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We investigate two recently proposed multivariate time series analysis techniques that aim at detecting phase
synchronization clusters in spatially extended, nonstationary systems with regard to field applications. The
starting point of both techniques is a matrix whose entries are the mean phase coherence values measured
between pairs of time series. The first method is a mean-field approach which allows one to define the strength
of participation of a subsystem in a single synchronization cluster. The second method is based on an eigen-
value decomposition from which a participation index is derived that characterizes the degree of involvement
of a subsystem within multiple synchronization clusters. Simulating multiple clusters within a lattice of
coupled Lorenz oscillators we explore the limitations and pitfalls of both methods and demonstrate �a� that the
mean-field approach is relatively robust even in configurations where the single-cluster assumption is not
entirely fulfilled and �b� that the eigenvalue-decomposition approach correctly identifies the simulated clusters
even for low coupling strengths. Using the eigenvalue-decomposition approach we studied spatiotemporal
synchronization clusters in long-lasting multichannel EEG recordings from epilepsy patients and obtained
results that fully confirm findings from well established neurophysiological examination techniques. Multivari-
ate time series analysis methods such as synchronization cluster analysis, which account for nonlinearities in
the data, are expected to provide complementary information which allows one to gain deeper insights into the
collective dynamics of spatially extended complex systems.
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I. INTRODUCTION

Spatially extended complex dynamical systems may be
thought of being composed of numerous constituents �dy-
namically formed subsystems�, each having its own dynam-
ics. Typically the relevant state variables of such systems
cannot be observed directly but only through some observa-
tion function that projects the high-dimensional state space
onto an observation space of much lower dimension, result-
ing in a set of time series. Multivariate analyses of such time
series might then help to gain deeper insights into the collec-
tive dynamics of spatially extended systems. Although a
number of time series analysis methods have been developed
over the past �see �1–5� for an overview�, most techniques
allow one either to characterize single time series �univariate
approaches� or to investigate relationships between two time
series �bivariate approaches�. However, applying bivariate
techniques to pairs of time series—taken from a multichan-
nel recording—does not necessarily allow one to identify the
relevant information in the full data set. The latter is of par-
ticular interest for scientific fields investigating spatially ex-
tended dynamical systems, such as meteorology, economics,
social science, or neurosciences, where a complex but rela-
tively sparse connectivity between subsystems prevails. Un-
derstanding brain function—during both physiological and
pathophysiological conditions �such as, e.g., in the case of
epilepsy�—requires a characterization and quantification of
the collective behavior of neural networks generating signals
at different areas.

In principle, multivariate time series analysis techniques
can be used to investigate mutual relationships between ar-
bitrary numbers of time series. A large variety of methods �6�
aim at revealing additional information by classifying time
series into different groups. In addition to the classical prin-
cipal component analysis �also known as the Karhunen-
Loeve transform� �7� independent component analysis �8�
provides a decomposition of data into independent source
signals, and if the assumption of independence holds, it can
be regarded as a suitable method. If independence cannot be
assumed, mutual-information-based methods might be more
appropriate �9,10�. Partial coherence �3� measures the frac-
tion of coherence between two time series that is not shared
with a third time series. Whereas partial coherence is based
on the assumption of linearity and thus does not capture
nonlinear interactions, the recently proposed concept of par-
tial phase synchronization �11� was designed to account for
nonlinearities of the dynamics under investigation. In order
to study causal relations among simultaneously acquired
time series generated by linear stochastic systems Granger
causality �12� can be used by fitting autoregressive models.
Besides a recently suggested nonlinear extension of Grang-
er’s ideas �13�, we mention the directed transfer function that
is defined for an arbitrary number of channels �14� and is
based on a multivariate autoregressive model approach �15�.
In Refs. �16,17� partial directed coherence has been proposed
for inference of linear Granger causality in the frequency
domain based on vector autoregressive models of appropriate
order. Both methods have been repeatedly applied to study
interdependences and causal relationships among neural sig-
nals �see, e.g., �18–21� and references therein�.

Over the last decade time series analysis techniques
known from random matrix theory �22,23� have been repeat-*Electronic address: klaus.lehnertz@ukb.uni-bonn.de
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edly shown to allow an improved characterization of com-
plex spatiotemporal correlation patterns. In these studies par-
ticularly the equal-time correlation matrix has been analyzed,
which was constructed from multivariate data sets obtained
empirically in scientific fields ranging from economy �24,25�
and meteorology �26� to the neurosciences �27–31�. More
recently an approach for the detection of clusters in financial
data based on the properties of the eigenvalue spectrum of
the equal-time correlation matrix was proposed in Ref. �32�.
By filtering out the random part and collective marketwide
effects the authors were able to detect groups of stocks by
optimizing the matrix representation. Such an approach,
however, requires a clear-cut definition of the random part,
which is usually assumed to be associated with the small
bulk eigenvalues. In Ref. �29� it was demonstrated though
that the lower part of the eigenvalue spectrum may contain
essential information.

