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Microscale models of foam structure traditionally incorporate a balance between bubble pressures and
surface tension forces associated with curvature of bubble films. In particular, models for flowing foam
microrheology have assumed this balance is maintained under the action of some externally imposed motion.
Recently, however, a dynamic model for foam structure has been proposed, the viscous froth model, which
balances the net effect of bubble pressures and surface tension to viscous dissipation forces: this permits the
description of fast-flowing foam. This contribution examines the behavior of the viscous froth model when
applied to a paradigm problem with a particularly simple geometry: namely, a two-dimensional bubble “lens.”
The lens consists of a channel partly filled by a bubble �known as the “lens bubble”� which contacts one
channel wall. An additional film �known as the “spanning film”� connects to this bubble spanning the distance
from the opposite channel wall. This simple structure can be set in motion and deformed out of equilibrium by
applying a pressure across the spanning film: a rich dynamical behavior results. Solutions for the lens structure
steadily propagating along the channel can be computed by the viscous froth model. Perturbation solutions are
obtained in the limit of a lens structure with weak applied pressures, while numerical solutions are available for
higher pressures. These steadily propagating solutions suggest that small lenses move faster than large ones,
while both small and large lens bubbles are quite resistant to deformation, at least for weak applied back
pressures. As the applied back pressure grows, the structure with the small lens bubble remains relatively stiff,
while that with the large lens bubble becomes much more compliant. However, with even further increases in
the applied back pressure, a critical pressure appears to exist for which the steady-state structure loses stability
and unsteady-state numerical simulations show it breaks up by route of a topological transformation.
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I. INTRODUCTION

Foams are non-Newtonian fluids which acquire their com-
plex rheological behavior �1–3� as a result of their micro-
structure. Specifically this microstructure consists of a dis-
persed phase �gas bubbles� separated by a continuous phase
�made up of thin liquid films�. Surface tension at the phase
interfaces leads to an energy penalty according to the total
amount of surface between the phases. Stationary �i.e., not
flowing� foams thus seek a �local� minimum of surface area
�three-dimensional case� or surface perimeter �two-
dimensional case� to keep the surface energy low �4,5�.

When foams are subjected to some externally imposed
strain, the microstructure deforms: both surface area and sur-
face energy increase. For small imposed strains, despite this
energy increase, bubbles tend to maintain their positions
relative to their neighbors and the original state is recover-
able if the strain is released. For larger imposed strains,
bubbles rearrange �3,6�: the topology changes as bubbles
lose contact with their original neighbors and make contact
with new ones. Following these so-called topological trans-
formations, even as the imposed strain is released, the origi-
nal state is not necessarily recovered.

These features have been elucidated in a number of simu-
lation studies, in both two-dimensions �1,7–12� and three
dimensions �13–16�. However, the above-mentioned simula-
tions restrict consideration to slow flowing �i.e., quasistatic�
foams. Specifically they compute the foam microstructure as

a constrained energy minimization problem subject to some
imposed incremental boundary motion. In the minimum-
energy state, net surface tension forces normal to films �as-
sociated with film curvatures� need to be matched to pressure
differences across films �Lagrange multipliers in the energy
minimization associated with maintaining specified bubble
volumes�: formal mathematical derivations and manipula-
tions of this result based on the Lagrange multiplier formal-
ism are available �17,18�. The quasistatic computations do
not consider cases where the foam is subject to rapid im-
posed strains, driving, and/or maintaining it far from its
minimum-energy state. In such cases, experiments �19–21�
and theory �22,23� show a marked change in the rheology as
strain rate increases: the microscale bubble motion switches
from being intermittent to continuous, with dissipative forces
smoothing the flow. The foam structure is also altered �24� in
the more rapid strain rate limit: energy-relaxing topological
transformations tend to be suppressed �1�, implying foam
films should be elongated to a much greater extent than for
an equivalent strain that is imposed slowly. This effect has
been seen clearly in experiment �21�.

There are also technical difficulties with implementing the
quasistatic simulations as, at the topological transformation,
the foam effectively jumps from one energy minimum to
another. Occasionally this triggers an avalanche of other
transformations �6,16,25�, and it is not entirely clear in a
simulation in which order these should be applied. Moreover,
the system can occasionally jump back and forth between
topological states �26�, only definitively settling into one par-
ticular state as further strain increments are imposed.

All these drawbacks have driven the search for new mod-
els of foam structure and dynamics, which can �i� resolve*Electronic address: paul.grassia@manchester.ac.uk
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topological transformations over a finite �typically small� in-
crement of imposed strain, instead of treating them as dis-
crete jumps, �ii� assign a definite order to events occurring
during bubble rearrangement avalanches, and �iii� describe
rapidly strained and far-from-equilibrium foams, in terms of
both their dynamics and structure.

Various models in the literature have been developed to
address the above issues. A Monte Carlo lattice-based Ising
model, known as the Potts model �6�, seems to give reason-
able phenomenological behavior. However, the dynamics is
described in terms of Monte Carlo steps: it is far from obvi-
ous how to relate such steps to an actual relaxation time scale
set by dissipative forces in a real foam. Another attempt is
the so-called bubble model �22,23,27�, which treats bubbles
as �possibly slightly overlapping� circles �two dimensions� or
spheres �three dimensions�. The bubbles experience elastic
forces according to the extent they overlap and also viscous
dissipation according to their motion relative to each other
and/or to some average imposed flow. The virtue of the
bubble model is its computational simplicity, but it is really
only applicable to wet foams: it makes no attempt to describe
highly elongated or deformed bubbles which are far from
circular or spherical. Yet another useful model is the vertex
model �12,28�, which treats bubbles as straight-edged objects
joined by vertices. Rapid flow involving viscous dissipation
forces can be incorporated �dissipation being tied to the ver-
tices� even though early work on the model �12� did not
concern itself with this regime. The vertex model, however,
suffers some of the limitations of the bubble model in terms
of describing bubble structures: the geometric shapes of the
bubbles are not realistic, films �through the model’s inability
to represent their curvature� failing to meet each other at the
angles they should.

