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The high-temperature Redfield spin-lattice relaxation theory is used for calculating the relaxation times of
the different dipolar quasi-invariants in an eight-spin system which represents methyl deuterated para-
azoxyanisole �PAAd6� in the nematic phase. According to previous experiments, this system can be considered
as composed of weakly coupled pairs of strongly interacting spins, the ortho protons of the aromatic rings,
thus, it possesses four quasi-invariants of the motion: Zeeman, dipolar intrapair and interpair, and singlet
orders. We write the set of coupled differential equations which describe the relaxation of the generalized
inverse spin temperatures of the four quasi-invariants. The relaxation constants are then calculated in terms of
experimental two-spin spectral densities of the lattice motions. The relation between the multispin and the
two-spin spectral densities is also deduced. Calculation shows that the Zeeman and singlet quasi-invariants are
uncoupled from the dipolar ones, and that the relaxation time of the singlet order is much longer than those of
the Zeeman and dipolar orders. The calculated cross relaxation rate between the dipolar orders through the
lattice is small enough to be observable in the experiment. We also show that the nonsecular term associated
with the collective motions dominates relaxation of the intrapair and interpair energies in PAAd6, while the
local motions do not play a significant role, in qualitative agreement with the reported experimental behavior.
The dipolar relaxation times predicted by the theory are significantly larger than the experimental ones, the
difference being even more pronounced for the interpair quasi-invariant. We show that the discrepancy cannot
be overcome neither by resorting to a realistic model for the spin system nor considering the various possible
cross-relaxation pathways among the quasi-invariants. This feature points out the high- temperature approxi-
mation as a source of the discrepancy. We discuss the effect that slow and ultraslow molecular modes could
have on the relaxation of the dipolar order.
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I. INTRODUCTION

Nuclear magnetic resonance �NMR� spin-lattice relax-
ation methods have been used for many years for studying
the complex anisotropic reorientation of molecules in the
liquid crystal mesophases. The measured quantities are the
relaxation times which depend on the fluctuations of the in-
teractions of the nuclear spins with the molecular environ-
ment or lattice.

In addition to the fast, liquidlike diffusive molecular mo-
tions �translation and rotations� and directly related with the
typical ordering of the liquid crystal �LC� mesophases, LC
molecules undergo slow, collective motions called order di-
rector fluctuations �ODFs� �1�. This kind of motion causes
the relaxation time of the Zeeman order T1Z �commonly
called spin-lattice relaxation time� to be strongly dependent
on the Larmor frequency. The frequency dispersion of T1Z
was measured in nematic liquid crystals and other complex
mesophases by means of field-cycling experiments, which
clearly showed that the cooperative motions dominate the
Zeeman relaxation within the low frequency range �few hun-
dreds of kHz� �2�.

Because of the molecular orientational ordering, LC ex-
hibit a high average intramolecular dipolar energy. This al-
lows preparing the proton spin system in initial quasiequilib-

rium states of strong dipolar order which relax towards
thermal equilibrium with the lattice with characteristic relax-
ation times T1D. In fact, similarly to the case of hydrated salts
�3,4�, by means of the Jeener-Broekaert �JB� pulse sequence
�5� it is possible to prepare two kinds of dipolar ordered
states in LC, namely, intrapair and interpair dipolar order,
and to measure their relaxation times independently �6–8�.
These quasi-invariants relax exponentially, each with a dif-
ferent relaxation rate and temperature behavior. For example,
in 5CB �4�-pentyl-4-biphenyl-carbonitrile� at 14 MHz,
T1Dinter is almost insensible to temperature changes, which is
a typical behavior of the ODF mechanism, while T1Dintra pre-
sents a considerable dispersion with temperature, reflecting
the influence of reorientations of the alkyl chain protons
�7,9�. In PAAd6 �methyl deuterated para-azoxyanisole� at
27 MHz the temperature behavior of both parameters is con-
sistent with the ODF mechanism, but the interpair relaxation
is much more efficient than the intrapair one through the
whole nematic temperature range �7,8�. These features sug-
gest that measuring both dipolar relaxation times can provide
independent information relevant for estimating the contribu-
tion of the several superimposed molecular motions.

Larmor frequency and temperature dependent T1D experi-
ments in several thermotropic liquid crystals showed that the
cooperative molecular fluctuations have a strong relative
weight in the relaxation of the intrapair dipolar ordered state,
even within the MHz frequency range �9–11�. This is the
remarkable characteristic of T1D that makes it especially con-*Electronic address: zamar@famaf.unc.edu.ar
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venient for studying collective molecular dynamics in me-
sophases. However, the magnitude of the ODF contribution
to T1Dintra could not be explained within the standard, high-
temperature Redfield spin-lattice relaxation theory �HTR�
�12,13� while using simplified models for the spin system.
The relaxation time predicted by a two-spin model �14�,
within this theory, is much greater than the experimental in-
trapair dipolar one. The difference depends on the Larmor
frequency as �1/2 �9,10�, which is the dependence of the ODF
spectral density �15�. Further refinements of the model which
consider only the intrapair dipolar quasi-invariant in a four-
proton system did not provide the correction to the discrep-
ancy either �11,16�.

The potential of dipolar order relaxation as a technique
for studying correlated motions in complex fluids, on the one
hand, and the need for a test of the essential hypotheses
underlying the spin-lattice relaxation theory on the other
hand, motivated us to perform a calculation based on a real-
istic model of the spin system which also allows cross relax-
ation among the quasi-invariants through the lattice. We in-
quire if the mentioned facts: the marked difference between
the dipolar relaxation times and the discrepancy between the-
oretical and experimental intrapair relaxation time, can be
assigned to mechanisms described by the usual HTR theory
or if, on the contrary, more general theories are necessary to
take into account the occurrence of slow or ultraslow mo-
tions. The purpose of this work is to obtain secure estimates
of the spin-lattice relaxation rates and of the cross relaxation
among the quasi-invariants through the lattice in PAAd6,
within the HTR theory under the hypothesis of spin tempera-
ture �17�. Then, by comparing the estimates with the experi-
ment, we explore the limits imposed by the basic hypotheses
of the high-temperature Markovian relaxation theory.

It is known that in PAAd6 the magnitudes of some of the
dipolar couplings of protons belonging to different rings are
comparable to, or even larger than, the dipolar couplings
between protons in meta and para position within the ben-
zene rings �18�. Therefore we consider the eight interacting
protons of the molecule as the spin system, as explained in
Sec. II A. This theoretically tractable model has enough
complexity to display the characteristic features of a multi-
spin system. As experimentally demonstrated �8�, the proton
system in PAAd6, as well as in other simple nematic thermo-
tropic liquid crystals �such as the cyanobiphenyls�, can be
treated as an ensemble of molecules composed of weakly
coupled pairs of strongly interacting spins. Therefore, one
expects four quasi-invariants of the motion in such a system:
Zeeman �Z�, dipolar intrapair �intra�, dipolar interpair �inter�,
and singlet �sing� orders �4�.

