not define buckling under radial pressure�. It can be
easily verified that when �

�x =0, the three equations in Eq. �1�
reduce to a simple equation which gives the lowest critical
pressure Pcr associated with n=2 as

Pcr =
D�

R3 �n2 − 1� � 3
D�

R3 . �2�

Thus for E�=1 MPa �or �=E� /Ex=0.001, see Table I� and
R=13 nm �h0=1.6 nm�, the critical pressure predicted by the
above formula is 470 Pa, in good agreement with the experi-
mental value 510–690 Pa reported in Refs. �8,9�. On the
other hand, if one takes E�=4 MPa and all bending stiff-
nesses are determined by the so-called “bridge thickness” of
1.1 nm �see Fig. 2 of Ref. �7��, the critical pressure given by
Eq. �2� is 600 Pa. Therefore the present orthotropic shell
model well explains the experimental value reported in Refs.
�8,9� which cannot be explained by the isotropic shell model.

For MTs of typical radius R=13 nm, Ex=1 GPa, �x=0.3,
�=0.001, and �=0.001 the critical pressure Pcr required for
buckling with different L / �Rm� and n is plotted in Fig. 1,
with a comparison to the results given by the isotropic shell
model �the latter is obtained from the present model by set-
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ting �=1 and �=0.35�. In Fig. 1, the orthotropic shell model
predicts that the critical buckling pressure Pcr decreases
monotonically with increasing L / �Rm� when L / �Rm�
60,
and then keeps essentially unchanged for L / �Rm��60. This
means that for shorter MTs with L /R
60, the lowest critical
pressure Pcr always corresponds to m=1. On the other hand,
the number n of the corresponding buckling mode decreases
as the ratio L /R increases and finally approaches 2 when L /R
falls between 20 and 60. On the other hand, for longer MTs
of L /R�60, as shown in Fig. 1 �also in Eq. �2��, Pcr, which
is always associated with n=2, becomes almost constant and
independent of the ratio L /R. In any case, it is clearly seen
from Fig. 1 that the isotropic shell model overestimates the
critical pressure for buckling of MTs by more than one order
of magnitude.

Next, let us examine the buckling of MTs under axial
compression and thus N�=0. For MTs of typical radius R
=13 nm, Ex=1 GPa, �x=0.3, �=0.001, and �=0.001 the
critical buckling force Ncr required for axially compressed
buckling with different L / �Rm� and n is plotted in Fig. 2,
with a comparison to the results given by the isotropic shell
model and the classical �isotropic� elastic column model �the
latter is shown in Fig. 2 by a dashed line�. For a sufficiently
long MT for which m=1 and n=1 correspond to the lowest
buckling load, it can be verified from Eq. �1� that the critical
buckling force given by the present orthotropic shell model
is

Ncr = −
Exh

2�1 − �x���
��R

L
	2

� −
Exh

2
��R

L
	2

.

This result is identical to the well-known Euler formula for

simply supported columns Fcr=−
�2ExI

L2 , showing that the elas-

tic column model agrees well with the orthotropic shell
model for axially compressed buckling of very long MTs.
Indeed, it is seen from Fig. 2 that the critical length beyond
which the elastic column model is accurate is about L /R
=300, which corresponds to a length of MTs about 4–5 �m.
For MTs of length much shorter than 4–5 �m, as shown in
Fig. 2, the critical compressive force for buckling given by
the elastic column model is much higher than that given by
the orthotropic shell model, indicating that the classical elas-
tic column model is inaccurate for shorter MTs. In connec-
tion with this, we noticed that flexural rigidity of MTs, esti-
mated based on the elastic column model, have been found
to decrease with decreasing length of MTs �17,38� for shorter
MTs. The results shown in Fig. 2 suggest that this length
dependency of flexural rigidity could be partially attributed
to the strong anisotropy of MTs. This issue has been studied
recently with more details �39�.

In conclusion, a simple orthotropic elastic shell model is
developed to study buckling behavior of MTs under axial
compression or radial pressure. The critical pressure for
buckling of MTs predicted by the present model is in good
agreement with recent unexplained experimental data �8,9�.
It is believed that the present model offers a simpler ap-
proach to study anisotropic shell mechanics of MTs, such as
vibration �19,23,24� and dynamic instability �10–13,40,41�
of MTs.

The financial support of the Natural Science and Engi-
neering Research Council of Canada �NSERC� is gratefully
acknowledged.

FIG. 1. The dependence of critical �radial� buckling pressure Pcr

�solid lines� on the dimensionless axial wavelength �normalized by
the diameter 2R� L / �Rm� and n obtained for microtubules of R
=13 nm, based on the isotropic shell model with �=1 and �
=0.35, and the orthotropic shell model with �=�=0.001.

FIG. 2. The dependence of critical �axial� buckling force Ncr

�solid lines� on the dimensionless axial wavelength �normalized by
the diameter 2R� L / �Rm� and n obtained for microtubules of R
=13 nm, based on the isotropic shell model with �=1 and �
=0.35, and the orthotropic shell model with �=�=0.001.
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