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By means of Monte Carlo simulations we study jamming and percolation processes upon the random
sequential adsorption of dimers on binary alloys with different degrees of structural order. The substrates are
equimolar mixtures that we simulate using an Ising model with conserved order parameter. After an annealing
at temperature T we quench the alloys to freeze the state of order of the surface at this temperature. The
deposition is then performed neglecting thermal effects like surface desorption or diffusion. In this way, the
annealing temperature is a continuous parameter that characterizes the adsorbing surfaces, shaping the depo-
sition process. As the alloys undergo an order-disorder phase transition at the Onsager critical temperature �Tc�,
the jamming and percolating properties of the set of deposited dimers are subjected to nontrivial changes,
which we summarize in a density-temperature phase diagram. We find that for T�T*=1.22Tc the occurrence
of jamming prevents the onset of percolating clusters, while percolation is possible for T�T*. Particular
attention is focused close to T*, where the interplay between jamming and percolation restricts fluctuations,
forcing exponents seemingly different from the standard percolation universality class. By analogy with a
thermal transition, we study the onset of percolation using the temperature T as a control parameter. We
propose thermal scaling Ansätze to analyze the behavior of the percolation threshold and its thermally induced
fluctuations. Also, the fractal dimension of the percolating cluster is determined. Based on these measurements
and the excellent data collapse, we conclude that the universality class of standard percolation is preserved for
all temperatures.
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I. INTRODUCTION

When adsorbed particles are bound to a solid surface, the
magnitude of the interactions relative to the thermal energy
may lead to either reversible or irreversible attachment to the
surface. If the particle-substrate interaction is weak enough,
the particle can explore the whole surface through diffusion
and desorption. These mechanisms may eventually enable
the system to reach equilibrium. The phenomenon could then
be investigated using the methods of equilibrium statistical
mechanics. On the other hand, in the case of irreversible
attachment due to strong particle-substrate interactions, the
particles once fixed on a surface neither desorb from it nor
diffuse on it. This irreversible adsorption or deposition of
particles onto a solid substrate is a far-from-equilibrium phe-
nomenon of wide interest in physics, chemistry, biology, and
other branches of science and technology. Some examples
embracing deposition include adhesion of colloidal particles
and proteins, separation of viruses or bacteria, adsorption of
gas molecules �1,2�, etc. In addition to the usual case where
homogeneous surfaces are used, the deposition can also be
performed on substrates where localized adsorption takes
place on particular sites of nonhomogeneous substrates �2,3�.
The case of deposition of gas particles on a substrate is of
great practical importance as a first step for chemical reac-
tions in heterogeneous catalysis �4�. There, the substrate
properties are usually improved by alloying, and a large de-
pendence of the catalytic properties on the composition and
the configuration of the surface can be observed �5�.

The random sequential adsorption �RSA� model �1,6� pro-
vides an excellent description of the process of deposition,
assuming the successive adsorption of particles within a lat-

tice gas framework. Within this model, objects of finite size
are randomly adsorbed on an initially empty d-dimensional
substrate with the restriction that they cannot overlap with
previously deposited objects. The state of a site then changes
irreversibly from empty to occupied. Under these conditions
the system evolves with a dynamics that becomes essentially
dominated by geometrical exclusion effects between par-
ticles. During particle deposition one can define different
clusters looking for the sets of neighboring occupied sites. A
particular cluster is said to be percolating if it reaches two
opposite edges of the lattice �e.g., top and bottom�. The low-
est coverage at which there is a percolating cluster on the
infinite lattice is called the percolation threshold �P. Since no
desorption is allowed, the deposition process necessarily
ends due to blocking, when no more particles fit in the vol-
ume; in this context, we say that jamming occurs. The frac-
tion of total space covered at time t by deposited particles,
��t�, reaches then a maximum value ��t→ � �=�J, called the
jamming coverage.