In Sec. III we write the set of coupled differential equa-
tions for the generalized inverse spin-temperatures and ob-
tain the characteristic relaxation rates of the four quasi-
invariants in terms of spectral densities of the lattice
motions. Based on previous experiments on the Zeeman re-
laxation time in PAAd6, we estimate the spectral densities of
the relevant molecular mechanisms in Sec. IV A. Also we
calculate the contributions of the different molecular motions
to the relaxation parameters. The calculated relaxation times
of the intrapair and interpair dipolar quasi-invariants are then
compared in Sec. V with the reported experimental behavior.

In Appendix D we generalize to the multispin case the
formalism developed in the literature for the calculation of
two-spin spectral densities �19�. We write the multispin spec-
tral densities in terms of that related with the autocorrelation
of the strongest spin pair; this spectral density is the one that
can be extracted from the Zeeman relaxation data. A descrip-
tion of the reference frames used in the calculations is pre-
sented in Appendix A, and the main assumptions used are
listed in Appendix B. In Appendix C we outline the calcula-
tion of the dipolar couplings and the time correlation func-
tions of the different motions.

II. THE HAMILTONIAN

Molecular dynamics in LC is highly correlated, which in
principle, would make necessary to treat the statistical prop-
erties in terms of ensembles of molecules pertaining to cor-
related regions or domains, instead of individual molecules.
However, within the high-temperature approximation, a sim-
plified treatment of NMR relaxation in terms of representa-
tive molecules is realistic.

The Hamiltonian of the system includes the Zeeman in-
teraction �each spin with the external magnetic field B0
which defines the z axis�, the dipolar interaction between
spins, and the lattice energy �thermal bath�:

H = HZ + HD + HL. �1�

In units of � the Zeeman Hamiltonian is HZ=−�B0�iIi
z, with

� the proton gyromagnetic ratio and Ii
z the z component of

the spin operator of each resonant nucleus. HD represents the
dipolar interaction between every pair of spins within the
sample, and HL is the lattice Hamiltonian.

It is now convenient to add and subtract the average over
the motion of the dipolar Hamiltonian HD which is indepen-
dent of time and of the lattice variables, with the purpose of
rewriting the Hamiltonian as

H = HS + HSL + HL. �2�

In this way, the spin Hamiltonian HS=HZ+HD involves only
spin variables, and the second term stands for the fluctua-
tions of the spin-lattice interaction from their average value
HSL=HD−HD �20�. Due to the fast molecular motions the
average value of the intermolecular dipolar interactions are
negligibly small; therefore, HS contains only the �average�
dipolar interactions within the molecule.

Spin lattice relaxation is in principle driven by lattice
fluctuations that may both involve mechanisms referring to
the representative molecule, like the rotational diffusion
�ROT� and the order fluctuations of the director �ODF� or
mechanisms that relate different molecules, such as transla-
tional self-diffusion �DIF�. Experiment showed that the rela-
tive contribution of intermolecular mechanisms to relaxation
of the dipolar order in PAAd6 is small �11�. Then, for the
sake of simplicity, in calculating the relaxation rates of dipo-
lar quasi-invariants �i� we assume that intermolecular mecha-
nisms are statistically independent of intramolecular ones
and �ii� we consider only the intramolecular interactions in
the spin-lattice Hamiltonian. Consequently, in terms of the
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second rank tensor operators of spin Aij
q and lattice Fij

q , we
write

HSL = �
q

�
i�j

�Fij
q Aij

q , �3�

where the indices i , j=1, . . . ,8 number all the interacting
spins as in Fig. 1, q=0, ±1, ±2 and

Aij
0 = Ii

zI j
z −

1

4
�Ii

+I j
− + Ii

−I j
+�

Aij
±1 = −

3

2
�Ii

zI j
± + Ii

±I j
z�

Aij
±2 = −

3

4
Ii

±I j
±. �4�

We defined �Fij �Fij −Fij as the difference between the time
dependent lattice operators and their ensemble average. In
consistence with the high-temperature approximation, the
lattice operators can be replaced by functions �13,21�

Fij
0 =

�0 � �2

4�rij
3 �1 − 3 cos2	ij� ,

Fij
±1 =

�0 � �2

4�rij
3 sin 	ijcos 	ije


i�ij ,

Fij
±2 =

�0 � �2

4�rij
3 sin2	ije


2i�ij , �5�

where 	ij and �ij are the polar and azimuthal angles of the
internuclear vector relative to a frame with the z� axis paral-
lel to the external magnetic field. It is worth mentioning the
consequences that this high temperature approximation has.
The master equation which we use later to describe the spin
dynamics �Eq. �10�� is obtained after two steps �13�, first the
general Markovian master equation in operator form is ex-
panded up to linear terms in �RHS, where �R is the “inverse
temperature” of the reservoir, and �1–HS / �kBT�� is identified
with the thermal equilibrium density operator, second, the

density operator appearing in the linear term of the approxi-
mate master equation is replaced by its form of infinite tem-
perature. The master equation so obtained has the correct
detailed balance for finite temperatures, but with a relaxation
superoperator which coincides with that of the semiclassical
master equation. Physically, this approximation implies the
neglecting of correlation between spin and lattice degrees of
freedom in the microscopic time scale �21�.

A. Model for the spin system of the PAAd6 molecule

The numerical calculations carried out in this work are
based on a PAAd6 molecule having the following character-
istics. The molecule is considered as rigid, with average val-
ues of angles and distances obtained from the literature �18�.
The effect of internal motion involving the angles between
axes and planes of the benzene rings is only considered
through the averaging it introduces. We assume that these
internal motions provide a negligible contribution to the cor-
relation functions �defined in Appendix C�, as their correla-
tion time is much smaller than those of the external motion
such as rotation and ODF �22,23�.

The average secular components of the lattice tensor �di-
polar couplings� involved in the spin Hamiltonian defined in
Eq. �6� are listed in Table I. The dipolar couplings Fij

0 are
sorted by their magnitude, indices i, j label protons as in Fig.
1 and index k labels the different pairs of interacting spins.
The details of the calculation of these dipolar couplings for a
nematic LC with cylindrical rod shaped molecules are given
in Appendix C. In order to test the suitability of the model
adopted for the spin system, we calculated the NMR free
induction decay �FID� yielded by the model and compared
its spectrum with the experimental one. Fig. 2 shows the
high-frequency part of the NMR doublet of PAAd6. The
dashed line is the experimental spectrum �24�. The infinitely-
sharp-line spectrum below is calculated from the Liouvillian
time evolution of a closed, eight-spin system. The dipolar
Hamiltonian used is that of Eq. �6� with the dipolar couplings

FIG. 1. �Color online� Sketch of the PAAd6 molecule. Protons
in the benzene rings are numbered as used in the calculations.