Another way to study interactions in spatially extended
systems is based on a statistical analysis of phase synchroni-
zation phenomena �4,33�. In most studies, however, the
analysis of empirical multivariate data has been accom-
plished by a repeated application of bivariate synchroniza-
tion measures and it remains to be established whether this
approach allows one to fully characterize a common integrat-
ing structure that may be present in the data. Addressing this
issue, Allefeld and Kurths proposed a genuinely multivariate
phase synchronization analysis method �34,35� and success-
fully applied their method to electroencephalographic �EEG�
data recorded during a psychological experiment. The au-
thors concluded their method to provide additional informa-
tion on brain dynamics in a topographically, temporally, and
frequency-specific way, as well as in other fields concerned
with multivariate oscillatory processes. More recently, Al-
lefeld and colleagues �36� introduced an approach that ad-
dresses a limitation of their original method: namely, the
assumption of the existence of a single synchronization clus-
ter in the data. By using methods from random matrix theory
the resulting approach appears to be capable of identifying
multiple synchronization clusters in the data which makes it
highly attractive to characterize pathophysiological, spa-
tiotemporal synchronization phenomena in multichannel
EEG recordings from epilepsy patients.

Recent findings indicate that bivariate analysis techniques
allow one to characterize physiological and pathophysiologi-
cal phenomena in the human brain �see Refs. �37,38� for an
overview�, and it can be expected that multivariate phase
synchronization analysis techniques provide complementary
information. To address this issue we here study the synchro-
nization cluster analysis methods proposed in Refs. �35,36�,
particularly with respect to field applications using model
systems. In addition, we show that the method proposed in
Ref. �36� allows one to detect multiple synchronization clus-
ters in long-lasting multichannel EEG recordings from epi-
lepsy patients.

This paper is organized as follows. Since both methods
are based on the mean phase coherence, we first recall its
definition and interpretation as a bivariate measure for phase
synchronization �Sec. II A�. In Sec. II B we briefly introduce
the multivariate synchronization cluster methods: namely,
the mean-field approach �Sec. II B 1� and the eigenvalue-

decomposition approach �Sec. II B 2�. Next, we present our
simulation studies aiming at an exploration of the limitations
and a comparison of both methods �Sec. III A�. Finally, in
Sec. III B we present findings that were obtained from a
spatiotemporal synchronization cluster analysis of multi-
channel EEG data recorded from epilepsy patients using the
eigenvalue-decomposition approach.

II. METHODS

A. Measuring phase synchronization

Phase synchronization was first described by Huygens
�39� in the 17th century and can be defined as the locking of
the phases of two oscillating systems j and k:

�� jk�t� = � j�t� − �k�t� = const. �1�

In a statistical way the degree of phase synchronization can
be quantified by measuring the phase differences �� jk n
times and transforming them onto a unit cycle in the com-
plex plane. The underlying circular distribution of the sample
can be characterized by means of directional statistics �40�
with the mean phase coherence Rjk �41,42�:

Rjk = � 1

n
�
m=0

n−1

ei��jm−�km�� , �2�

where � jm denotes the phase of system j in measurement m.
By definition, Rjk is confined to the interval �0,1� where
Rjk=1 indicates fully synchronized systems. In field applica-
tions the sample size n is typically limited, making Rjk an
estimate of the true population value � jk= ��ei��j−�k�	� of the
underlying distribution of phase differences �the angular
brackets denote the average over all members of the popula-
tion�.

When analyzing real-valued time series s�t� different
methods can be used to extract phase information. Methods
based on the Fourier, the Hilbert, or the wavelet transform
were shown to be equivalent under relatively general as-
sumptions �43,44�. The main idea is to map the data onto the
complex plane using a function z and to take the complex
argument in order to obtain the phase �=arg(z�t�). We here
followed an approach based on the Hilbert transform using
the analytic signal �45,46�

z�t� = s�t� + iHs�t� , �3�

where Hs�t� denotes the Hilbert transform of the signal s�t�,

Hs�t� =
1

�
P


−�

+� s���
t − �

d� , �4�

and P denotes the Cauchy principal value of the integral.
Application of the convolution theorem turns the last equa-
tion into

Hs�t� = − iF−1�F�s�t��sgn���� , �5�

where F denotes the Fourier transformation and F−1 the in-
verse transformation, respectively. Thus, the imaginary part
of the analytic signal is obtained by shifting each frequency
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component of the original signal by � /2 separately. It is
important to keep in mind that phases may not have a physi-
cal meaning for arbitrary signals. If, however, the dynamics
exhibits oscillations with a single main rhythm, then the
phases are typically well defined �47,48�.