The jamming of a volume is an old issue that is still
important today, linked to a wide variety of problems as
relevant as car parking, occupied volume fractions on glasses
and liquids, or packing of commercial granular goods, for
which is still the focus of great attention �1,7,8�. On the other
hand, percolation is one of the most fundamental and widely
studied topics in statistical physics. The concept is applied to
many problems of completely different types of fields rang-
ing from natural sciences to sociological phenomena. The
infection of trees in an orchard �9�, magnetism on diluted
alloys �10�, conductivity on complex oxides �11�, and the
spread of forest fires �12� are some popularly mentioned ex-
amples �9,13,14�. As in the case of thermal transitions, the
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percolating transition presents a nontrivial critical behavior,
but due to purely geometrical causes. It shows scale-
invariant behavior characterized by critical exponents with
scaling relations between them. Furthermore, these expo-
nents exhibit universality and do not depend on microscopic
details such as the inclusion of next-nearest-neighbor con-
nectivity, or the nature of the lattice �9,14�.

The connection between both phenomena—jamming and
percolation—has been attracting considerable attention
�15–22� and it has been shown that they share some similari-
ties �15,16,20,21�. In some models the deposited objects can-
not percolate because jamming occurs before, blocking the
system �20,23�. It has also been shown that a continuous
control parameter can be tuned to enforce the jammed sys-
tem to go from a percolating region to a nonpercolating one
�19,22,24–26�. In the present paper we study the RSA of
dimers on substrates composed of two-dimensional binary
alloys �16,17� using Monte Carlo simulations. We first obtain
the jamming coverage and the percolation threshold by
proper extrapolation to the thermodynamic limit. The tem-
perature at which we have prepared the alloys constitutes a
continuous variable that allows us to vary both the connec-
tivity and the maximum coverage of the substrates. Using
this temperature as a control parameter we can finely tune the
jamming threshold in order to force its interference with the
percolating transition. We can also generalize standard scal-
ing concepts to a new scenario in which a thermal parameter
drives a geometrical transition �27�. All these proposals are
tested by means of computer simulations.

The manuscript is organized as follows. In Sec. II the
models for the substrate and adsorption process are defined
and the simulation method is described. In Sec. III results are
presented and discussed, while in Sec. IV the concept of
thermal percolation is proposed, tested, and discussed. Fi-
nally our conclusions are summarized in Sec. V.

II. MODEL AND SIMULATION METHOD

We study the random sequential adsorption of dimers—
i.e., two identical units—on inhomogeneous substrates. The
surface used for each deposition is a two-dimensional alloy
annealed at temperature T and then suddenly quenched to
freeze the high-temperature configuration. We obtained dif-
ferent microstates of the alloy by means of Monte Carlo
simulations on a square lattice of side L, using periodic
boundary conditions and Kawasaki dynamics. We took ad-
vantage of the well-known isomorphism between the Ising
model �28� and a binary alloy, namely, spin up →A species
and spin down →B species, keeping the same density of
particles �A=�B=1/2. The “annealing” temperature at which
the substrate was generated is measured in units of the inter-
action constant �J�, setting the Boltzmann constant to unity.
We assumed attractive interactions between species of the
same type �i.e., J�0, corresponding to the ferromagnetic
Ising model�. It is well known that this system undergoes an
order-disorder transition at Tc�2.269 in two dimensions
�28�. Since achieving equilibrium is particularly difficult at
low temperatures, we choose as an initial condition the mi-
crostate that minimizes the energy �two rectangular domains

of A and B atoms, respectively� to save computational time.
We disregarded a high number of configurations correlated
with the initial to ensure that equilibrium was attained for
each value of L and T. For big lattices this demanded dis-
carding more than 105 Monte Carlo steps near Tc and at the
lowest temperatures. In order to perform the RSA experi-
ments we generated and stored between 100 and 500 well-
equilibrated configurations of the alloy �depending on the
substrate size� for each annealing temperature, quenching in
this way the state of order the substrate had at this T. Sub-
sequently, we study the irreversible deposition process on top
of the different substrates at zero temperature, i.e., neglecting
the diffusion of the adsorbed dimers. The only relevant tem-
perature we will be referring to throughout this work is then
the one at which the adsorbing surfaces have been prepared.
The RSA rule we assumed is the following: dimer adsorption
on the alloy is only possible on nearest-neighbor sites with
atoms of different type �AB pairs�, and it is rejected other-
wise.

Simulations were performed by using samples of side
16�L�512, where distances are measured in lattice units.
For additional details on the simulation method see Ref. �16�.