TABLE I. Proton-proton dipolar interactions.

i j Fij
0 �Hz� k i j Fij

0 �Hz� k

5 6 −3813.5 1 4 5 −152.1 15

7 8 −3800.8 2 2 3 134.3 16

1 2 −3529.5 3 6 7 118.0 17

3 4 −3515.2 4 4 6 −113.7 18

2 5 −689.1 5 3 5 −103.0 19

4 7 −617.4 6 3 8 −83.6 20

5 7 359.2 7 1 6 −80.2 21

6 8 358.7 8 1 7 −63.0 22

2 4 357.4 9 2 8 −59.0 23

1 3 346.1 10 3 6 −55.6 24

3 7 −211.5 11 1 8 −43.2 25

2 6 −205.0 12 2 7 −36.9 26

4 8 −200.1 13 1 4 −31.5 27

1 5 −198.6 14 5 8 −1.5 28
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of Table I. We adopted the order parameter Szz=0.456 . Line
broadening effects due to the interaction with other nuclei
�e.g., deuterium, nitrogen�, local magnetic field inhomogene-
ities, chemical shifts, etc., are taken into account by assign-
ing a Gaussian of 0.8 kHz �at half height� to each narrow
peak, finally obtaining the calculated amplitude spectrum
�solid line�. We consider that the qualitative agreement be-
tween the calculated and the measured spectra indicates that
the actual spin system can be adequately represented by the
one described here.

B. The spin Hamiltonian

The high field approximation consists in truncating the
average dipolar Hamiltonian keeping only the secular �q
=0� term, that is H̄D→HD

0 . The use of such a truncated
Hamiltonian in the evolution operator in the interaction pic-
ture is consistent with a semiclassical form of the relaxation
theory. In fact, truncation has the consequence of ruling out
terms of pure quantum character �21�.

In order to simplify notation we replace the two indices
that number the interacting spins in Eqs. �4� and �5� by only
one index, k that designates the pair. Then, the spin Hamil-
tonian can be written as

HS = HZ + �
k

Fk
0Ak

0, �6�

where Fk
0=

�0��2

4�rk0
3 Szz�1−3 cos2�MQ

k0 �, Szz is the order parameter

and �MQ
k0 the angle between the kth internuclear vector and

the molecular z axis �see Eq. �C7��.
It is evident from Table I that the dipolar couplings with

k=1, 2, 3, and 4 are at least five times greater than the others.
This fact allows us to recognize four pairs of strongly
coupled spins which interact weakly with the other spins. In
consistence with this picture, the dipolar part of the spin

Hamiltonian can be written as a sum of a strong “intrapair”
contribution due to the ortho pairs and a much weaker
“interpair” one due to the other pairs. Additionally, we keep
only the secular part of the interpair Hamiltonian with re-
spect to the Zeeman and the intrapair terms �4,25�. The va-
lidity of this truncation is supported by the experimental evi-

dence that Hintra
0 and Hinter

0� behave as quasi-invariants in
PAAd6 �the prime denotes truncation� �6,8�. Then the spin
Hamiltonian is

HS = HZ + HD
0 , �7�

where

HD
0 = Hintra

0 + Hinter
0� . �8�

III. SPIN-LATTICE RELAXATION

The time dependence of the expectation value of any
quasi-invariant HO �with O=Z, intra, inter, or sing� of the
spin system is given by

d�HO�
dt

=
d

dt
Trs	HO
 , �9�

where Trs stands for the trace over the spin variables and
�TrR	�
 is the reduced density matrix, obtained after trac-
ing the density operator � of the whole system over the lat-
tice variables �26�. In the high-temperature limit, the spin
operator in the interaction picture satisfies the master equa-
tion �13�

d*�t�
dt

= −
1

2
�

−�

�

dt��HSL
* �t�,�HSL

* �t��,�*�t��� , �10�

where �*�t��*�t�−eq, eq is the equilibrium density ma-
trix, and the overbar means average over the lattice ensemble
at equilibrium. Equation �10� is the high-temperature form of
the general Markovian master equation, which represents the
spin dynamics in the “coarse-grained” time scale �21,27�.
The validity of the Markovian approach relies on the possi-
bility of finding a time scale larger than the lattice correlation
times but smaller than the relaxation times. Formally, in the
interaction picture the time dependence of the spin-lattice
Hamiltonian

HSL
* �t� = U−1�HD − HD�U , �11�

is given by the time evolution operator

U = e−i�HS+HL�t = e−iHSte−iHLt � USUL.

Then

HSL
* �t� → �k �

q=−2

2

�Fk
q�t�US

−1Ak
qUS. �12�

The time dependence of the functions �Fk
q�t� is assumed as a

stochastic process representing the molecular motion �see
Appendix C�.

Through application of the Jeener-Broekaert pulse se-
quence, the proton spin system can be brought into states of

FIG. 2. �Color online� Comparison between the high frequency
part of the experimental doublet of PAAd6 at 402 K and 27 MHz
�dashed line� �24� and the one calculated with the model molecule
�solid�.
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semiequilibrium which can be represented by a high-
temperature density matrix of the form �8�

*�t� = �I − �
O

�O�t�HO�/Tr	I
 , �13�

where �O stands for �Z, �intra, or �inter, the inverse “spin
temperatures” of the Zeeman and dipolar reservoirs, and I is
the identity operator. By adequately adjusting the time inter-
val between the preparation pulses of the JB sequence, it is
possible to prepare initial states where only �intra�0 or
�inter�0. The relaxation time of the dipolar order so ob-
tained is measured by recording the dipolar FID signal as a
function of the interval between the preparation and the read-
ing pulses. The singlet order �s order� cannot be directly
prepared through the JB sequence, however, the singlet
population could change through the cross relaxation with
other quasi-invariants via the lattice. Then we include this
quasi-invariant in the calculation of the relaxation times.
This is achieved by adding a term �sing�t�Hsing in Eq. �13�,
where �sing�t� is related with the chemical potential and

Hsing��k=1
4 I��2k−1� ·I��2k��4,25�. Each term of operator Hsing

represents the difference between the population of the sin-
glet state and the average population of the triplet states of
the corresponding spin pair.

Starting from Eq. �10� a set of coupled differential equa-
tions for the spin observables can be obtained. After replac-
ing Eq. �13� in Eq. �10�, multiplying both members by HO,
taking the trace over the spin variables and using Eq. �9�, we
find

dxO�t�
dt

= − �
P

TOP
−1�xP�t� − xP

0 � , �14�

where xO�t�=�O�t��trs	HO
2 
 �25�, and the indices O and P

run over Z, intra, inter, and sing. The symbol T OP
−1 stands for

the spin-lattice relaxation rate of each quasi-invariant di-
rectly with the lattice �when O=P� or the spin-lattice cross-
relaxation rate between the different reservoirs �when O
�P�. These parameters can be written in terms of the spec-
tral densities of the molecular motions Jkl

q and the spin coef-
ficients ckl�OP�

q

T OP
−1 = �

q=−2

2

�
kl

ckl�OP�
q Jkl

q �q�0� . �15�

The spin coefficients involving the spin operators of pairs
k and l are

ckl�OP�
q =

trs	�HO,Ak
q��Al

−q,HP�


2 �trs	HO
2 
�trs	HP

2 

= clk�PO�

−q . �16�

The spectral densities, defined as

Jkl
q ��� = �− 1�q�

−�

�

Gkl
q ���e−i��d� , �17�

have the property Jkl
q �q�0�=Jlk

−q�−q�0�, within the high-
temperature approximation. The correlation function Gkl

q ���
=�Fk

q*�Fl
q��� only depends on the time interval � since it is

calculated at thermal equilibrium, where the probability den-
sity functions are stationary. Then