In our applications �see Sec. III� we computed Rjk from
the discrete time series sj�t� and sk�t� as follows. First, the
data were normalized to zero mean, which corresponds to
setting the dc Fourier coefficient to zero. Second, in order to
avoid edge effects the first and last 10% of a data window of
size n� were tapered using a cosine half wave �Hanning win-
dow� before performing the Fourier transform. Third, since
the computation of the Hilbert transform requires integration
over infinite time, which cannot be performed for a window
of finite length, 10% of the calculated phase time series � j�t�
and �k�t� were discarded on each side of the window, reduc-
ing the size of the considered phase time series to n=0.8n�.
For a data window of size n and m� �0, . . . ,n−1� denoting
the data point within the window the mean phase coherence
Rjk between the two time series with sampling interval �t
was obtained by identifying � jm=� j�m�t� and applying Eq.
�2�.

B. Synchronization cluster analysis

For N oscillating systems the pairwise computation of the
mean phase coherence Rjk leads to a matrix R which is sym-
metric due to definition �2�. Subsets of oscillating systems
can be interpreted as synchronization clusters if these sys-
tems exhibit higher mean phase coherence values between
each other than with systems not included in the same subset.
Allefeld and colleagues �35,36� recently proposed two differ-
ent multivariate approaches that aim at identifying synchro-
nization clusters in which the oscillating systems participate
with different strength. Both approaches are based on the
bivariate mean phase coherence and shall briefly be recalled
here.

1. Mean-field approach

In Ref. �35� a mean-field approach has been presented
which assumes the existence of a single synchronization
cluster C in the data. Generating a common rhythm all os-
cillating systems constitute the cluster but contribute to its
emergence to a different extent. A mean field with phase 	
can then characterize the dynamics of the collective behav-
ior. Using Eq. �2� the degree of participation �participation
strength� of each oscillating system j to the cluster C can be
quantified by

RjC = � 1

n
�
m=0

n−1

ei��jm−	m�� . �6�

A straightforward derivation of the phase 	 has been
demonstrated in Ref. �35� for a simple model system. This
method, however, requires exact knowledge of the underly-
ing equations of motion and thus cannot be applied to un-
known systems in general. Nevertheless, the participation
strength �6� can be estimated directly as follows.

If the assumption of the existence of a single cluster
holds, a mean field can be introduced such that the dynamics
of the phase differences are decoupled. If, in addition, the
noise affecting the oscillating systems is statistically inde-
pendent for each system, the phase differences �� j =� j −	
become independent random variables. Hence the population
values � jk of the mean phase coherences Rjk turn into

� jk = ��ei��j−�k�	� = ��ei���j−��k�	� = ��ei��j	���e−i��k	�

= � jC�kC for j � k �� j j = 1� . �7�

Taking into account that the mean phase coherence is asymp-
totically normally distributed RjkN�� jk ,
 jk� �49� and is an
empirical estimate of � jk=� jC�kC �see Sec. II A�, a
maximum-likelihood estimation of the � jC leads to a minimi-
zation of the sum of squared weighted errors that defines the
cost function

� = �
j�k

 jk
2 with  jk =

Rjk − � jC�kC


 jk
. �8�

Assuming that the circular distribution of the phase differ-
ences can be sufficiently approximated by a wrapped normal
distribution, the standard deviation 
 jk of the sampling dis-
tribution of Rjk can be expressed in terms of � jk �cf. �49,40��:


 jk =
1

�2n
�1 − � jC

2 �kC
2 � . �9�

In the following we refer to � jC as defined above as RjC,
thereby emphasizing an interpretation as a to-cluster syn-
chronization strength analogous to Eq. �6�. In our applica-
tions participation strengths were computed by minimizing �
using an iterative algorithm proposed in Ref. �50�.

2. Eigenvalue-decomposition approach

In Ref. �36� another approach has recently been proposed
that is based on the eigenvalue decomposition of the matrix
R and appears to allow identification of multiple clusters.
The procedure makes use of findings by Müller and col-
leagues �29� who demonstrated that information about the
correlation structure of multivariate data sets is imprinted
into the dynamics of the eigenvalues and into the structure of
the corresponding eigenvectors by nonrandom level repul-
sion.

The eigenvalues �c and eigenvectors ��c of the symmetric
and real-valued matrix R �see Eq. �2�� can be obtained by
solving the eigenvalue equation

R · ��c = �c · ��c, c � �1, . . . ,N� , �10�

which, in general, has N different solutions. In the following
it is assumed that the eigenvectors are normalized ����c � =1�.
Being transformed by an orthogonal transformation into the
basis of its eigenvectors R becomes the diagonal matrix D of
its eigenvalues. The invariance of the trace under this trans-
formation leads to the equation N=tr�R�=tr�D�=�c�c. In the
case of systems j ,k showing no phase synchronization �Rjk
=0 for j�k� the equation is trivially fulfilled by �c=1 for all
c, whereas the occurrence of entries Rjk�0 for j�k induces
a level repulsion, a combined increase and decrease of eigen-
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values in such a way that N=�c�c still holds.
A multivariate analysis is realized as follows �cf. Ref.