In view of the limitations discussed above, one model
which has gained popularity in recent years is the so-called
viscous froth model �29–34�. The model still retains the
forces mentioned earlier: namely, the film curvature forces
�induced by surface tension� and the pressure forces across
films. However, it no longer equates them; rather, it says that
any mismatch between them produces film motion. A force
balance then results through equating a viscous drag force
associated with this film motion to the sum of pressure and
curvature forces. Thus

�v� = �p − 2�� , �1�

where � is a viscous drag coefficient, v� is the velocity of an
element of film in the normal direction, �p is the pressure
difference across the film, � is surface tension, and � is film
curvature.

Some comments concerning the model are relevant.
Throughout this work, we envisage that Eq. �1� applies to a
two-dimensional foam: physically this would be realized by
confining a foam between closely spaced glass plates. The
precise shape of the films in a foam thus confined, and the
context in which this system can be considered effectively
two dimensional is quite subtle: details may be found in
Appendix A. We also envisage that the foam is dry; i.e., its
liquid fraction is exceedingly small. Viewed from above the
confining plates, the foam films are now curves in the plane,

while the bubbles have a specified area �not volume�. Ap-
plied to a bubble with no externally imposed strain, it is
relatively simple to see how Eq. �1� behaves: if a film is not
initially an arc of a circle, so that � is spatially nonuniform,
film elements move, tending to relax � to the uniform value
�p / �2��. The reason 2�, not merely �, appears is because
the film tension is twice the surface tension, each film having
two surfaces. The rate of this relaxation process is governed
by the drag coefficient �. The drag forces are realized by the
films sweeping across the confining plates: in its simplest
form the drag force can be assumed linear in the film veloc-
ity, although certain power law relations may in fact be more
realistic �12,35–39�: see also Appendix B.

The viscous froth model has had a number of notable
successes in recent years, being applied to foam relaxation
after film bursting �31,32�, Taylor-Couette flow of foam
�32,33�, and foam flows in channels �31,32,34�.

In particular, channel flow studies have reproduced the
result of a two-dimensional experiment in which a bubble
train is pushed through a curved channel. The bubble train is
arranged into a so-called staircase structure; i.e., it is stacked
two bubbles deep across the channel and several bubbles
deep along the channel. The experimental observation is that
for slow-moving trains, bubbles exit the curved channel in
the same order that they entered it. However, for fast-moving
trains, some bubbles overtake others, undergoing a topologi-
cal transformation as the curve is negotiated. As the topo-
logical transformation is dependent on the rate of motion
imposed on the train, it is essential to describe it using a
rate-sensitive model such as Eq. �1�. If a quasisteady balance
between pressure and surface curvature forces were assumed,
no transformation would be predicted.

The present study has been motivated by these bubble
train experiments. The aim is to see whether a bubble train
could have any interesting behavior even in a perfectly
straight channel. In the interests of simplicity we consider
only the simplest nontrivial train. This consists of a single
bubble partially filling the width of the channel, with semi-
infinite bubbles in front of and behind it �a more detailed
description of the structure will be given later; see also Figs.
1 and 2�. For reasons to become apparent shortly, we call this
configuration a lens structure.

We will subject the lens structure to a driving force setting
it into motion, while also deforming it. As we shall demon-
strate, the lens has a very interesting dynamical behavior as a
function of the strength of the driving force. We shall be
particularly interested in how the structure deforms and elon-
gates, because film elongation in foam is associated with
more surface energy and, in rheological terms, more stress
�1�. Overall the present study will elucidate the very rich
physics embedded within the viscous froth model.

This paper is arranged as follows. In the next section we
compute the properties of an equilibrium lens—i.e., one that
is stationary. Then in Sec. III we set up the equations for a
moving lens which is assumed to be steadily migrating. In
Sec. IV we consider the case of a weakly driven lens. After
that we describe how to move from the weakly driven to the
strongly driven state by following a steady solution branch.
However, it appears that a steadily migrating lens is only
possible up to a given driving force. This leads in Sec. VI to
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the discovery of a second �steady� branch of solutions. The
unsteady state of the lens is analyzed in Sec. VII: it appears
that the original solution branch is in fact the stable one. For
larger driving forces, the lens structure breaks up via a topo-
logical transformation. Conclusions are offered in Sec. VIII.
Some derivations which are particularly mathematical are
confined to Appendixes A–E at the end of the paper.

II. EQUILIBRIUM LENS

Consider a long straight channel of width L drawn in the
plane. Consider also a �two-dimensional� bubble confined
near one wall of the channel. An additional film �hereafter
called the spanning film� attaches to the bubble spanning the
distance across the channel to the opposite wall. The system
is allowed to relax to its equilibrium state �i.e., it is not
driven in any way�, and suppose that, at equilibrium, the
bubble occupies a fraction l of the channel width, the span-
ning film therefore occupying a fraction 1− l. The equilib-
rium state is sketched in Fig. 1: clearly l is determined by the
bubble area. As can be seen, the bubble is stretched out into
a cusped shape much like a lens; hence, we call this simple
configuration a lens structure.

All films must leave the channel walls at right angles:
otherwise an unbalanced force along the wall would arise. In

the equilibrium state, the spanning film is flat, while the two
films of the bubble �hereafter referred to as the front and
back films� are mirror images of each other. The front and
back films are arcs of circles, each subtending an angle of �

3 .
This enables all three films to meet at the vertex at 2�

3 as
required by Plateau’s law for foam.

We elect to make all distances dimensionless on the scale
L, bubble areas dimensionless on the scale L2, film curva-
tures dimensionless on the scale L−1, bubble pressures di-
mensionless on the scale 2� /L, and surface energies �per
unit thickness of the gap between the glass plates confining
the two-dimensional foam� dimensionless on the scale 2�L.