T OP
−1 = T PO

−1 . �18�

The set of relaxation rates of Eq. �15� can then be ar-
ranged in a symmetric matrix R. In Sec. IV B we show that
such matrix is clearly simplified in the particular case of
PAAd6. Within this molecular geometry there is no coupling
between the Zeeman and the singlet quasi-invariants nor be-
tween each of these and the dipolar ones. By using repeated
indices in Eq. �15� �O=P� only once and replacing T intra,inter

−1

by T mix
−1 , the R matrix is

R = 
T Z

−1 0 0 0

0 T intra
−1 T mix

−1 0

0 T mix
−1 T inter

−1 0

0 0 0 T sing
−1
� . �19�

In order to solve this simplified problem we find the ei-
genvalues of Eq. �19�:

T a
−1 = T Z

−1, �20�

T b
−1 =

�T intra
−1 + T inter

−1 �
2

+ k
�T intra

−1 − T inter
−1 �

2

=T intra
−1 1

1 − �
− T inter

−1 �

1 − �
, �21�

T c
−1 =

�T intra
−1 + T inter

−1 �
2

− k
�T intra

−1 − T inter
−1 �

2

=− T intra
−1 �

1 − �
+ T inter

−1 1

1 − �
, �22�

T d
−1 = T sing

−1 , �23�

where we defined

k =�1 + 4
�T mix

−1 �2

�T intra
−1 − T inter

−1 �2 , with 1 � k � �

and

� =
k − 1

k + 1
, with 0 � � � 1.

Using these definitions, the solutions of the coupled first
order differential equations of Eq. �14� can be written explic-
itly as
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�Z�t�

�intra�t�
�inter�t�
�sing�t�

�=
e−T a

−1t 0 0 0

0 C11�e−T b
−1t + �e−T c

−1t� C12�e−T b
−1t − e−T c

−1t� 0

0 C21�e−T b
−1t − e−T c

−1t� C11��e−T b
−1t + e−T c

−1t� 0

0 0 0 e−T d
−1t
� �Z�0�

�intra�0�
�inter�0�
�sing�0�

�+
�1 − e−T a

−1t�
T 11

−1

T b
−1 �1 − e−T b

−1t� +
T 12

−1

T c
−1 �1 − e−T c

−1t�

T 21
−1

T b
−1 �1 − e−T b

−1t� +
T 22

−1

T c
−1 �1 − e−T c

−1t�

�1 − e−T d
−1t�

��eq

�24�

where �eq= 1
KBT , KB is the Boltzmann constant, and T is the

temperature. The other constants used in Eq. �24� are defined
as

C11 =
k + 1

2k
= �� + 1�−1,

C12 = ��C11

�trs	Hinter
2 


�trs	Hintra
2 


= ��C11C ,

C21 = ��C11C
−1,

T 11
−1 = C11�T intra

−1 + CT mix
−1 � + C12�T inter

−1 + C−1T mix
−1 � ,

T 12
−1 = �C11�T intra

−1 + CT mix
−1 � − C12�T inter

−1 + C−1T mix
−1 � ,

T 21
−1 = C21�T intra

−1 + CT mix
−1 � + �C11�T inter

−1 + C−1T mix
−1 � ,

T 22
−1 = − C21�T intra

−1 + CT mix
−1 � + C11�T inter

−1 + C−1T mix
−1 � .

�25�

It is worth noticing that
T 11

−1

T b
−1 +

T 12
−1

T c
−1 =1 and

T 21
−1

T b
−1 +

T 22
−1

T c
−1 =1, accord-

ing to the previous definitions.
The amplitude of the dipolar signal in the JB experiment

is proportional to �intra�t�+�inter�t�. According to Eq. �24�, by
preparing the dipolar order for example in the intrapair con-
dition �that is, �intra�0��0 and �inter�0�=0�, the subsequent
signal evolves towards the equilibrium with the lattice �in
principle� with a two-exponential trend with constants Tb and
Tc. However, by expanding the two exponentials, and using
Eqs. �21� and �22� one gets

�intra�t� =
�intra�0�
� + 1

�e−T b
−1t + �e−T c

−1t�

+ �T 11
−1

T b
−1 �1 − e−T b

−1t� +
T 12

−1

T c
−1 �1 − e−T c

−1t���eq

��intra�0��1 −
T b

−1 + �T c
−1

� + 1
t

+
1

2
�T b

−1 + �T c
−1

� + 1
�2

t2 + . . . �
+ �intra�0��intra�t�

��intra�0��e−T intra
−1 t + �intra�t�� �26�

�inter�t� � �inter�0��e−T inter
−1 t + �inter�t�� , �27�

where we used that T intra
−1 =

T b
−1+�T c

−1

�+1 , and T inter
−1 =

�T b
−1+T c

−1

�+1 , ac-
cording to Eqs. �21� and �22�. The quantities �intra�t� and
�inter�t� represent the difference between the monoexponen-
tial approximation and the biexponential exact evolution for
the intrapair and interpair dipolar quasi-invariants. In both
cases the first term of the correction is the quadratic one,
namely,

t2�T b
−1 − T c

−1�2 �

2�� + 1�2 .

In the former equations we neglected the term proportional
to �eq because

�eq

�intra�0� �1 and
�eq

�inter�0� �1.

IV. CALCULATION OF THE RELAXATION
CONSTANTS R

Now we estimate the contributions to the dipolar relax-
ation rates from the different molecular motions, in order to
compare with the experimental data of T1Dintra�T� and
T1Dinter�T� �8�. We use Eqs. �15� with the coefficients ckj

q

calculated for the eight-spin model of PAAd6, and the spec-
tral densities estimated from independent T1Z experimental
data.

A. Spectral densities

Because of the very different time scales of the director
modes and the local reorientations, these fluctuations can be
normally averaged separately, and the spectral densities can
be expressed as a sum of contributions from the ODF and
ROT �see Appendix D and Ref. �19��

Jkl
q = Jkl

qODF + Jkl
qROT. �28�

We also show in Appendix D that the spectral densities can
be scaled with respect to the autocorrelation of the o-spin
pair, that is,

Jkl
q = �k�lJoo

q , �29�

where each �k is the ratio of the dipolar coupling of the kth
pair to the one of the o pair.