�36��: Each eigenvalue �c�1 is associated with a synchro-
nization cluster and quantifies its strength within the data set.
The internal structure of cluster c is described by the corre-
sponding eigenvector ��c. Being normalized �� j� jc

2 =1� its
components quantify the relative involvement of each system
j to cluster c by � jc

2 . Combining the eigenvalue �c and the
index � jc

2 the “absolute” involvement of a system j in a clus-
ter c can be described by the participation index

pj,c = �c� jc
2 . �11�

Consequently, system j is considered as belonging to cluster
c for which its participation index becomes maximal.

In the case of nonvanishing entries of R between systems
belonging to different clusters �intercluster synchronization�
it can be observed that these clusters are not characterized by
separate but by a superposition of eigenvectors. In order to
adjust the interpretation of the participation indices as the
degree of involvement of a system within one cluster �see.
Eq. �11�� it was proposed in Ref. �36� to compute the pj,c in
a first step and to assign the systems to the clusters as men-
tioned above. In a second step the matrix entries representing
intercluster synchronization are set to zero and the participa-
tion indices are computed on the trimmed matrix again. In
our applications we followed exactly this scheme.

Summarizing this section we conclude that both methods,
the mean-field and eigenvalue-decomposition approaches
seem to provide similar results in single-cluster configura-
tions for which an almost functional dependence of RjC

2

= pj,1 ��1 denoting the largest eigenvalue� can be observed
�36�. Nevertheless, the question whether the approaches
provide meaningful results in case of multicluster
configurations—particularly with regard to field appli-
cations—remains unaddressed and shall be investigated in
the following section.

III. APPLICATIONS

A. Simulations

We here studied a three-cluster configuration which con-
sisted of a lattice of 32 coupled identical Lorenz systems �cf.
Fig. 1�. Each system j is defined by the differential equations

ẋj = −
8

3
xj + yjzj + � j�xD1,2,3

− xj� ,

ẏ j = 28zj − yj − xjzj ,

ż j = 10�yj − zj� , �12�

where � j denotes the coupling strength controlling the influ-
ence of the diffusive unidirectional coupling on system j by
one of three chosen driving systems D1,2,3.

In order to control this configuration by a single param-
eter we set � j =� for systems within each cluster while � j
=0 for the uncoupled systems. Taking randomly chosen
points in the state space near the Lorenz attractor as initial
conditions the differential equations were iterated using a
fourth-order Runge-Kutta algorithm �51� with a step size of
0.01. In order to eliminate transients, the first 104 iterations
were discarded. For increasing coupling strengths �
=0.0–1.4 �step size 0.05� we generated scalar time series of
the x components �n�=5�105 data points� and computed the
participation strength RjC and the participation indices pj,c.

For the mean-field approach the configuration represents a
violation of the single-cluster assumption. When increasing
the coupling strength � the mean phase coherence values
between the coupled systems increased and consequently the
three synchronization clusters emerged. This is reflected by
the dependence of the cost function � on � as shown in Fig.
2�a�. Since the single-cluster assumption leading to Eq. �7�
was violated, � increased rapidly for ��0.4. For compari-
son, we repeated the analysis for a single-cluster configura-
tion that was generated by setting the coupling terms be-
tween the systems of clusters driven by D1 and D2 to zero.
Here ��0.6 for all � values �cf. Fig. 2�a��. Using � as an
indicator that reflects the violation of the single-cluster as-
sumption �cf. Ref. �36��, which increases with the internal
degree of synchronization between systems within a cluster,
we generated plots �cf. Fig. 2�b�� showing the spatial distri-
bution of the participation strength RjC for the three-cluster
configuration chosen here. For ��0.4 ���0.6� no clear-cut
cluster structure could be identified in the spatial distribution
of participation strengths. For ��0.5 ���0.6� either a
single or all three synchronization clusters emerged, however
with a varying degree of visibility. Interestingly, for various
coupling strengths �Fig. 2�b�—e.g., �� �0.6,0.9,1.1�� the
participation strengths of systems involved in one cluster ex-
hibited higher values than the remaining participation
strengths. This behavior is shown in more detail in Fig. 3�a�
for exemplary systems involved in one cluster. In order to
further elucidate this phenomenon we calculated the sum
Sd=� j�k;j,k�Cd

Rjk, where Cd denotes the index set of systems
belonging to cluster d. Sd quantifies the strength of cluster d
and increased, on average, with an increasing coupling
strength � �cf. Fig. 3�b�� while fluctuations can be attributed
to the mean phase coherence values being asymptotically
normally distributed. A synchronization cluster d became
visible in the spatial distribution of participation strengths
RjC when its strength Sd dominated the configuration �cf. Fig.
3�. This effect was caused by the cost function � exhibiting

FIG. 1. Three-cluster configuration consisting of a lattice of 32
coupled Lorenz systems. Systems within a gray-shaded area belong
to one cluster and are driven by one of the driving systems D1

=10, D2=15, and D3=28 which are highlighted in white.
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several local minima whose values changed according to the
cluster strengths Sd. For �=0.8 all Sd attained similar values.
Here the minimization algorithm terminated because of hav-
ing found a single minimum which would lead to the
�mis�interpretation of all systems belonging to one single
cluster.