Throughout a RSA process, the probabilities to find a per-
colating �jammed� cluster, on a finite sample of side L, can
be fitted by the error function �15,29�

Px��� =
1

�2�	x�L�
�

−�

�

exp�−
1

2
	 
 − �x�L�

	x�L�

2�d
 , �1�

where � is the density of adsorbed dimers on the binary
alloy, �x�L� is its mean value, 	x�L� is the fluctuation of that
density, and x=J , P refers to the jammed or the percolating
state, respectively.

The binary alloy is a nonhomogeneous substrate with a
characteristic structure determined by the thermal noise dur-
ing the annealing period, while the adsorption of dimers is
another random process. So we have to deal with two corre-
lated stochastic processes and the measurement of relevant
physical quantities requires a careful treatment. In fact, if one
has series of n independent samples of the substrate �i
=1, . . . ,n�, it is possible to obtain representative values of
the coverage and its fluctuations by computing the following
averages on samples obtained at T:

�x = �
i=1

n
�x

i

n
�2�

and

	x = �
i=1

n
	x

i

n
. �3�

It should be remarked that the sets �x
i and 	x

i , are obtained
by making several adsorption trials �103� using a single
substrate and by calculating the average of the density and its
root mean square �rms� over these trials. It has already been
shown that the measurement of the observables defined by
means of Eqs. �2� and �3� captures the physical behavior of
the adsorption process �16� �in the present case percolation
and/or jamming�. In this way, for each substrate we perform
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several trials searching first for percolation and after that for
the jammed state. On the other hand, the fluctuations of the
quantity �x

i taken over i indices reflect the physical behavior
of the substrate. This kind of study has already been per-
formed �16�, so it will not be repeated here.

Another method for obtaining both �x
i and 	x

i is to directly
fit an error function �Eq. �1�� to the data. Although this pro-
cedure is more demanding from the computational point of
view it will allow us �see Sec. IV� to take into account the
interplay between percolation and jamming processes explic-
itly in the evaluation of the relevant quantities �for example
critical exponents�.

III. RESULTS AND DISCUSSION

A. Jamming

Figure 1 shows plots of the jamming coverage �J versus T
obtained for samples of different size. These curves depend
markedly on the temperature. Indeed, given the deposition
rule that we imposed for the dimers the behavior of the satu-
ration coverage qualitatively follows that of the energy of the
binary alloy used as a substrate, with a steep slope at Tc
�recall that the alloy energy is proportional to the number of
broken bonds or AB pairs�. In addition to this strong varia-
tion with temperature �from near zero to above 65% of the
entire lattice� the jamming coverage presents strong finite-
size effects for T�Tc.

It is well known �1� that the fluctuations of the jamming
coverage �	x�L� in Eq. �1� with the subindex x�J� scale
with the lattice size according to

	J � L−1/�J, �4�

where �J is the jamming exponent. A relationship similar to
Eq. �4� also holds for the fluctuations of the percolation
threshold �9�. In recent papers �16,17� we have proved rig-
orously and tested by means of Monte Carlo simulations that

Eq. �4� holds for a wide variety of RSA processes with a
jamming exponent given by

�J =
2

2D − df
. �5�

Here, D is the dimensionality of the space and df is the
fractal dimension of the subset of active sites, i.e., sites that
can allocate dimers.

The log-log plots of 	J versus L in Fig. 2 show that Eq.
�4� actually holds for the whole inspected range of tempera-
tures and lattice sizes. By fitting the data obtained at tem-
peratures well below Tc �T�2.0�, we have determined �J

�2/3 �see the inset of Fig. 2�. This result is in agreement
with the idea that for very low T the RSA process is essen-
tially restricted to a one-dimensional interface between well-
conformed domains of different atoms. In this case one has
df =1 and Eq. �5� predicts �J=2/3 in D=2 dimensions.