Taking into account the above considerations and apply-
ing some elementary geometry and trigonometry, we deduce
the following relations between the equilibrium lens extent l,
the area of the lens bubble Al, the individual film lengths on
the front and back of the lens bubble L�, the equilibrium
pressure of the lens bubble pl

�, and the equilibrium surface
energy E�:

Al = �4�

9
−

1
�3
�l2, �2�

L� = 2�l/�3�3� , �3�

pl
� = �3/�2l� , �4�

E� = 2L� + 1 − l = �4�

9
−

1
�3
��3l + 1, �5�

where the pressure outside the lens has been set to zero, with
no loss of generality.

This completes the analysis of an equilibrium lens. In the
next section we will consider what happens as the lens is
driven out of equilibrium.

III. STEADY STATE OF VISCOUS FROTH LENS

Now we assume that a �dimensionless� back pressure pb is
imposed behind the lens, the pressure in front of the lens
remaining zero. The spanning film will now curve, the sym-
metry between the front and back film will be broken, the
lens pressure will deviate from pl

�, and the lens will be set
into motion. The aim of this section is to derive equations for
the extent of curvature of the spanning film, the deviation of
the lens pressure from equilibrium, and the overall velocity
of motion, assuming the lens structure, albeit distorted, mi-
grates at a steady rate. The actual solutions of the equations
we derive will be obtained and analyzed in later sections.

We retain dimensionless scales defined in Sec. II and ad-
ditionally make velocity dimensionless on the scale 2� / �L��.
We also make time dimensionless on the scale L2� / �2��,
although we shall deal with a steady-state analysis in the first
instance �see Appendix B for an estimate of how big these
scales would be in a real physical system�.

The �dimensionless� equation of the viscous froth is now

FIG. 1. The equilibrium lens shape assuming a unit width chan-
nel. The parameter l is the relative distance that the equilibrium lens
extends across the channel �measured in terms of the channel width,
which we take to be unity here� and is related to the equilibrium
lens area, pressure, and surface energy �see Eqs. �2�, �4�, and �5��.
The parameter l is also directly related to the length of each curved
arm of the lens bubble, L�, via L�=2�l / �3�3� �Eq. �3��.

FIG. 2. A distorted lens driven by an imposed back pressure pb

and traveling at some �unknown� migration velocity v. The so-
called spanning film turns through an �unknown� angle ��, but all
films still meet at 2�

3 angles at the vertex �see the close-up view of
the vertex on the right of the figure�. The lens pressure pl is also
affected.
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v� = �p − � , �6�

where v� is the film velocity locally normal to the film, �p is
the pressure difference across the film, and � is film curva-
ture.

We parametrize the films by a so-called “turning angle”
�. Specifically, � is the angle through which the film tangent
has turned with respect to the direction it had at the channel
wall. As in Sec. II, we continue to assume that films meet the
channel walls at right angles so as to avoid unbalanced forces
there: the viscous froth model in its simplest form associates
drag only with film elements, not with the end points of
films. Remember that the two-dimensional viscous froth rep-
resents a foam confined between two closely spaced glass
plates: neglect of drag on film end points then assumes that
the plate separation is arbitrarily small compared to the film
lengths and/or the span of the channel. Recent experiments
suggest that, fixing the plate separation to channel span as-
pect ratio, additional drag forces on film end points should in
fact be added to the viscous froth model, particularly for
rapidly migrating structures �34�. The drag force required
where a film end point meets a channel wall is equivalent to
the drag on a segment of viscous froth film with a length
equal to half the plate separation. The reason for the factor of
1
2 is that the equivalent segment confined between two glass
plates would have drag on both upper and lower plates.

Here, as stated above, we shall ignore such complications.
One of the main effects we shall predict, even with our cur-
rent model, is the tendency of the lens bubble to lag behind
the spanning film as the structure migrates owing to the lens
bubble having more films and hence more drag per unit
height: incorporating additional drag on film end points
should only enhance this tendency.

The total angle through which the spanning film turns
�from channel wall to vertex� will be denoted ��, so that
0����� for the spanning film �see Fig. 2�. Since all
films meet at the vertex at 2�

3 angles, the back film has
0���

�
3 +�� and the front film has − �

3 +�����0. Our
immediate objective is to express the coordinates of points
on films as functions of � over these ranges, since this will
subsequently enable us to formulate constraint equations
which govern the overall film distortion, pressure in the lens
bubble, and steady migration velocity.

A. Obtaining film coordinates in terms of turning angle

Toward the above stated objective, the film curvature can
be readily expressed in terms of the turning angle � and
distance s along the film:

� =
d�

ds
. �7�

We measure s from below, so that � is positive on the front
and spanning films and is negative on the back film.

A film whose local orientation is � and which displaces
by an amount v�dt has an apparent horizontal displacement
v�dt / cos � �see Fig. 3�. If the lens is at steady state—i.e.,
propagating along the channel without change of shape—
then it has an apparent propagation speed v which is uniform
across the entire structure. Thus

v = v�/cos � . �8�

If we substitute Eq. �7� and �8� into Eq. �6� �and rear-
range�, we obtain

ds

d�
=

1

�p − v cos �
. �9�

An element of film ds which is curved back through an
angle � relative to the vertical can be decomposed into Car-
tesian components dy=cos � ds and dx=−sin � ds. Thus

dy

d�
=

cos �

�p − v cos �
, �10�

dx

d�
= −

sin �

�p − v cos �
. �11�

We shall denote the values of x and y from Eqs. �10� and
�11� with subscripts s, b, and f according to whether
they refer to the spanning, back, or front films. As we know
the values of y when �=0 for all three films �ys=0 and
yb=yf =1�, it is convenient to integrate Eq. �10�. In this equa-
tion, we shall also employ the aforementioned subscripts s,
b, and f on the film pressure differences �p, these pressure
differences being measured from behind to in front.