In contrast to the mean-field method, the eigenvalue-
decomposition approach provides not just a single set of sca-
lars but multiple sets of scalars representing different clus-

ters. The eigenvalues were labeled here according to �1
� ¯ ��N, thereby enabling an easy identification of the
dominating cluster structures by the corresponding index c.
As shown in Fig. 4 for low coupling strengths ���0.3� the
method was not able to detect the three different clusters but
indicated a multitude of small clusters. This can be attributed
to random fluctuations of the mean phase coherences. In-
creasing slightly the coupling strength to �=0.4, two of the
three simulated clusters were already detected in the two
largest eigenvalues �1 and �2 whereas the corresponding par-
ticipation strengths did not reveal any cluster structure �cf.
Fig. 2�b��. For ��0.5 all three clusters were clearly visible
and identified by the three largest eigenvalues. Their partici-
pation indices increased with increasing coupling strength �
�see, e.g., �=1.1–1.4�, thereby reflecting the internal degree
of synchronization within the clusters. The cluster indices c
changed for different coupling strengths � due to the fact that
the cluster strengths fluctuated �cf. Sd in Fig. 3�b�� which is
reflected by the eigenvalues �see, e.g., �� �1.1,1.3� in Figs.
3�b� and 4�.

FIG. 2. �Color online� �a� Dependence of the cost function � on the coupling strength � for a single-cluster and a three-cluster
configuration. �b� Spatial distribution of color-coded participation strength RjC for selected values of � �see Fig. 1 for arrangement of
clusters�.

FIG. 3. �a� Dependence of participation strength RjC on the cou-
pling strength � for exemplary systems j� �1,8 ,29�. �b� Depen-
dence of cluster strength Sd, d=1, . . . ,3, on the coupling strength �.

FIG. 4. �Color online� Spatial distribution of color-coded par-
ticipation indices pj,c for selected values of the coupling strength �.
Numbers denote the clusters c to which each system was assigned
by the eigenvalue-decomposition method. Eigenvalues were sorted
in a descending order.
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In contrast to the mean-field approach the eigenvalue-
decomposition approach was capable of distinguishing be-
tween different clusters �see �36��. Limitations of the
method, however, that are related to parameters influencing
the detectability of different clusters have not been studied so
far. To address this issue we designed a configuration con-
sisting of N=32 systems that formed two clusters C1
= �1, . . . ,r� and C2= �r+1, . . . ,N� where the parameter r con-
trols the relative size of an individual cluster. We did not
study dynamical systems here but instead assigned values to
the entries of matrix R that were drawn from normal distri-
butions given that the mean phase coherences are asymptoti-
cally normally distributed �see Sec. II B 1�. Mean phase co-
herences between systems of different clusters were drawn
from the intercluster distribution N���int� ,
�int��, while those
representing the entries between systems of the same cluster
C1 and C2 were drawn from N���1� ,
�1�� and N���2� ,
�2��,
respectively. For a given population value � the standard
deviation 
 was determined by Eq. �9� using a sample size of
n=200.

Recalling that the detection of different clusters is based
on the participation indices computed in the first processing
step of the method �see Sec. II B 2�, which assigns a system
to a cluster for which its participation index becomes maxi-
mal, we here quantify an erroneous assignment by consider-
ing the differences of the participation indices obtained from
the first processing step � j12= pj,1− pj,2 of system j and clus-
ters C1 and C2. For the configuration considered here we
define the weighted amount of erroneous assignments as

� = ��1 + �2, N� = 2,

0, otherwise,
�13�

where N� denotes the number of eigenvalues ��1 and �1
and �2 are determined by

�1 = ��
j=1

r

��� j21��−1

�
j=1

r

� j21��� j21� ,

�2 = � �
j=r+1

N

��� j12��−1

�
j=r+1

N

� j12��� j12� , �14�

where � is the Heaviside step function. If system j is erro-
neously assigned to the cluster C1 but belongs to a cluster C2
by construction, ��� j12� will be larger than zero. Thus �2

��1� sums up incorrect assignments of systems j to cluster
C1 �C2� weighted by the differences of the corresponding
participation indices �. If all systems are assigned to the
correct cluster, then �=0 by definition. Since the eigenvalues
quantify the cluster strengths, a variation of the relative size
of an individual cluster �by varying r� makes the largest ei-
genvalue traverse a minimum. This enables us to label the
eigenvalues �c�1,c� �1,2� according to their cluster C1 or
C2.