Despite this good agreement, we will argue that the true
dimensionality of the whole set of sites where dimers have
adsorbed is not equal to 1. When the temperature rises from
zero it becomes increasingly probable that unlike species in
the alloy start to diffuse from the domain wall into the bulk.
They form islands of one or more atoms surrounded by a sea
of atoms of the other type, with their shores providing AB
pairs suitable for the adsorption of dimers. These islands
should be present for any nonzero temperature, increasing in
number as L2. It is worth noting that these simple geometries
are jammed by a fixed number of dimers: even though they
add to the coverage they give no contribution to the fluctua-
tion 	J. In the low-temperature range and for the sizes ana-
lyzed, we cannot see the large concentration of islands
needed to have interference among them—or with the do-
main walls—and so the leading contribution to 	J is effec-

FIG. 1. Plots of the jamming coverage ��J� vs the temperature T
at which the substrates were prepared. As throughout the paper, we
performed the depositions considering no thermal agitation at all.
The vertical dashed line shows the location of the ordering tempera-
ture of the underlying alloy. The coverage, obtained for the RSA of
dimers on lattices of different size L, closely follows the behavior of
the energy of the underlying Ising model, with a sharp slope at Tc.
Finite-size effects are more evident for T�Tc; in this range of tem-
peratures the deposition takes place mainly on domain walls.

FIG. 2. Log-log plots of the variance of the jamming coverage
�	J� vs L, obtained after deposition at different temperatures T. The
inset shows the temperature dependence of the exponent �J ob-
tained using Eq. �4�. The redistribution of atoms in the alloy at Tc

�2.269 leads to a rounded step in �J. This exponent, in turn, allows
us to evaluate an effective dimensionality for the set of deposited
dimers.
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tively one dimensional. In fact, we can see in Fig. 2 that
above this temperature range and close enough to Tc the
interference effect starts generating a rather smooth increase
of �J when we approach the critical point from below, in-
stead of a sharp step �see the inset of Fig. 2�. In this way, df
varies smoothly over effective values between 1 and 2.

Finally, if we look now for TTc, the long domain walls
between A and B phases have disappeared �the disordering
trend of the temperature has overcome the ordering tendency
of the interactions among atoms� and one has that adsorption
sites are almost homogeneously distributed on the sample
with D=2 and df =2, so that Eq. �5� yields �J=1 in excellent
agreement with the numerical results �see the inset of Fig. 2�.

In view of the previous analysis and in order to extrapo-
late the jamming coverage to the thermodynamic limit �L
→ � �, we propose an Ansatz based on the assumption that
�J�L� has two leading contributions: �i� the first one corre-
sponds to dimers adsorbed in the two-dimensional bulk ��J

B�,
which is independent of L; and �ii� the second term ��J

int�
arises due to the adsorption of dimers along the interfaces
between domains of different species, with effective dimen-
sion df which depends on L as a power law, �J

int�L�df−D�.
According to this, then

�J�L� = �J
B + AL−�D−df�, �6�

where A is a constant. Note that Eq. �6� resembles the scaling
law generally used for the percolation coverage �see Eq. �9�
below�.

Figure 3 and its inset show plots of �J�L� versus L−�D−df�

for various temperatures below Tc �T�2.20�. The value of df

that we used was obtained by inserting the effective expo-
nents �J, shown in the inset of Fig. 2, into Eq. �5�. The
quality of the linear fits indicates that Eq. �6� holds over the
whole range considered �even for temperatures near but
lower than Tc, as shown in the inset�, with effective dimen-
sion 1�df �2. The second term of Eq. �6� vanishes for L
→�, and the interception with the vertical axis provides an
estimation of the jamming coverage in the thermodynamic
limit, namely, �J�L→ � �=�J

B for T�Tc. We stress again that
this limit would be 0 if df were the true dimension of the set
of active sites.

Finally, for TTc the jamming coverage depends only on
the system size for very small lattices reaching a stationary
value even for modest lattice sizes, as shown in Fig. 4. This
fact reflects the negligible operation of lattice-size effects on
the density of AB pairs in the bulk of the binary alloy above
criticality. This finding could be anticipated after inspection
of Fig. 1 and has also been considered in the formulation of
the Ansatz given by Eq. �6� since for TTc one has D=df
=2.

B. Percolation

Before analyzing percolation in depth, it is worth men-
tioning that the maximum density of adsorbed dimers ob-
tained in this inhomogeneous RSA process is very low, par-
ticularly at temperatures below criticality �see Fig. 1�. While
we have only �J�0.5 for T�2.80, this density further de-
creases at lower temperatures. If we consider random perco-
lation of dimers in the homogeneous case, the percolation
threshold for the incipient percolating cluster is close to �P

FIG. 3. Plots for the jamming coverage �J�L� vs L−�D−df� for
substrates at different temperatures T. We took the values for the
dimension df from the analysis of the fluctuations in the coverage
	J �Fig. 2�. The main figure summarizes some results at low tem-
perature, at which df =1, while in the inset we restrict the tempera-
ture range to 2.00�T�Tc, where df departs from this value. The
nonzero interception with the vertical axis indicates that there are
dimers adding to the jamming coverage but not to its fluctuations.
This implies that df is only an effective dimensionality for the set of
deposited dimers.