Before proceeding, we define three parameters, denoted
as, ab, and af, which are ratios of film velocities to driving
pressures �as such these can be thought of as film mobility
parameters�:

as =
v

��sp�
=

v
pb

, �12�

ab = −
v

��bp�
=

v
�pl − pb�

, �13�

af =
v

�� fp�
=

v
pl

. �14�

Note that in the limit of weakly driven films, as, is order
unity, while ab and af are small parameters. The signs have
been chosen to ensure as, ab, and af are positive in that same
limit.

FIG. 3. A local element of film which has turned through an
angle � relative to its �vertical� orientation at the channel wall. In a
time dt, the film displaces in the normal direction by an amount
v�dt, while the apparent horizontal displacement of the structure is
v�dt / cos �.
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Thus we obtain from Eq. �10� for the three films

dys

d�
=

1

v

ascos �

�1 − ascos ��
=

1

v
�− 1 +

1

1 − ascos �
� , �15�

dyb

d�
= −

1

v

abcos �

�1 + abcos ��
=

1

v
�− 1 +

1

1 + abcos �
� , �16�

dyf

d�
=

1

v

afcos �

�1 − afcos ��
=

1

v
�− 1 +

1

1 − afcos �
� . �17�

After integration, we obtain

ys =
1

v�− � +
2

�1 − as
2�1/2 arctan	�1 + as

1 − as
�1/2

tan
�

2

� ,

0 � � � �� , �18�

yb = 1 +
1

v�− � +
2

�1 − ab
2�1/2 arctan	�1 − ab

1 + ab
�1/2

tan
�

2

� ,

0 � � �
�

3
+ ��, �ab� 	 1, �19�

yf = 1 +
1

v�− � +
2

�1 − af
2�1/2 arctan	�1 + af

1 − af
�1/2

tan
�

2

�,

−
�

3
+ �� � � � 0. �20�

Equation �19� may be used for values of ab of magnitude less
than unity. For values of ab in excess of unity �which can
arise for high enough back pressures� an alternative form is
more convenient:

yb = 1 +
1

v�− � +
2

�ab
2 − 1�1/2 arctanh	�ab − 1

ab + 1
�1/2

tan
�

2

� ,

ab 
 1. �21�

Negative values of ab with magnitude �ab � 
1 can also arise
under certain circumstances. For such cases,

yb = 1 +
1

v�− � −
2

�ab
2 − 1�1/2 arctanh	�ab − 1

ab + 1
�1/2

tan
�

2

� ,

�ab� 
 1, ab 	 0. �22�

B. Formulating constraint equations

Since all three films must meet at the vertex, we have a
constraint

ys���� = yb��

3
+ ��� = yf�−

�

3
+ ��� . �23�

There is also an integral constraint on the lens area. Using
subscripts b and f on integral signs to denote front and back
films,

Al = 
b

�1 − yb�dxb + 
f

�1 − yf�dxf . �24�

Parametrizing the back and front films using �,

Al = 
0

�/3+��

�1 − yb�
dxb

d�
d� + 

−�/3+��

0

�1 − yf�
dxf

d�
d� .

�25�

Note that it is essential to have an area constraint written in
this integral form. A constraint saying that the rate of change
of lens area vanishes �as is regularly employed in unsteady-
state viscous froth simulations� is insufficient for this steady-
state computation �see Appendix C�.

Now Eqs. �12�–�14� are substituted into Eqs. �18�–�21�,
and thence into constraints �23�–�25�, employing also Eq.
�11� in Eq. �25�. Then, for a given driving back pressure pb,
there are three constraint equations and three unknowns to
evaluate: namely, �� �the turning angle of the spanning
film�, v �the migration velocity of the structure�, and pl �the
pressure of the lens bubble�.

These can be solved numerically. Before considering the
numerical solutions, however, we analyze a perturbation
technique for which solutions for a weakly driven lens may
be obtained.

IV. WEAKLY DRIVEN LENS

In the case of a weakly driven lens �pb�1�, constraints
�23�, substituting from Eqs. �18�–�20�, need to be expanded
perturbatively in powers of the small parameters af, ab, and
��.

This technique of solution is actually quite tedious owing
to the nature of Eqs. �16� and �17�. When af →0 and
ab→0 both equations have two terms on their right-hand
sides which exactly cancel one another. A first-level expan-
sion of Eqs. �16� and �17� is required merely to detect the
equilibrium lens shape, and a next-order expansion is needed
to see the perturbation away from equilibrium. Nevertheless,
once the expansion is complete, af and ab can be approxi-
mated as

ab � af �
v

pl
� , �26�

where pl
� is the equilibrium lens pressure. Then using Eq.

�12� to eliminate as in Eq. �18� in favor of v, relations can be
obtained for v and �� in terms of the imposed back pressure
pb.

The solutions of these �in the pb�1 limit� turn out to be

�� =
�3

2 � � 4�

3�3
+ 1�

2 + � 4�

3�3
− 1�l

− 1� pb

pl
� + O�pb

3� , �27�
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v = 	1 +
1

2� 4�

3�3
− 1�l
−1

pb + O�pb
3� . �28�

These same results can be obtained much more simply by
expanding Eqs. �16� and �17� in powers of ab and af and then
integrating, rather than expanding, the already integrated
forms �19� and �20�. This provides a robust check on the
results.

Note that it is not necessary to know the perturbation to pl
�away from pl

�� in order to find either v or ��. If one wants to
know pl− pl

�, it is essential to invoke the area constraint equa-
tion �25�; i.e., the lens area constraint is wholly concerned
with fixing the pressure of the lens bubble in the weakly
driven limit. This is noteworthy because �as we shall see
later� the area constraint concerns itself with fixing different
state parameters in a strongly driven lens.