An estimation of the spectral densities of the relevant re-
laxation processes, can be made by comparing the Larmor
frequency dependent T 1Z

−1 data with the theoretical expression
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T 1Z
−1 =

9

32�
ll

Jll
q�q�0� + RDIF, �30�

where the first term comes from the intramolecular mecha-
nisms represented in Eq. �15� �the spin coefficients ckl�ZZ�

q

=0 for k� l and ckl�ZZ�
q = 9

32 for k= l in an eight-spin system�
and RDIF stands for translational diffusion �28� since, in con-
trast with T1D, intermolecular mechanisms play a role in Zee-
man relaxation. Besides, we keep only the spectral densities
associated with the ortho pairs since they are much larger
than those involving more distant protons due to the particu-
lar geometry of the PAAd6 molecule. Also, we assume that
the four pairs are equivalent since their dipolar couplings do
not differ more than 5%. So, Eq. �30� can be written as

T 1Z
−1 �

9

8
�Joo

1ODF��� + Joo
1ROT��� + Joo

2ROT�2��� + RDIF,

�31�

where we replaced the spectral densities Jll
q by that corre-

sponding to the strong o pair. Also we used the fact that in
the limit of small-amplitude ODF the term Joo

2ODF can be ne-
glected �15,29�.

Equation �31� is a simple expression that is used to esti-
mate the spectral densities from the experiment. Within the
low frequency regime, where the contribution from the local
motions is small, T 1Z

−1� 9
8Joo

1ODF, and comparison with the ex-
perimental data at 403 K �11� gives in PAAd6 the estimate
Joo

1ODF=0.267 s−1, within 10% �30,40�.
The ROT spectral densities can be estimated from field-

cycling data by following the procedure described in refer-
ence �31�. We obtained Joo

1ROT=0.034 s−1 within 20% error
and Joo

2ROT�0.015 s−1. Finally, by assuming the extreme mo-
tional narrowing condition, the secular �q�0� spectral den-
sity can be estimated by the simple relation Joo

0ROT=6Joo
1ROT

�13�. In this way, we obtain the value Joo
0ROT=0.204 s−1. By

using the former estimates in Eq. �29�, we generate all the
spectral densities needed for calculating the relaxation rates
of Eq. �15�.

B. Relaxation matrix

The calculated values of the relaxation rates of Eq. �15�
�in s−1� are

R = 
0.3496 0 0 0

0 0.9995 0.2133 − 0.0023

0 0.2133 0.7178 0

0 − 0.0023 0 0.0128
� . �32�

The elements of this matrix are given within an error of 10%
and show the following features. �i� The zeros of this matrix
show that the Zeeman order is disconnected from the other
reservoirs. �ii� All the elements relating the s order with the
dipolar orders are about three orders of magnitude smaller
than the dipolar relaxation rates, hence, it can be expected no
observable effect associated with the s order. This fact is the
basis for neglecting the corresponding matrix elements in Eq.
�19�. �iii� The relative size of T mix

−1 indicates a weak mutual
interaction of the dipolar reservoirs through the lattice. �iv�

The predicted direct spin-lattice relaxation time for the sin-
glet reservoir is much longer than the relaxation times of the
Zeeman and dipolar reservoirs �about 78 s�, similar to the
experimental value reported for 2,3-dibromothiophene �32�.
Table II shows the detail of the contributions to the elements
of R from the ODF and ROT for the different values of q.

V. DISCUSSION AND CONCLUSIONS

Numbers in Table II show that the dominant contributions
to the relaxation rates come from q=1, while the contribu-
tions from the q=0 and q=2 processes are much smaller. It is
worth to notice the secular terms, namely spin processes
which affect the dipolar energy without concomitant change
of the Zeeman energy, do not contribute significantly to the
dipolar order relaxation in the problem analyzed in this
work, even when Joo

0ROT and Joo
1ODF have similar size. The

calculated dipolar relaxation rates of the eight-spin system
are clearly governed by the ODF, while the ROT contribute
the 16%. This prediction agrees with the experiment because
the temperature dependences of both T1Dintra and T1Dinter in
PAAd6 are approximately linear �8�, indicating that ODF
dominate relaxation. Also, this result is compatible with the
statement that T1D is selectively sensitive to the collective
motions. The ROT term with q=2 is greater in Tinter than in
Tintra, the total ROT contribution being slightly larger in
Tinter.

From Eqs. �26� and �27� we define

�intra�t� =
��intra�t��

e−T intra
−1 t

, �inter�t� =
��inter�t��

e−T inter
−1 t

, �33�

as a measure of the relative difference between the single-
exponential approximation and the biexponential exact evo-
lution for the intrapair and interpair dipolar quasi-invariants.
By replacing the values of Eq. �32� into Eqs. �21� and �22�,
we obtain that for t�2Tintra or t�2Tinter, the relative differ-
ences �intra and �inter are, respectively, less than 0.12 and
0.15. That is to say, according to the theory, the expected
time evolutions of the dipolar spin temperatures should not
differ appreciably from a single exponential behavior in such
a time scale. The experimental decay reported for measure-
ments of the dipolar relaxation times �8� using the JB se-
quence in PAAd6 and other liquid crystals �7� indeed show
this behavior. Inasmuch as the experiment behaves as a
single exponential, one can identify the measured decay con-
stants with the calculated ones, that is, T1Dintra�Tintra and

TABLE II. Contribution to the relaxation rates �in s−1� from the
different motions for q=0, 1, and 2.

q Process T intra
−1 T inter

−1 T mix
−1

0 ODF 0 0 0

0 ROT 0.00101 0.00060 −0.00015

1 ODF 0.88528 0.60728 0.18921

1 ROT 0.11273 0.07733 0.02410

2 ODF 0 0 0

2 ROT 0.00052 0.03261 0.00001
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T1Dinter�Tinter. However, the reported experimental values of
the dipolar relaxation times at 402 K and 27 MHz are
T1Dintra=680 ms and T1Dinter=345 ms �6,8�, which are mark-
edly lower than the theoretically predicted: Tintra
=1000.5 ms and Tinter=1393.1 ms. In addition, the calcula-
tion predicts similar values for Tintra and Tinter, which dis-
agrees with the experimental relationship.

Calculation of the quantities � from Eq. �33� using the
experimental values T1Dintra and T1Dinter for different values
of T mix

−1 , yields �intra�0.05 for t�3Tintra and �inter�0.05 for
t�3Tinter with T mix

−1 �0.2133 s−1. This suggests that the ac-
tual coupling between the dipolar quasi-invariants through
the lattice is weak.

Our calculation shows that the s order of the eight-spin
system in the nematic phase is motionally isolated. This is
also consistent with the reported single exponential evolution
of the spin temperatures. Thus, in this system it is not pos-
sible to detect the s order in experiments of dipolar order
relaxation. This situation contrasts with the case of oriented
hydrated salts, where the spin-lattice relaxation is driven by a
different kind of mechanism. In these solids, the fluctuations
of the secular interpair interaction, caused by the exchange of
the protons of the water molecules, represent a very efficient
mechanism for the relaxation of the dipolar quasi-invariants,
as well as for the spin-lattice cross coupling of the intrapair
and singlet reservoirs �4,25�.

Thus, in this work we show that the remarkable difference
between predicted and measured values cannot be assigned
to �i� erroneous interpretation of the decay rates due to a
possible coupling between the quasi-invariants, �ii� neglect-
ing of the multispin character of the problem, �iii� errors
introduced by the model. This means that the occurrence of
other efficient relaxation pathways should be considered.
Such mechanisms, driven by the ODF, are not contemplated
by the usual HTR theory.