FIG. 4. Linear-logarithmic plots showing finite size effects for
the jamming coverage �J as a function of L in a range of tempera-
tures �T� above the ordering temperature of the substrate. �J satu-
rates for relatively small sizes, due to the two-dimensional distribu-
tion of the adsorbed dimers at high temperatures. Also, finite-size
effects become less important for T much higher than the ordering
temperature of the alloy �Tc�.
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�0.56 �15�. Naturally, we may note that not only the density
but also the geometry is an important factor, and that the
elongated shape of domain walls present in the alloy may
serve to nucleate percolating clusters at low temperatures, in
spite of the low coverage. Still, in our simulations we have
found that percolation of dimers is not possible for T
�2.80. Of course for T=0 with �A=�B=1/2 the ground state
of the alloy corresponds to a perfect flat interface between
two domains of different species and on this type of substrate
a trivial, one-dimensional, percolation takes place. However,
for any finite temperature, the percolation probability of one-
dimensional structures decreases for large samples becoming
zero in the thermodynamic limit. In fact, when L→� the
probability of having a defect on the otherwise straight do-
main wall preventing the occurrence of percolation goes to 1
if T�0, which explains this result. On the other hand, when
the temperature is increased close to T�2.80 the density of
dimers reaches a threshold that allows the onset of percolat-
ing clusters. Accordingly, we will draw in the phase diagram
a percolation line at high temperatures starting at T�2.80
that extends to higher temperatures.

Let us now analyze the properties of the percolation clus-
ters. For this purpose we will first test the size-scaling hy-
pothesis for the fluctuations of the percolation threshold and
the extrapolation of that threshold with the system size �see
Eqs. �2� and �3�, respectively�. The fluctuations �rms� of the
�P given by 	P scale with the system size according to �9�

	P � L−1/�P �7�

where the critical exponent �P is associated with the diver-
gent correlation length � which behaves as

� � �� − �P�−�P, �8�

with �P=4/3 for random percolation �9�.
Figure 5 shows log-log plots of 	P versus L, obtained for

fixed temperatures. The obtained values for the exponent �P
are compatible with standard percolation�see Table I�. Only
the exponent measured at T=2.80 ��P

−1=0.80±0.01� falls be-
low the expected value, suggesting that interesting physical
processes may take place at the percolation line end point,
where the jamming and percolation thresholds curves meet.
In order to extrapolate the percolation threshold to the ther-
modynamic limit for �p�L� we can use the standard scaling
approach �9� given by

�P�L� = �P�L → � � + BL−1/�P, �9�

where B is a positive constant. The inset in Fig. 5 shows
plots of �P�L� versus L−1/�P obtained for T�2.80 by taking
�P=4/3, as follows from the fit of the fluctuations of �P�L�
�see Eq. �7� and Fig. 5�. We found that Eq. �9� holds and
gives a new confirmation of the value of the exponent �P.
Furthermore, the fit allows us to extrapolate the percolation
threshold to the thermodynamic limit for various tempera-
tures �see Table I�. At T=2.80 Eq. �9� fits the data equally
well for �P

−1=3/4 and 0.80. Furthermore the extrapolated
percolation threshold coincides, within error bars, for both
exponents.

It is well known that, at the percolation threshold, perco-
lating clusters are objects with a well-defined fractal dimen-

sion Dp. The number of particles of the spanning cluster in
samples of side L �S�L�� scales as

S�L� � LDp. �10�

Figure 6 shows log-log plots of the average mass of per-
colating clusters versus L, obtained for different tempera-
tures. In all cases �including T=2.80� the results obtained by
fitting the data with Eq. �10� are in agreement with the fractal
dimension of standard percolation clusters given by Dp
=91/48�1.896 �9� �see Table I�.