We studied a transition from a configuration that consisted
of two clusters C1 and C2 ���1�=��2�=0.8� to a single-cluster
configuration C0= �1, . . . ,N� by successively increasing ��int�

from 0.0 to 0.8 in steps of 0.01. Figure 5 shows the weighted
amount of erroneous assignments � depending on the rela-

tive size of an individual cluster r and on the intercluster
synchronization level ��int�. The eigenvalue-decomposition
method successfully identified ��=0� the two clusters for
low values of the intercluster synchronization level ���int�

�0.17� except for clusters of equal size �r=N /2�. The
weighted amount of erroneous assignments rapidly in-
creased, however, for increasing ��int�, thereby failing to de-
tect the cluster structures for an increasing set of r values.
The number of eigenvalues, N�, being larger than 1, ap-
peared to be a sensitive measure for the number of clusters
present in the data. We observed N�→1 �i.e., �=0 by defi-
nition; see Eq. �13�� only for relatively large values of the
intercluster synchronization level ���int��0.7� where the
transition to a single-cluster configuration was completed.

Next we studied a transition from a configuration of two
clusters C1 and C2 ���1�=��2�=0.8, ��int�=0.2� to a configura-
tion with only one cluster �here C1� by decreasing ��2� in
steps of 0.01 down to 0.2 �see Fig. 6�a��. The weighted
amount of erroneous assignments � vanished for ��2� ap-
proaching the mean synchronization level of the intercluster
distribution ���int�=0.2�. In this range the number of eigen-
values, N�, increased �Fig. 6�b��. These additional structures
were formed by those systems which were previously in-
volved in cluster C2 for higher values of ��2�. This fragmen-
tation of a cluster c can also be observed when increasing the
corresponding standard deviation 
�c� independently from
the population value ��c�, thereby taking into account various
uncertainties �e.g., definition of observables, measurement
precision, finite sample size, phase extraction�. Since the ad-
ditional structures were caused by random fluctuations of the
mean phase coherences within the cluster, we refer to them
as pseudoclusters in the following. In our simulations we
observed pseudoclusters of different sizes, whose corre-
sponding eigenvalues were only slightly larger than unity
compared to the eigenvalues of the true clusters.

When varying ��2� the set of r values for which ��0
remained almost stable but was shifted to lower r values
�Fig. 6�a��. Therefore, together with the relative size of an
individual cluster the level of synchronization between sys-
tems within a cluster must be regarded as crucial for the
eigenvalue-decomposition approach. The results shown in
Figs. 5 and 6�a� can then be sufficiently explained with the
help of the cluster strength Sd which considers both the clus-
ter size and the level of synchronization between systems

FIG. 5. Dependence of the error � on the relative size r of an
individual cluster and on the intercluster synchronization level ��int�.
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within a cluster. The method failed to correctly assign all
systems to their clusters in the case of similar cluster
strengths �S1−S2 � ��, where � increases with an increasing
level of intercluster synchronization. The latter leads to su-
perpositions in the eigenvector components and, as a result,
makes it impossible for the method to correctly detect the
clusters by the maximum participation index criterion in cer-
tain configurations. In order to further elucidate this phenom-
enon we show in Fig. 7 the components � jc of the eigenvec-
tors corresponding to the two largest eigenvalues for the case
r=16 and ��2�=0.8. The squared components � jc

2 of both vec-
tors attained similar values, causing the method to classify

all systems as belonging to a single cluster. Nevertheless, the
two clusters C1 and C2 were clearly visible in the linear
combinations ��1±��2.

Summarizing this section we conclude that the eigen-
value-decomposition approach successfully identified the
three synchronization clusters in our simulations using
coupled Lorenz systems and, moreover, appears to be sensi-
tive to detect clusters even for low coupling strengths. Al-
though the mean-field approach is by definition not able to
distinguish between different clusters, the method appears to
be relatively robust even in situations where the single-
cluster assumption is not �entirely� fulfilled, leading to higher
participation strengths for systems of the dominating cluster
in our simulation. When comparing both methods the eigen-
value decomposition approach can be regarded as superior
when analyzing data exhibiting different synchronization
clusters, which can be expected, e.g., for multichannel EEG
data.

B. EEG data

In this section we present exemplary findings obtained
from applying the eigenvalue decomposition method to mul-
tichannel EEG time series that were recorded from three epi-
lepsy patients �denoted as P1, P2, and P3� suffering from
pharmacoresistant focal epilepsies of neocortical origin. For
these patients complete seizure control can be obtained by
resecting the part of the brain responsible for seizure genera-
tion �epileptic focus�. This requires an exact localization of
the epileptic focus and its delineation from functionally rel-
evant brain structures during the presurgical workup. When
no concordant information can be achieved from noninvasive
diagnostic techniques, the EEG is recorded from implanted
electrodes over a longer period, typically 2–3 weeks. The
analyses reported here were made after surgery had taken
place and after it had become clear from its success whether
the localization of the epileptic focus had been correctly pre-
dicted. All patients had signed informed consent that their
clinical data might be used and published for research pur-
poses, and the study was approved by the local medical eth-
ics committee.