Dipolar order relaxation theories that start from the Mar-
kovian master equation are valid, in principle, for lattice
fluctuations with correlation times �C�T1D. However, the
high-temperature approximation amounts to considering that
each spin behaves independently of the other nuclei within
the microscopic time scale, thus, screening the microscopic
correlation between the spin and lattice variables. In fact,
under this approximation, the dipolar term of the spin Hamil-
tonian does not play a role in the time evolution of HSL, as
can be seen in the steps yielding Eqs. �15� and �16�, and also
in Ref. �16�. This feature has the effect of restricting the
applicability of this approach to short correlation times, that
is �D�C�1, disregarding the occurrence of fluctuation life-
times comparable to or even longer than the inverse of the
dipolar frequency �D.

The fact that in LC the lifetime of the slow ODF modes is
comparable to �D

−1 thus points out the high-temperature ap-
proximation as a source of the noticeable disagreement be-
tween calculated and measured relaxation times. In a recent
work, by using a generalized spin-temperature relaxation
theory in the Markovian regime, which does not assume high
temperature �or weak order�, a theoretical expression for an
additional contribution to the dipolar intrapair relaxation rate
of pure quantum character was derived. Starting from the
quantum Markovian master equation it was shown that a

contribution exists with a Larmor frequency dependence
which is consistent with the experiments, and the magnitude
of which may attain a macroscopic size in highly correlated
systems �21�. The existence of a contribution of this type
indicates that effects of correlated interaction between spins
and lattice can be of importance in dipolar order relaxation.

The occurrence of motions having long correlation times,
even comparable to T1D, was suggested in the literature.
Through an experiment based on the stimulated-echo pulse
sequence, ODF modes with correlation times in the range of
milliseconds to hundreds of milliseconds was reported in
nematic 5CB �33�. The fact that this relaxation mechanism
does not manifest in the “usual” relaxation times as the Zee-
man and intrapair ones, could be understood looking at the
experiment of dipolar order relaxation on a gypsum crystal
subjected to low-amplitude, low-frequency rotational vibra-
tion as a whole. It was predicted and verified in gypsum, that
externally driven quasiadiabatic variations of the Hamil-
tonian do not perturb quasi-invariants that depend on the
populations of the intrapair energy levels �namely, the Zee-
man and intrapair energies and the s order� �3�. This kind of
motion introduces an additional relaxation mechanism of the
interpair order, with a rate proportional to the square of the
angular velocity �34� and temperature independent.

According to this, if ultraslow modes in LC could be con-
sidered as quasiadiabiatic transformations, they would only
affect the interpair quasi-invariant and might explain at least
a part of the discrepancy. By the same analysis, the intrapair
relaxation in LC would not be perturbed by such kind of
motion. This reasoning is reinforced by the fact that the
strong Larmor frequency dependence of T1Dintra observed in
PAAd6 and other LC is consistent with the “Markovian”
square-root law of the ODF, over a wide range of external
magnetic fields. A detailed investigation of the effects of ul-
traslow modes on the dipolar energy relaxation demands ex-
ploring spin-lattice relaxation theories valid for the non-
Markovian regime, as the formalisms developed for studying
quasiadiabatic evolution of thermodynamic observables
�35,36�.

Summarizing, in this work we use the high-temperature
Redfield relaxation theory to calculate the dipolar quasi-
invariant relaxation times in an eight-spin system that repre-
sents the proton system of PAAd6. We study the relaxation of
the several quasi-invariants within the spin thermodynamics
framework, and consider the cross relaxation between the
reservoirs through the lattice. We analyze the contributions to
the dipolar relaxation rates from the different kinds of mo-
lecular motions and find that the local motions do not play a
significant role in PAAd6. Instead, the calculation predicts
that the ODF dominate the relaxation of both dipolar quasi-
invariants, in qualitative agreement with the reported experi-
mental temperature behavior. However, we find that the pre-
dicted dipolar relaxation times are significantly larger than
the experimental ones, the difference being more pronounced
for the interpair quasi-invariant. We show that the discrep-
ancy cannot be overcome by resorting to a more realistic
model for the spin system or considering the various possible
cross-relaxation pathways among the quasi-invariants.
Therefore, we conclude that the usual HTR theory underes-
timates the role of the collective fluctuations in the relaxation
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of the dipolar quasi-invariants in PAAd6. The difference
might be related with the effect of slow or ultraslow corre-
lated motions that are not taken into account in the high-
temperature relaxation theory.
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APPENDIX A: REFERENCE FRAMES

In the following sections we write the multispin spectral
densities of the liquid crystal uniaxial molecule in terms of
Joo

q ���. The procedure generalizes the formalism developed
for two-spin spectral densities of the literature �19�.

In order to describe the different molecular motions in the
LC mesophase, we define the reference systems depicted in

Fig. 3. The external field B0
� determines the ẑ� axis of the

laboratory system �xyz��. A second frame, �xyz��, is chosen
in such a way that the ẑ� axis coincides with the local direc-
tor n̂. ���t� designates the Euler angles ��� and ��� between
these two coordinate systems and ���t� names the angles
����azimuthal�, ���polar�, and ���axial�� between the direc-
tor frame and a frame �xyz�MQ fixed to the molecule. The

orientation of each interproton vector rk
� in this frame is

�MQ
k �t�, defined by �MQ

k and �MQ
k . Finally we introduce a set

of frames �xyz�k with the zk axes in the direction of the in-
terproton vector of the kth pair. In such coordinate systems,
the lattice tensor operator adopts the simple expression

F̃k
0�t�=

−�0��2

2�rk
3�t� . With these definitions we can write the time

dependent lattice operators in the laboratory frame Fk
q�t� as

the result of three successive transformations of F̃k
0�t�,

through the systems of Fig. 3:

Fk
q�t� = �q�q�

Dqq�
2* ����t��Dq�q�

2* ����t��Dq�0
2* ��MQ

k �t��F̃k
0�t� ,

�A1�

where D2 is the Wigner matrix of second rank �37�.

APPENDIX B: ASSUMPTIONS CONCERNING
THE DESCRIPTION OF LC

The basic assumptions underlying our reasoning are the
following:

�1� The angular variables of the different reference frames
are statistically independent. Then, the local director motion,
represented by Dqq�

2 ����t��, is uncoupled from the individual
molecular motion given by Dq�q�

2 ����t�� �originated in inter-
molecular mechanical interaction�. In addition, both motions
are uncoupled from the internal molecular modes,

Dq�0
2* ��MQ

k �t��F̃k
0�t�.

�2� The probability distribution of the molecular orienta-
tion in the local director frame ���t�, is independent from ��.
That is, we assume that molecules behave as cylindrical rods.
This is valid if the order parameter Sxx−Syy is small in com-
parison with Szz, which is the case for PAAd6 �38�. Also the
angles �� and ��, are statistically uncoupled from ��.