C. Summary of the results

Figure 7 summarizes the results obtained for jamming
coverage and percolation threshold in a phase diagram. No-

FIG. 5. Log-log plots of 	P vs L at temperatures T above the
critical point. While the fitted exponents are consistent with stan-
dard percolation for most temperatures, there is a significant depar-
ture in the slope of the curve measured at T�2.80 �see Table I�.
This is the temperature at which the percolation line starts, with
jamming and percolation occurring simultaneously in the thermo-
dynamic limit. The inset shows �P�L� vs L−1/� at different tempera-
tures T above the critical point. The smallest lattice �L=16� has not
been included in the fit.

TABLE I. Critical exponents and threshold for percolation at the
temperatures listed in the first column. The second and third col-
umns show the exponents for the percolation correlation length
�1/�p� and the dimension of the percolating cluster �Dp�, obtained
using Eqs. �7� and �10�, respectively. Column 4 includes the ex-
trapolated values of the obtained threshold percolation by means of
Eq. �9� taking 1/�p=3/4. We indicate in parentheses the error in the
last figure.

Temperature 1/�p Dp �p

2.80 0.80�1� 1.90�1� 0.483�1�
3.20 0.74�1� 1.89�1� 0.525�1�
4.20 0.73�1� 1.90�1� 0.546�1�
5.00 0.74�1� 1.89�1� 0.5613�5�
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tice that all values reported in Fig. 7 correspond to extrapo-
lations to the thermodynamic limit performed with Eqs. �6�
and �9�. The following four regions can be observed in the
phase diagram shown in Fig. 7.

Region I. This corresponds to jammed states that are in-
accessible to the system. At low temperatures this region
reaches a very low coverage since the sites of the substrate
suitable for dimer adsorption lie mainly along the interfaces
between domains of different particles. By increasing T this
scenario changes due to interdiffusion of species causing the
formation of additional A-B pairs in the substrate. This pro-
cess becomes particularly relevant close to the critical tem-
perature of the alloy �Tc�2.269�, so that for T�Tc one has
the result that the jammed state is observed at much higher
coverage.

Region II. Here the system has not saturated, but percola-
tion is not observed. As shown in Fig. 7, we have divided
region II into two parts: region IIa, limited by the jamming

curve and a vertical line at T*�2.80; and region IIb, above
T* but below the percolation line. The line of solid squares
above T* marks the percolation threshold.

Region III. Within this region the coverage is high enough
to observe percolating clusters before the system gets
jammed.

So far, along the percolation line the observed clusters
belong to the universality class of random percolation. It
seems then that the universality of the percolation process is
not affected by the inhomogeneities of the substrate annealed
at different T. This finding is consistent with the fact that the
correlation length of the percolation process is the only rel-
evant length scale. However, inspection of the phase diagram
shows that there is a nontrivial point at the intersection of all
the regions �see the JP point in Fig. 7�. Furthermore, as we
noticed before �Fig. 5� the behavior of the variance of the
percolation threshold indicates a nonstandard exponent.
Since this finding may imply a change in the universality
class for percolation at this particular point �in what seems to
be an analogy with a multicritical point in thermodynamics�,
we have investigated it in particular in the next section, by
introducing the concept of thermal percolation.

IV. THERMAL PERCOLATION

As follows from the phase diagram shown in Fig. 7, it is
possible to cross the JP point from a percolating region for
T�T* to a nonpercolating region for T�T*, just by moving
along the jamming curve ��J�T�� sweeping the temperature.
In this way the percolation probability �PL� depends on tem-
perature, which in turn controls the properties of the sub-
strates. In other words one has PL�� ,T�= PL(�J�T� ,T)
��L�T�, in contrast to the standard approach where the den-
sity is the control parameter. We will now explore the valid-
ity of the scaling hypothesis in this new scheme.

Figure 8 shows typical curves of the L-dependent perco-
lation probabilities ��L�T�� versus T in a range of tempera-
tures close to T*=2.80. It is found that curves corresponding
to different sizes have a unique intersection point given by
�*=�L�T*��0.93.

The shapes of these curves, resembling so much those
obtained for the percolating probability as a function of the
occupied fraction of sites, strongly suggests testing the finite-
size scaling approach by using the temperature as a control
parameter. In order to do this we first fit the curves of Fig. 8
by means of an error function given by �see also Eq. �1��

�L�T� =
1

�2�	T�L�
�

−�

T

exp�−
1

2
	T� − T*�L�

	T�L�

2�dT�.