Previous studies have shown that even during seizure-free
intervals the seizure-generating area of the brain exhibited
higher interdependences �52� and an higher degree of syn-
chronization �42� than other brain areas. Together with re-
sults obtained from applying univariate time series analysis
techniques �see, e.g., �53� and references therein� these find-
ings allow an improved understanding of intermittent dys-
functioning of the brain between seizures and provide poten-
tially useful diagnostic information. We here addressed the
question whether complementary information can also be ob-
tained from a multivariate approach. Specifically, we inves-
tigated whether the eigenvalue-decomposition approach �a�
allows one to localize the epileptic focus analyzing EEG
recordings from the seizure-free interval only and �b� is ca-
pable of detecting short-time changes of synchronization pat-
terns associated with physiological processes in the human
brain. To this end we analyzed continuous EEG recordings
that lasted 39 h for patient P1 and 26 h for patient P2 cov-

FIG. 6. Dependence of the error � �a� and N� �b� on the relative
cluster size r and on the mean cluster synchronization level ��2� of
cluster C2.

FIG. 7. Components j of eigenvectors belonging to the two
largest eigenvalues �1 and �2 for the case of r=16, ��1�=��2�=0.8,
and ��int�=0.2.
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ering different physiological and pathophysiological states of
the patients. In addition, we analyzed an EEG recording last-
ing 30 min during which patient P3 was simultaneously pre-
sented item pairs, either word pairs or unpronounceable letter
string pairs of 5–11 letters length, and was instructed to press
a button if he or she recognized word pairs with identical or
highly similar meanings �synonyms� �task T1� or identical
letter strings �task T2�. No button press was demanded in the
case of nonsynonym word pairs or letter strings in which one
consonant differed. Tasks alternated every 3 min. The whole
sequence was adopted from Ref. �54� and comprised three
blocks of word and letter string pairs each. A base line re-
cording of 10 min was performed with eyes open before and
after the experiment. Recent findings �55,56� indicate that
tasks such as T2 are associated with a greater demand for
decision-making processes due to the involvement of differ-
ent phenomena like reading, phonological retrieval, or ortho-
graphic analysis during such conditions. We thus hypoth-
esized to observe a higher degree of collectivity among
neuronal assemblies, particularly in brain areas associated
with language processing. We did not expect to observe syn-
chronization phenomena associated with the epileptogenic
process in these brain structures from patient P3 since the
epileptic focus was localized in a more distant brain struc-
ture.

The EEG was measured from grid electrodes �rectangular
flexible grids of N=8�4 contacts� placed onto the temporal
lateral neocortex �see Fig. 8�. EEG data were sampled at
200 Hz using a 16-bit analog-to-digital converter and filtered
within a frequency band of 0.3–70 Hz. Using a moving-
window technique EEG signals were divided into segments
of n�=4096 sampling points each and segments overlapped
by 20%. The length of the resulting segments corresponded
to 16.38 s at the given sampling rate and can be regarded as
a compromise between the required statistical accuracy for
the calculation of the mean phase coherence and the approxi-
mate stationarity within a segments length �see Ref. �57� and
references therein�. After the calculation of the mean phase
coherence �cf. Sec. II A� for all channel combinations from
each segment, the eigenvalue-decomposition method was ap-
plied �cf. Sec. II B 2�.

In order to estimate the number of clusters being detected
on average in the data we sorted eigenvalues and correspond-
ing eigenvectors of each segment in a descending order ��1

� ¯ ��N� and computed the mean values �̄c over all seg-
ments for each patient. The five to six largest averaged ei-

genvalues �̄c were larger than 1, causing the method to detect

on average an equal number of clusters per segment. Based
on our findings presented in Sec. III A we expected the lower
part of the eigenvalue spectrum being larger than 1 to yield a
considerable amount of pseudoclusters. We therefore re-
stricted further analyses to the three largest eigenvalues.

Since a cluster is represented by a set of participating
channels, each cluster can be written as a bit string of size N
where the bits represent the channels being involved �1� or
not involved �0� in the cluster. This allowed us to discard the
information about the relative involvement of each system
within one cluster as reflected by the participation indices
and to handle the clusters in a convenient way: namely, by
considering their simplified representation. Bit strings con-
nected to eigenvalues fulfilling the threshold criterion ��
�1� varied largely over time as shown exemplarily in Fig. 9.
Apart from frequently appearing bit strings in which all
channels were involved, structures in time could be ob-
served, where successive bit strings differed only in few bits.
Given that the mean phase coherence fluctuates �due to mea-
surement noise, a limited number of data points, or even
short-term physiological or pathophysiological phenomena
within a segment�, the same cluster structure cannot be ex-
pected to show up in exactly the same bit string representa-
tion but may vary in some bits. In order to minimize this
effect we sorted bit strings that were visible for more than
6 min in the data into groups which differed only in up to 3
bits. Moreover, we discarded groups of bit strings which rep-
resented clusters of size 0, 1, or 32 channels. In Fig. 10 we
show groups that represented the largest number of bit
strings in the EEG data. Interestingly, for both patients the
spatial distribution of electrodes involved in the cluster la-

FIG. 8. Schematic view of the electrode grid with N=8�4 con-
tacts placed over the left temporal lateral neocortex. FIG. 9. Examples of the spatiotemporal evolution of the cluster

defined by the largest eigenvalue. EEG data from patient P1 re-
corded during day-time �top� and during night-time �bottom�. For
each segment �duration: 16.38 s� channels belonging to the cluster
are drawn in black. Note that channels A1 and A2 were used as
reference during the recording.