Corrections at order pb
3 �albeit with an unknown l depen-

dence� have been shown on the right-hand sides of Eqs. �27�
and �28�. These can be deduced from an elegant symmetry
argument as follows. The system is only driven by the pres-
sure difference imposed across the spanning film. Thus im-
posing pressure pb on one side of that film and nil pressure
on the other is equivalent to imposing 1

2 pb on one side and
− 1

2 pb on the other. The only change between the two situa-
tions is that the zero of the pressure scale �which is arbitrary�
has been shifted by 1

2 pb. However, in the latter situation
with imposed pressures ± 1

2 pb, there is an obvious symmetry
upon changing the sign of pb: under this sign change both the
vertex rotation direction and propagation direction switch,
but the absolute magnitudes of vertex rotation and propaga-
tion speed remain the same. Hence �� and v are odd func-
tions of pb and any corrections to the leading O�pb� behavior
of Eqs. �27� and �28� must arise at O�pb

3�.
As stated above, we have not specified the l dependence

of the O�pb
3� correction terms. Numerical evidence �see Secs.

V B and V C� suggests that the deviation from the leading
O�pb� behavior is weakest when the lens size parameter l is
small. Thus the coefficients of the O�pb

3� correction terms in
Eqs. �27� and �28� could well diminish or even vanish in the
limit l→0: see also Sec. VI C 2.

A. Rotation of the spanning film: Weakly driven limit

Now we analyze Eq. �27� in detail. One interesting obser-
vation is that it exhibits a maximum over l. Indeed the maxi-
mum turning angle �� can be shown to be realized for a
value of l equal to

l = lmax �
��2 +

8�

3�3
− 2�

4�

3�3
− 1

� 0.43. �29�

Note that this corresponds to a maximum over l at fixed pb.
If the maximum were taken at fixed v, it would occur exactly
at l= 1

2 . Fixing pb actually pushes the maximum to smaller l
because v is itself a decreasing function of l at given pb �see
Sec. IV B�.

In the limits of either very small or very large lenses, Eq.
�27� reduces to

�� =
�3

2 � 2�

3�3
−

1

2� pb

pl
� , l → 0, �30�

�� =
�3

2

� 4�

3�3
− 1�

� 4�

3�3
+ 1�

pb

pl
� �1 − l�, l → 1. �31�

Consulting also Eq. �4�, it can be seen that both very small
lenses and very short spanning films �i.e., large lenses� resist
bending: they are very stiff. The similarity between these two
states only, however, applies in the weakly driven limit. For
large driving forces, the small lens will remain stiff, as the
back and front films are geometrically constrained to remain
short. However, the very large lens has �as we shall see� a
much greater degree of compliance when the driving force is
large. It has the freedom to move the vertex away from the
�bottom� channel wall, extending the spanning film and
vastly reducing the bending stiffness.

There is one interesting aspect of the weakly driven small
lens case �l�1�, concerning the distribution of curvature
along the spanning film. It might be thought naively that the
spanning film would only develop curvature very near the
lens itself and be asymptotically flat farther away. This is in
fact not the case. Using Eqs. �6�, �8�, �27�, and �28� and
expanding, the curvature of the spanning film is found to be

pb − v �
1

2� 4�

3�3
− 1�lpb = O�lpb� �32�

at the channel wall and

pb − v +
1

2
v��2 � pb − v + O�pb� pb

pl
� �2� = pb − v + O�l2pb

3�

�33�

at the vertex. Thus curvature is almost uniform along the
film. It turns out that curvature can be confined to small
regions of the spanning film when the lens is small, but only
for strongly driven lenses, not weakly driven ones. This point
will be discussed in more detail later.

B. Migration velocity: Weakly driven limit

The ratio v / pb given by Eq. �28� can be thought of as an
effective mobility of the lens structure �see also the discus-
sion preceding Eqs. �12�–�14��.

Clearly spanning films attached to very small lenses
l→0 propagate essentially with v� pb �i.e., unit mobility�
with only a small correction for curvature. In general,
smaller lenses give higher mobility than larger ones. This
makes sense as the local drag on the structure is less in
positions across the channel where there is only one film
rather than two.
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C. Perturbed lens pressure

In order to compute the perturbation to lens pressure, it is
necessary to work with Eq. �25�. Given the complexity of the
integral in this equation, it is far simpler to Taylor expand
Eqs. �16� and �17� �and additionally Eq. �11��, rather than
working directly with Eqs. �19� and �20� as integrands in the
area constraint. Even so the calculations remain somewhat
tedious, and rather than giving a full mathematical deriva-
tion, we will discuss the result using physical arguments.

First, there arise from the back and front films so-called
surface terms reflecting the fact that the � integration range
for these films has been perturbed, growing or shrinking by
±�� as the vertex rotates. Owing to the high symmetry of the
equilibrium lens these surface terms actually cancel at lead-
ing order and do not need to be considered further.

Additionally there are perturbations to the integrands in
Eq. �25� which need to be integrated over the original �
range corresponding to each film of the equilibrium lens.
These perturbations describe how the area contained in the
back and front bulges of the lens are affected by shape
changes along the film lengths.

An understanding of these effects can be obtained by ex-
amining the �magnitude of the� curvature on the back and
front films in the weakly driven limit. From Eq. �6�,

��b� = �pl − pb� + v�, � f = pl − v�. �34�

Positive v� produces drag forces which tighten curvature on
the back film �reducing the bulge area�, but flatten the front
film �increasing the bulge area�. The high symmetry of the
equilibrium lens structure again implies these effects cancel.

Only pressure effects remain. Increases in pl tighten both
curvatures �reducing the bulge areas�, but positive pb reduces
the magnitude of the curvature �increasing the bulge area,
but acts on the back film only�. Invoking area conservation,
the net result is somewhat remarkably

pl = pl
� +

pb

2
+ O�pb

2�, pb � 1; �35�

i.e., the pressure in the steady-state lens is increased by half
the imposed back pressure.