�11�

In this way one obtains the thermal width of the transition
�	T� and the critical threshold T*. Of course, both quantities
depend on L. We now propose that thermal fluctuations
should scale with the size of the system in the same way as
density fluctuations do, namely, following the analog to Eq.
�7�. So,

FIG. 6. Log-log plots of the number of particles on the spanning
cluster S�L� vs L at and above the temperature of the percolation
line end point, T=2.80. We obtain the exponent Dp�1.89�1� cor-
responding to standard percolation in all cases, including T=2.80.

FIG. 7. �Color online� Phase diagram for percolation and jam-
ming, summarizing the main results of the deposition over the in-
homogeneous substrates. We show the curves for jamming coverage
�J �open circles� and the percolation threshold �P �filled squares�
extrapolated to the thermodynamic limit versus the temperature T at
which the alloy was prepared. The different regions are described in
more detail in the text. In addition to the sharp changes taking place
at the ordering temperature Tc of the substrate, there exist peculiari-
ties �discussed in the text� at the point where the jamming and
percolation lines meet �JP point�.
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	T � L−1/�T, �12�

where �T is the correlation length exponent. A log-log plot of
	T versus L �see the inset in Fig. 8� shows that the scaling
form of Eq. �12� holds, giving 1/�T=0.74±0.01 or, equiva-
lently, �T=1.35±0.02. Quite remarkably, in contrast to the
result obtained by studying percolation in the standard en-
semble, the measured exponent for T=T* is in excellent
agreement with the correlation length exponent of the stan-
dard percolation problem ��p=4/3�.

Now, the next step is to extrapolate the critical
temperature—T*�L�, which we have previously obtained us-
ing Eq. �11�—to the thermodynamic limit by using an Ansatz
analogous to Eq. �9�, namely,

T*�L� = T*�L → � � + CL−1/�T, �13�

where C is a constant. The obtained results are shown in Fig.
9. By using Eq. �13� with �T=4/3 as follows from the fit
performed to the data shown in the inset of Fig. 8, we have
determined a more accurate value of T* confirming that the
critical temperature in the thermodynamic limit is given by
T*�L→ � �=2.80±0.01.

Finally, the scaling laws given by Eqs. �12� and �13� in
connection with Eq. �11� predict the collapse of all the curves
of �L�T� shown in Fig. 8 when they are plotted as a function
of a reduced scaling variable s��T−T*�L1/�T. In fact, Fig. 10
shows a plot of the universal scaling function �L�T�=��s�
that results from the collapse of data corresponding to
samples of several sizes and obtained by using the already

determined values of both T* and �T. The quality of the col-
lapse, obtained without any adjustable parameters, is addi-
tional evidence of the validity of the proposed scaling Ansatz
for thermal percolation.

In order to round out the present set of results two things
remain to be explained: �i� why we get a different exponent
from the standard percolation value when the finite-size scal-
ing behavior of the percolation coverage variance is analyzed
close to T=2.80; �ii� why we recover the usual exponent
when we use T as a tuning parameter for percolation moving
along the jamming curve.

Regarding the first issue, we will show below that the
interference between jamming and percolation forces a dif-
ferent exponent when measuring at fixed T�2.80. Indeed, at
this temperature the threshold coverage for both phenomena
are very close together for finite L, and they actually coincide
for the infinite lattice. This implies that the fluctuations in the
percolation coverage are restricted by the early onset of satu-
ration. In other words, in certain stochastic deposition runs
either jamming occurs too early or percolation too late, so
that the system saturates before it percolates. Then, for a
fixed L, we are measuring a reduced value of 	P, which

FIG. 8. Plots of the percolation probability measured over the
jamming curve, �L�T�, vs T obtained for lattices of different size L
listed in the figure. �L�T� is evaluated as the fraction of jammed
deposition runs that have percolated for substrates annealed at tem-
perature T. Solid lines correspond to fits of the numerical data to
Eq. �11�. Note that all the curves intersect at T=T* and �*

=��T*��0.93. The inset shows the width of the percolating tran-
sition when we take T as the control parameter. The exponent we
extract from the fit indicates a universality class that corresponds to
standard percolation.