FIG. 10. Drawings of the grid with electrode contacts A1 �top
left�, A8 �top right�, to D8 �bottom right�. Channels participating in
a cluster are marked by the same letter. Because of the averaging
applied here, a channel can be observed to participate in multiple
clusters for different segments.
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beled a corresponded to the spatial extent of the epileptic
focus as determined by the presurgical workup. This cluster
could be observed throughout the data sets and in total for at
least 112 min for patient P1 and 125 min for patient P2.
Indeed, the patients were operated on exactly this region and
are now free of seizures. Thus, we conclude that the method
seems to be quite sensitive for detecting synchronization
clusters in EEG time series recorded from epilepsy patients
even during the seizure-free interval.

Whereas the aforementioned results were obtained by
analyzing the bit string groups which corresponds to a tem-
poral average �over all segments�, we now investigated
whether the eigenvalue-decomposition approach allows one
to detect short-term changes of cluster structures that can be
related to physiological synchronization phenomena �the lan-
guage processing paradigm mentioned above�. The participa-
tion indices were computed from the EEG recording from
patient P3 and translated into bit strings using the same cri-
teria as mentioned above. Bit strings corresponding to the
three largest eigenvalues are shown in Fig. 11. Interestingly,
a modulation of the bit strings depending on the tasks can be
observed. The occurrence of bit strings representing a cluster
of electrode contacts A7, B7−B8, and C7−C8 is noticeable,
particularly during task T2 �letter-matching task�. For this
patient the brain area covered by these electrode contacts
was associated with language processing �Wernicke’s area�.
The observed higher level of synchronization probably re-
flects the higher degree of collectivity among neuronal as-
semblies that are involved in the cognitive operations com-
prising this task. This suggests that the eigenvalue-
decomposition method is capable of detecting short-time
changes of synchronization patterns associated with physi-
ological processes in the human brain.

IV. CONCLUSION

In this paper we have studied two multivariate phase syn-
chronization analysis methods: namely, a mean-field ap-

proach �35� and an eigenvalue-decomposition approach �36�.
While the mean-field approach assumes the existence of a
single synchronization cluster in the data, the eigenvalue-
decomposition approach appears to be capable of identifying
multiple clusters. Based on the results of numerical simula-
tions of multiple synchronization clusters within a lattice of
32 coupled identical Lorenz systems, we demonstrated that
the mean-field approach appears to be relatively robust even
in situations where the single-cluster assumption is not en-
tirely fulfilled. The eigenvalue-decomposition approach suc-
cessfully identified multiple synchronization clusters in our
simulations and appears to be sensitive to detect clusters
even for weak couplings. However, in the case of nonvanish-
ing intercluster synchronization the method failed to cor-
rectly assign the systems to their clusters in certain configu-
rations. The influence of measurement noise, which was not
discussed in depth here, can be expected to lead to the frag-
mentation of clusters present in the data. Nevertheless, the
eigenvalue-decomposition approach can be regarded as supe-
rior when analyzing data exhibiting different synchronization
clusters.

When being applied to field data a number of influencing
factors limit the significance of the eigenvalue decomposi-
tion approach and need further investigations. These factors
include the finite length of available data, random spatiotem-
poral correlations, or even nonrandom correlations being in-
duced by the data acquisition system �e.g., filtering or, as in
the case of EEG recordings, the choice of a suitable refer-
ence�. Nevertheless, our preliminary applications of the
eigenvalue-decomposition approach to multichannel EEG re-
cordings from epilepsy patients indicate that the method al-
lows one to gain deeper insights into the collective dynamics
of neuronal networks, under both physiological and patho-
physiological conditions. Despite the limited EEG database
used in this study, the achieved results can be regarded as
promising. Further evaluations on a larger EEG database are
currently underway.

FIG. 11. �Color online� Spatiotemporal evolution of clusters defined by the largest, second-largest, and third-largest eigenvalues calcu-
lated from EEG data from patient P3 recorded during a language-processing paradigm involving two different tasks �separated by black
lines�. The patient was simultaneously presented item pairs, either word pairs or unpronounceable letter string pairs, and was instructed to
press a button upon recognizing synonyms �T1� or identical letter strings �T2�. A base line recording �B� was performed before and after
the experiment. Each pixel in the figure represents the color-coded cluster membership of a given electrode contact �A1−A8, B1−B8,
C1−C8, D1−D8 shown on the ordinate; cf. Fig. 8� and for a given EEG segment of duration 16.38 s �abscissa�. Contacts A7, B7−B8, and
C7−C8 covered a brain area associated with language processing �Wernicke’s area� and were most noticeable during task T2.
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