The reason this equation is remarkable is that pl
�+ 1

2 pb is
also the instantaneous pressure which would result if a back
pressure pb were suddenly imposed on an equilibrium lens.
In the viscous froth model, the equation for instantaneous
pressure can be derived by integrating v�ds around the
bubble surface and setting the result to zero in order to con-
serve area. A relation between pressures and film lengths
results �31�: see Eq. �C2� in Appendix C. The instant the
back pressure pb is switched on for an initial equilibrium
lens, both film lengths are equal to L� �see Eq. �3�� and Eq.
�C2� reduces to pl= pl

�+ 1
2 pb.

Returning to the steady-state system, an elegant interpre-
tation of Eq. �35� can be obtained in terms of total film
length of the lens. For weakly driven lenses, if individual
film lengths Lb and L f are perturbed to L�+�Lb and
L�+�L f, respectively, and if pl is perturbed to pl

�+�pl, then
Eq. �C2� becomes

�2�pl − pb�L� � − pl
���Lb + �L f� . �36�

It is clear from this equation that it is not necessary for in-
dividual steady-state film lengths �i.e., Lb and L f� to remain
equal to the film lengths L� for the equilibrium lens if we
want Eq. �35� to apply. It is only required that the sum of film
lengths remain constant; i.e., elongation of the back film is
compensated by shortening of the front film at leading order.

A symmetry argument the same as that in the discussion
following Eqs. �27� and �28� can also be invoked here. If
pressures ± 1

2 pb are applied, respectively, behind and in front
of the spanning film, it is clear on symmetry grounds that the
lens pressure must be an even function of pb. The case we
have actually considered, with pressure pb behind the span-
ning film and nil pressure in front of it, is identical except for
resetting the zero of the pressure scale; i.e., in our case
pl−

1
2 pb will be an even function of pb. For small back pres-

sures, it then follows that pl−
1
2 pb= pl

�+O�pb
2� in agreement

with Eq. �35�. Since the symmetry argument can be applied
not only at steady state, but also for the unsteady evolution
from the initial equilibrium up to final steady state, Eq. �35�
actually applies at all times.

D. Perturbed vertex position

In addition to studying film lengths on the lens bubble, it
is interesting to know whether the vertex displaces toward
one or other wall of the channel. This is particularly crucial
for a very short spanning film, since a displacement in the
“wrong” direction �shortening that film still further� could
signal a transition to a so-called “bamboo” structure �40� in
which the lens bubble occupies the entire channel width.

Mathematically the cross-channel displacement is easiest
to obtain by expanding front film equation �17� in powers of
pb / pl

� and v / pl
� using Eqs. �14�, �28�, and �35� and then inte-

grating the perturbation from − �
3 to 0. A surface term is

subsequently subtracted off �recognizing that the true lower
limit of the integration domain has shifted to − �

3 +���, Eq.
�27� is used, and finally the cross-channel vertex displace-
ment is obtained.

Remarkably, at leading order, the weakly driven lens is
found to displace neither up nor down: all terms cancel. We
have obtained an independent check on the calculation by
working with the expansion of back film equation �16� in
place of Eq. �17�: the same result is obtained. This is also
predicted via the symmetry arguments mentioned earlier in
connection with Eqs. �27� and �28� and in Sec. IV C: cross-
channel vertex displacement should be an even function of
pb, and so has corrections at O�pb

2� only. A further implica-
tion is that the spanning film curves away from its unper-
turbed position, but does not experience any shortening or
lengthening at first order in pb.

Thus unfortunately no conclusion can be drawn regarding
possible bamboo transitions in the l→1 limit based on the
weakly driven perturbation theory alone. A numerical analy-
sis is required for higher back pressures, and this reveals that
the vertex displaces so as to lengthen the spanning film; i.e.,
no bamboo transition occurs. Indeed the lengthening span-
ning film increases the compliance of the lens structure, lead-
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ing to further distortion over a comparatively modest range
of back pressures. The results of the numerical study are
described in the following sections.

V. ACCESSING THE STRONGLY DRIVEN LENS

In this section, we present the steady state �numerical�
results of the strongly driven lens as follows. First, we ex-
amine some deformed lens structures in detail, and then we
go on to describe a key geometrical features of these struc-
tures �namely, the cross-channel coordinate of the vertex,
denoted yv, and the spanning-film turning angle ��� para-
metrically in terms of the driving pressure pb and lens size
parameter l. We then proceed to consider kinematic �migra-
tion velocity v� and dynamic �pressure in the lens bubble pl�
properties of the system in terms of these same parameters.
Finally a key rheological property—namely, surface
energy—is treated: this is of course just equal to total film
length in our units, and so is easily related back to the ge-
ometry of the structure.

Details of the numerical method employed are given in
Appendix D. Briefly the method was an iterative one. It
started by using the weakly driven lens theory of Sec. IV as
an approximate solution for low back pressure pb values and
then increased pb in small increments, using the solution at
one back pressure as an initial guess for the next.

A. Deformed lens structures (including vertex location)

We consider in Fig. 4 some steady-state structures for a
medium-size lens bubble with l=0.5 �remember l is the frac-
tion of the channel width occupied by the equivalent area
lens at equilibrium�. It is clear that as the imposed back
pressure pb grows, the vertex at which the three films meet
displaces upwards: Figure 5 shows the vertex vertical coor-
dinate �which we denote yv� as a function of pb. The back
film and spanning film both lengthen, but the front film ac-
tually shortens as the vertex tends to displace along it. This
behavior which we have examined here for l=0.5 is typical

of other lens sizes also, although the departure from equilib-
rium tends to be weaker when l is small: see also Fig. 5.

B. Rotation of the spanning film

The overall rotation or turning angle along the spanning
film �� is one way of characterising the departure from equi-
librium of a driven lens structure.

In Fig. 6 we compute this as a function of pb for three
different lens bubble sizes: a small lens l=0.1, a medium-
size lens l=0.5, and a large lens l=0.9. Also shown in Fig. 6
are the weakly driven perturbation formulas from Eq. �27�
for l=0.1, l=0.5, and l=0.9.