�3� The different kinds of molecular motion in LC have
different time scales �18,22�. Modes involving the different
parts of the molecule, such as torsions and vibrations, and
the rotation around the molecular principal axis �described
by ��� have the shortest correlation times. Slower than these
are motions involving �� and ��, namely, those motions la-
beled as ROT. Finally, the cooperative motions described by
�� and �� �such as the ODF� have the largest correlation
times.

APPENDIX C: DIPOLAR COUPLINGS
AND CORRELATION FUNCTIONS

In this section we calculate the dipolar couplings shown
in Table I, that are mean values of the lattice operators. Also
we deduce expressions for the time correlation functions of
the different motions. Within the semi-classical approxima-
tion, the lattice operators Fk

q�t� are replaced by the time func-
tions Fk

q�t�; in thermal equilibrium, their expectation values
are

Fk
q � �Fk

q� � tr	�Fk
q
 ⇒ Fk

q � �Fk
q� � � Fk

qp�Fk
q�dFk

q, �C1�

where � is the density matrix, p�Fk
q� is the probability of Fk

q,
and both the overline and the brackets stand for ensemble
averages.

FIG. 3. �Color online� �a� Reference frames through which F̃k
0�t�

is transformed. �b� PAAd6 molecule showing the angles �MQ
k and

�MQ
k corresponding to the interproton vector with k�28 �according

to Table I�.
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Using approximation �B1� the average of Eq. �A1� is the
product of averages:

Fk
q = �q�q�

Dqq�
2* ����Dq�q�

2* ����Dq�0
2* ��MQ

k �F̃k
0, �C2�

where

Dqq�
2* ���� = �eiq��dqq�

2 ����� = Dqq�
2 ����*, �C3�

Dq�q�
2* ���� = �eiq���dq�q�

2 ����eiq���� = Dq�q�
2 ����*

= �eiq���dq�q�
2 ������eiq���� = �eiq���dq�0

2 ������q�,0,

�C4�

Dq�0
2* ��MQ

k �F̃k
0 = −

�0 � �2

2�
�eiq��MQ

k
dq�0

2 ��MQ
k �

1

rk
3�

= −
�0 � �2

2�rk0
3 eiq��MQ

k0
dq�0

2 ��MQ
k0 �

= Dq�0
2 ��MQ

k �F̃k
0*. �C5�

In Eq. �C4� we used also approximation �B2� and �m,n is the
Krönecker delta. In Eq. �C5�, the angles �MQ

k0 , �MQ
k0 and the

internuclear distance rk0 of the kth proton pair interaction,
correspond to the average rigid molecule as given in Ref.
�18�.

In the high field approximation, one only keeps the term
of the Hamiltonian with Fk

0 �q=0�. This leaves the intensity
of the dipolar coupling as

Fk
0 =

�0 � �2

4�rk0
3 �1 − 3 cos2�MQ

k0 ��q�
�d0q�

2 ������eiq���dq�0
2 ����� .

�C6�

In the case of a LC in a uniaxial phase, like nematic PAAd6:
�d0q�

2 �����=�q�,0. Using this in Eq. �C6�, the dipolar coupling
becomes

Fk
0 =

�0 � �2

4�rk0
3 Szz�1 − 3 cos2�MQ

k0 � , �C7�

where Szz= �d00
2 �����= ��3 cos2��−1� /2� is the order param-

eter.
The correlation functions are defined as

Fk
q†Fl

q��� � �Fk
q†Fl

q���� � tr	�Fk
q†Fl

q���


⇒ Fk
q*Fl

q��� � �Fk
q*Fl

q����

� � Fk
q*Fl

q���p„Fk
q*;Fl

q���,��dFk
q*dFl

q��� ,

�C8�

where p(Fk
q* ;Fl

q��� ,�)= p�Fk
q*�p(Fl

q��� ,� �Fk
q*) is the prob-

ability of having Fk
q* as the initial value and Fl

q��� after a
time �; p(Fl

q��� ,� �Fk
q*) is the conditional probability. The

calculation of the correlation function is made at thermody-
namic equilibrium, then the result can only depend on the

time difference �, due to the stationary character of the prob-
ability distribution functions.

For collective motions, the correlation functions of the
elements of the Wigner matrices are

�Dqq�
2 ����Dqp�

2* �������� = �eiq������−���dqq�
2 ����dqp�

2 ��������

= ĝqq�,qp�
ODF ��� . �C9�

For local molecular motions

�Dq�q�
2 ����Dp�p�

2* �������� = ĝq�q�,p�p�
rot ���ĝq�,p�

rot� ��� ,

�C10�

where we used approximation �B2� to factorize the correla-
tion function and defined

ĝq�q�,p�p�
ROT ��� = �e−iq���eip������dq�q�

2 ����dp�p�
2 ��������

�C11�

and

ĝq�,p�
ROT���� = �e−iq���eip������� . �C12�

Finally, the correlation function associated with the internal
molecular motion �int� is

�Dq�0
2 ��MQ

k �F̃k
0Dp�0

2* ��MQ
l ����F̃l

0����

= �e−iq��MQ
k

eip��MQ
l ���dq�0

2 ��MQ
k �dp�0

2 ��MQ
l ����F̃k

0F̃l
0����

= ĝq�0,p�0
int�kl� ��� . �C13�

Time correlation functions such as Eqs. �C9�, �C10�, and
�C13�, can be represented in a general form as

ĝm,n
C ��� = �fmfn

*���� = ��fmfn
*� − �fm��fn

*���m,n
C ��� + �fm��fn

*�

= �ĝm,n
C �m,n

C ��� + ĝm,n
C ��� , �C14�

where �ĝm,n
C � ĝm,n

C �0�− ĝm,n
C ��� and �m,n

C ��� is a decreasing
function of �, so that �m,n

C �0�=1 and lim�→��m,n
C ���=0. This

function decreases with a characteristic time �m,n
C that repre-

sents the lifetime of the correlation. An example could be an

exponential function �m,n
C ���=e−���/�m,n

C
�39�. By applying Eq.

�C14� in Eq. �C12�, we finally obtain

ĝq�,p�
ROT���� = ĝq�,q�

ROT�����p�,q�, �C15�

with

ĝq�,q�
ROT���� = ��1 − �q�,0��q�,q�

ROT���� + �q�,0� . �C16�

APPENDIX D: PROPERTIES OF THE SPECTRAL
DENSITIES OF A LIQUID CRYSTAL

In this appendix we write the multispin spectral densities
of the liquid crystal molecule in terms of Joo

q ���. The proce-
dure generalizes the formalism developed for two-spin spec-
tral densities of the literature �19�.