FIG. 9. Size dependence of the critical temperature at the per-
colation threshold TL

* vs L−1/�T. In the fit �continuous line� we im-
posed �T=4/3. The extrapolation to the thermodynamic limit gives
T*�L→ � �=2.80�1� �indicated in the graph by an arrow�.

FIG. 10. Scaled plots for the percolation probability ��s� vs the
reduced variable s, obtained for lattices of size L. No free param-
eters were fitted to obtain the collapse. For additional details see the
text.
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depends on the distance ��J�L�−�P � �L� relative to 	J�L�. The
exponent for 	P that results from varying L depends then on
the interplay of these three quantities, giving a nontrivial—
and erroneous—result. Of course, this interference is not op-
erative when the percolation coverage is far apart from satu-
ration ��J�L�−�P�L��	P�L���. So in this case, we recover
the normal exponents �see Table I�.

In order to test these ideas we measured 	P at T* in an-
other way, trying to remove the constraints imposed by jam-
ming. We measured the probability of percolation �L��� at
T* over 10–50 samples, and we fitted it with an error func-
tion �Eq. �1�� normalized by the total number of runs
�105–106�. This is an important detail given that only a
fraction of the runs do percolate �notice that the numerical
data for �L���—Fig. 8—never reach unity at any value of �
due to the fact that �L��� is fixed at �*=0.93 independent of
the system size�. In this way, we obtained a corrected value
of the variance for the percolation coverage 	P��L�. After
fitting this corrected value with Eq. �7� we recovered the
exponent � that characterizes standard percolation. We also
tried constraining the fit of �L��� to values of � well below
�J, where the fraction of jammed depositions is negligible.
Since, within error bars, we still got the same outcome as
with the previous procedure �i.e., ��4/3�, we are quite con-
fident of this result and the proposed explanation for the
observed discrepancy.

Let us tackle now point �ii�: Why do we measure �
=4/3 when we move along the saturation curve through the
percolation temperature threshold? In order to understand
this, we will assume that when T is varied in the range of
temperatures studied in Fig. 8, the connectivity changes in
the underlying lattices and the adsorbed layer are not as
important—concerning percolation—as the changes in cov-
erage. On moving along the saturation curve �Fig. 7� the
coverage is fixed by the temperature T �within a deviation 	J
that is very narrow compared to 	P and gets narrower with
increasing L �15��. We can then assume that T and � are
almost interchangeable or essentially linked through a simple
functional dependence. If now we accept that �J is linear
enough as a function of T near T* we would then be measur-
ing the probability of percolation in the usual way—at a
given coverage �J�T�—avoiding the interference between
percolation and jamming. These arguments explain the scal-
ing and the standard value for �T that we obtained from the
thermal analysis.

V. CONCLUSIONS

Based on a numerical study of the random sequential ad-
sorption of dimers on nonhomogeneous binary alloys in the
square lattice, we have shown that the jamming coverage �for
temperatures below Tc� and its fluctuations �over the whole
range of temperatures� show the same size-scaling relations
as percolation. In the case of jamming we measure different
exponents for both quantities, in spite of the fact that they
depend on the same dimensions ��= 1

D−df/�
with �=1 for the

jamming coverage and �=2 for its fluctuations�. This diver-
sity is in remarkable contrast to the case of percolation,
where both exponents are the same, being given by the di-
vergence of the correlation length. We have also demon-
strated that the incipient percolation cluster belongs to the
universality class of standard percolation, as follows from
the evaluated critical exponents through a finite-size scaling
treatment of the numerical data. In this way inhomogeneities
of the substrate are irrelevant for the percolation phenomena.

In addition to these observations we found an intersection
between the jamming and percolation threshold curves on
the temperature versus coverage phase diagram. This defines
an end point for the percolation coverage line, where we
observed that a subtle interference between jamming and
percolation seems to change one of the exponents associated
with percolation. However, not only does the constraint in-
troduced by the jamming not change the universality class of
the percolation process: furthermore, we showed that the
jamming states at different T can be used to characterize the
critical behavior of the percolating system. We conclude that
a generalization of the standard finite-size scaling Ansatz for-
mulated in terms of the density also holds true when the
control parameter for percolation is the temperature. In this
way we are able to characterize the percolation transition at
the point at which the two lines intersect by showing that it
still belongs to the standard random-percolation universality
class.
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