FIG. 4. Steady-state lens structures for a medium-size lens with
l=0.5 and various back pressures driving the system towards the
right: equilibrium lens pb=0 �solid line�, pb=2 �long-dashed line�,
pb=4 �short-dashed line�, the end of the original steady-solution
branch pb�4.64 �denser dotted line�, and a lens on the point of
detachment, with pb�3.40 on a new solution branch �fainter dotted
line�.

FIG. 5. The vertical vertex position �denoted yv� across the
channel as a function of the back pressure pb for small �l=0.1�,
medium-size �l=0.5�, and large �l=0.9� lenses. Solid lines indicate
the original branch of steady solutions �the vertex displaces up-
wards as pb grows along this branch�, while dashed lines �with
higher yv values� indicate a new steady-solution branch �yv dis-
places downwards as pb grows�: the latter branch is believed un-
stable: see, e.g., the discussion in Sec. VII B.

FIG. 6. The steady-state turning angle along the spanning film
�� as a function of back pressure pb for small �l=0.1�, medium-size
�l=0.5�, and large �l=0.9� lenses. Solid lines indicate the original
branch of steady solutions, while dashed lines �with higher �� val-
ues� indicate a new steady-solution branch: the latter branch is be-
lieved unstable. The dotted lines indicate the asymptotic formula for
the weakly driven lens for each l value.
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For pb�1, the results for l=0.1 and l=0.9 are similar, as
Eqs. �30� and �31� predict, while l=0.5 exhibits close to
maximal rotation �being relatively near lmax�0.43; see Eq.
�29��.

As pb increases, �� for the l=0.1 system remains close to
the linear perturbation formula, while data for l=0.5 and
l=0.9 are superlinear in back pressure. Moreover, growth in
�� for l=0.9 becomes so rapid that it eventually approaches
the l=0.5 case.

Note that we have been unable to obtain steady solutions
beyond a certain critical back pressure �which depends on l�.
Immediately before this pressure, both yv �Fig. 5� and ��
�Fig. 6� show an especially rapid increase. We shall analyze
the nature of this critical back pressure in Sec. VI: for the
present, however, we just treat it as a restriction on the avail-
able solution domain. Small l values tend to lead to high
critical back pressures and hence wide solution domains.

C. Migration velocity

Values of the migration velocity v for the parameter val-
ues �l=0.1, l=0.5, and l=0.9� considered earlier are shown
in Fig. 7. Perturbation formulas from Eq. �28� are also
shown. Clearly small lenses move faster than large ones.

The linear perturbation laws do not perform too poorly,
but superlinear growth is detectable especially for the me-
dium size l=0.5 and large lenses l=0.9, which migrate to-
wards the l=0.1 data. This is believed to be associated with
the vertex shifting upwards towards the top of the channel
�effectively replacing two films by a single one over part of
the channel width� and also with the lens bubble reorienting

its films as it becomes squashed against the channel wall
�film segments oriented tangential to the direction of motion
exhibit no drag in the viscous froth model: this is in line with
experimental observations that only the projected lengths of
films normal to the direction of migration are needed to de-
termine the drag �36� and also with theoretical results �for
bubble motion in capillaries� showing the ease and rapidity
with which liquid held between films and confining container
walls can be transported in the case where films are oriented
along a bubble migration direction �41,42��.

Note that despite this tendency to squash the lens bubble
somewhat, it is never possible for this bubble to become
arbitrarily long and thin in a steady-state migrating structure.
We argue this by contradiction: if the lens bubble were a long
thin structure along the channel wall, the back film would
have to be flat and parallel to the wall for most of its length.
Since curvature � and normal velocity v� would both vanish
on any flat, parallel region, Eq. �6� implies that no pressure
difference could be sustained across the back film—i.e.,
pl= pb. Both the front film and the spanning film would have
to turn through �

6 angles in order to join up with the flat
section of the back film at the correct angle. However, with
pl= pb these two films require equal distances across the
channel to turn through equal angles: this is contradictory as
it locates the three film meeting point in the middle of the
channel instead of near one wall.

D. Lens pressure

Figure 8 plots the values of the steady-state lens pressure.
We have normalized both pl and pb by equilibrium pressure

FIG. 7. The steady-state migration velocity v of the lens struc-
ture as a function of back pressure pb. Solid line: l=0.1. Long-
dashed line: l=0.5. Short-dashed line: l=0.9. For the l=0.9 data
both the original steady-solution branch �lower part of the short-
dashed curve� and the new branch �upper part of the short-dashed
curve which loops backward� are shown. Only the original branch
is shown for other l values, as the branches virtually overlie each
other in these cases. For clarity the inset shows a close-up view of
the region 0� pb�5, 0�v�5. Returning to the main plot, the
asymptotics for the weakly driven lens are also shown �dotted lines,
one for each l value�, giving velocity values slightly less than the
computed ones. In all cases, however, the computed velocities sat-
isfy v	 pb.

FIG. 8. The steady-state pressure of the lens bubble pl normal-
ized by equilibrium pressure pl

� as a function of �normalized� back
pressure pb / pl

�. Various lens sizes are shown, l=0.1, l=0.5, and
l=0.9. On the original solution branch, solid lines show regions
where pl
 pb+v �as a result the film mobility parameter ab defined
by Eq. �13� satisfies 0	ab	1�. Long-dashed lines show regions
where pb	 pl	 pb+v �as a result ab
1�. The short-dashed line
�which only applies for l=0.9� shows regions where pb
 pl �and
hence ab is negative�. The dense dotted lines show the new solution
branch �Sec. VI D�. The faint dotted lines show pl= pl

�+ 1
2 pb �which

is the asymptotic behavior for a weakly driven lens� and
pl= pl

�+ pb. All data values lie between these two limits.
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pl
� so as to collapse data from different l values together. It is

clear that

pl
� +

pb

2
	 pl 	 pl

� + pb. �37�

If pb is small, then pl values cluster around the lower end of
this inequality range �as Eq. �35� predicts�. However, as pb
grows, pl migrates towards the upper end of the range.