The spectral densities are defined as
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Jkl
q ��� = �− 1�q�

−�

�

Gkl
q ���e−i��d� , �D1�

with Gkl
q ���, the correlation function

Gkl
q ��� = ��Fk

q*�Fl
q���� = �− 1�q��Fl

q�Fk
−q���� , �D2�

where �Fk
q�t�=Fk

q�t�−Fk
q�t�. We also used Fk

q*= �−1�qFk
−q in

Eq. �D2�.
Using Eq. �A1� to write Eq. �D2� explicitly, we have

Gkl
q ��� = �q�q� �p�p�

��Dqq�
2 ����Dq�q�

2 ����Dq�0
2 ��MQ

k �F̃k
0

− Dqq�
2 ����Dq�q�

2 ����Dq�0
2 ��MQ

k �F̃k
0�

� 	Dqp�
2* �������Dp�p�

2* �������Dp�0
2 ��MQ

l ����F̃l
0���

− Dqp�
2* �������Dp�p�

2* �������Dp�0
2 ��MQ

l ����F̃l
0���
� .

�D3�
Making use of assumptions �B1� and �B2� and Eqs. �C9�,
�C10�, and �C13�, Eq. �D3� takes the form

Gkl
q ��� = �q�q�p�

ĝqq�,qp�
ODF ���ĝq�q�,p�q�

ROT ���ĝq�,q�
ROT����ĝq�0,q�0

int�kl� ���

− ĝqq�,qp�
ODF ���ĝq�q�,p�q�

ROT ���ĝq�,q�
ROT����ĝq�0,q�0

int�kl� ��� .

�D4�
In writing Eq. �D4� we also used Eqs. �C15� and �C16�.

Due to the structure of Eq. �C14�, it can be seen that Eq.
�D4� is a sum of products of different �m,n

C ��� functions. In
the case that these functions possess very different decay
times, the time dependence of such term is governed by the
function with the shortest correlation time. According with
assumption �B3�, the correlation time of the internal motions
and rotations around the principal molecular axis are both
smaller than those of the other motions. In view of these time
scales, the contribution to the spectral densities Jkj

q ��� from

terms that involve functions �
q�0,q�0
int�kl� ��� and �q�,q�

ROT���� in Eq.
�D4� will be smaller than the other contributions, and can be
neglected. This can be seen from the Fourier transform for

�m,n
C ���=e−���/�m,n

C
:

�m,n
C ��� = �

−�

�

e−���/�m,n
C

e−i��d� =
2�m,n

C

1 + ���m,n
C �2 . �D5�

When ��m,n
C �1 the quantity �m,n

C ��� is of the order of �m,n
C .

Then we can neglect in Eq. �D4� the contributions from fluc-

tuations of terms with �
q�0,q�0
int�kl� ��� and �q�,q�

ROT����.
Under this assumption, Eq. �D4� results in

Gkl
q ��� = �q�q�p�

�ĝqq�,qp�
ODF ���ĝq�q�,p�q�

ROT ���

− ĝqq�,qp�
ODF ���ĝq�q�,p�q�

ROT ����ĝq�,q�
ROT����ĝq�0,q�0

int�kl� ���

= �
q�p�

�ĝqq�,qp�
ODF ���ĝq�0,p�0

ROT ��� − ĝqq�,qp�
ODF ���ĝq�0,p�0

ROT ����

�d00
2 ��MQ

k0 �d00
2 ��MQ

l0 �F̃k0
0 F̃l0

0 , �D6�

where we used

ĝq�,q�
ROT���� = �q�,0, �D7�

ĝ00,00
int�kl���� = d00

2 ��MQ
k �F̃k

0d00
2 ��MQ

l �F̃l
0, �D8�

with

d00
2 ��MQ

k �F̃k
0 = d00

2 ��MQ
k0 �F̃k0

0 , �D9�

and d00
2 ��MQ

k0 �= �3 cos2��MQ
k0 �−1� /2, F̃k0

0 =−
�0��2

2�rk0
3 .

It is worth noting that in Eq. �D6� the sum does not con-
tain elements depending of the interproton vectors, namely
of indices k and l. Thus, the expression for the multispin
correlation function can be expressed in a simple form as

Gkl
q ��� = �k�lGoo

q ��� , �D10�

where

�k =
d00

2 ��MQ
k0 �

d00
2 ��MQ

o0 �
F̃k0

0

F̃o0
0

= � ro0

rk0
�3�3 cos2��MQ

k0 � − 1

3 cos2��MQ
o0 � − 1

� ,

the index o stands for the pair having the stronger interaction
energy, namely the ortho pair. For uniaxial LC �k=Fk

0 /Fo
0,

where Fk
0 is the dipolar coupling of the kth pair. Finally, by

replacing Eq. �D10� in Eq. �D1�, we get

Jkl
q ��� = �k�lJoo

q ��� . �D11�

Now we use the fact that the time scales of the local and
collective molecular motions are well separated �approxima-
tion �B3��, to write Eq. �D6� in a form that yields the spectral
density as a sum of different contributions. According with
the picture presented in Ref. �22�, the correlation times can

be ordered as ��
q�0,q�0
int�kl� ,�q�,q�

ROT����q�q�,p�q�
ROT

��qq�,qp�
ODF , and using

Eq. �C14� we write

ĝqq�,qp�
ODF ���ĝq�0,p�0

ROT ��� = ��ĝqq�,qp�
ODF

�qq�,qp�
ODF ��� + ĝqq�,qp�

ODF ����

���ĝq�0,p�0
ROT

�q�0,p�0
ROT ��� + ĝq�0,p�0

ROT ����

� �ĝqq�,qp�
ODF ĝq�0,p�0

ROT ����qq�,qp�
ODF ���

+ ĝqq�,qp�
ODF �0��ĝq�0,p�0

ROT
�q�0,p�0

ROT ���

+ ĝqq�,qp�
ODF ���ĝq�0,p�0

ROT ��� . �D12�

Substituting Eq. �D12� in Eq. �D6�,

Gkl
q ��� = �gq

ODF��� + gq
ROT����d00

2 ��MQ
k �d00

2 ��MQ
l �F̃k

0F̃l
0,

�D13�
where

gq
ODF��� = �q�,p�

�ĝqq�,qp�
ODF ĝq�0,p�0

ROT ����qq�,qp�
ODF ��� ,

gq
rot��� = �q�,p�

ĝqq�,qp�
ODF �0��ĝq�0,p�0

ROT
�q�0,p�0

ROT ��� . �D14�

Using Eq. �D13� in Eq. �D1�, one finally gets

Jkl
q ��� = Jkl

qODF��� + Jkl
qROT��� , �D15�

where:
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Jkl
qODF��� = d00

2 ��MQ
k0 �d00

2 ��MQ
l0 �F̃k0

0 F̃l0
0 �− 1�q

��
−�

�

gq
ODF���e−i��d� ,

Jkl
qROT��� = d00

2 ��MQ
k0 �d00

2 ��MQ
l0 �F̃k0

0 F̃l0
0 �− 1�q�

−�

�

gq
rot���e−i��d� .

�D16�

In summary, the outline of the reasoning we followed is as
follows. We obtained Eq. �D4� under the assumptions �B1�
and �B2�. Equations �D6�, �D10�, and �D11�are obtained by
considering that the correlation time of the internal motions
and the rotation about the molecular principal axis are much
smaller than the other �hypothesis �B3��. Finally, we get Eqs.
�D13� and �D15� by assuming that the time scale of the local
molecular motions is well differentiated from the collective
ones �B3�.
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