Note that it is not essential that pl
 pb, and indeed this
condition tends to be violated for large lenses over a moder-
ate pb range. In order to achieve pl	 pb, but still satisfy
inequality �37�, pl

� needs to be a moderately small fraction of
pb �which, by Eq. �4�, is easiest to achieve for large l� and pl
cannot have migrated too close to pl

�+ pb.
For large lenses, there exist special parameter choices, for

which pl= pb: the back film then propagates at a constant
migration velocity through purely curvature driven growth.
Such curvature driven growth solutions are well known in
the literature �30,43�, where they are called “Mullins finger”
or “grim reaper” solutions. In other words, the back film is,
under special circumstances, just a segment of a Mullins fin-
ger. Our back films are necessarily segments of a Mullins
finger that turn through less than �

2 ; otherwise, the contradic-
tion discussed in Sec. V C comes into play.

There is a noteworthy computational consequence of the
above observations concerning lens pressure. For weakly
driven lenses, pl� pl

�, pb�pl, and v�pl. As pb increases, it
is possible �depending on lens size� that pb becomes as large
as pl. Before this happens, however, there is necessarily a pb
value for which pl= pb+v. The back film mobility parameter
ab defined in Eq. �13� passes through the value unity as this
point: a switch from computing film position via Eq. �19� to
Eq. �21� then occurs. Subsequently, when and if pb reaches
the value pl, the film mobility parameter becomes infinite:
the film propagates through curvature alone, with no driving
pressure force. In the region where pb exceeds pl the mobil-
ity parameter is negative: the film migrates forward due to
curvature despite an adverse pressure difference across it.
Equation �21� remains well defined in spite of this behavior
of ab.

E. Lens energy

The lens surface energy can be obtained by integrating
Eq. �9� for each film. Recalling the definition of the various
mobility parameters as, ab, and af from Eqs. �12�–�14� and
following an integration procedure analogous to that used to
obtain Eqs. �18�–�22� from Eqs. �15�–�17�, we find the film
lengths Ls, Lb, and L f, respectively, for the spanning, back
and front films,

Ls =
as

v

2

�1 − as
2�1/2 arctan	�1 + as

1 − as
�1/2

tan
��

2

 , �38�

Lb =
ab

v

2

�1 − ab
2�1/2 arctan	�1 − ab

1 + ab
�1/2

tan
��� + �/3�

2

 ,

�ab� 	 1, �39�

L f =
af

v

2

�1 − af
2�1/2 arctan	�1 + af

1 − af
�1/2

tan
��/3 − ���

2

 .

�40�

Equation �39� applies for �ab � 	1. In the case where
�ab � 
1, for the back film

Lb =
2

v�1 − ab
−2�1/2 arctanh	�ab − 1

ab + 1
�1/2

tan
��� + �/3�

2

,

�ab� 
 1. �41�

The three film lengths are summed to obtain the total
surface energy E=Ls+Lb+L f, and the energy is then nor-
malized by the equilibrium energy E�; see Eq. �5�. The result
is shown in Fig. 9. For small back pressures, there are only
weak �i.e., second-order� increases in energy. This is consis-
tent with results in Secs. IV C and IV D which show that
neither the spanning film length nor the sum of the back and
front film lengths change at first order in pb. Indeed the over-
all film energy is, on symmetry grounds, necessarily an even
function of pb: thus only O�pb

2� perturbations to E� are per-
mitted for small pb. However, larger energy increases are
seen as pb grows, particularly for moderate l=0.5 and large
l=0.9 lenses. The increase in energy is particularly rapid
around the critical pressure �mentioned also in Sec. V B�
where steady solutions break down.

VI. BREAKDOWN OF STEADY SOLUTIONS

By stepping upwards in back pressure in extremely small
increments �5�10−4�, we have determined the critical pres-
sure and the corresponding migration velocity at which
steady solutions break down as functions of the lens size

FIG. 9. The surface energy of the lens structure �denoted E�
normalized by the equilibrium energy E� as a function of back pres-
sure pb for various lens sizes l. Only a second-order increase in
energy is seen for small pb. On the original solution branch, the
solid lines indicate regions where the back film mobility parameter
ab satisfies 0	ab	1, the long-dashed lines indicate regions where
ab
1, and the short-dashed line �in the case of l=0.9� regions
where ab is negative. Meanwhile, the dotted lines show the new
solution branch �see Sec. VI D�, which is of higher energy and
believed unstable.
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parameter l: the results are plotted in Fig. 10. The migration
velocity v at breakdown is a decreasing function of l. Mean-
while, the critical pressure pb is likewise a decreasing func-
tion for most l values, but starts to increase very slightly after
about l=0.82: this slight increase �which in relative terms is
only on the order of a few percent� is consistent with larger
lenses having more overall length of film and hence lesser
mobility �v / pb� than smaller ones.

The fact that the front film seems to shrink in length as the
back pressure grows from zero to the critical value �cf. Sec.
V A� suggests one of two possibilities. These are that �i� the
steady-state length of the front film shrinks continuously to
zero, becoming vanishingly short at the critical back pres-
sure, or �ii� the structure loses stability even while the front
film length is still finite.

We first discuss the physical implications of the two dif-
ferent possibilities, then the procedure we employed to dis-
tinguish between them, and subsequently what has been
learned from this procedure. The outcome of this analysis is
that the latter possibility—i.e., loss of stability—appears to
be the one realized in practice.

A. Continuous decrease of film length vs loss of stability

For a continuous decrease of the steady-state front film
length to zero to apply, quasistatic increments in the back
pressure would lead to quasistatic decreases in the front film
length and arbitrarily short front films could be accessed qua-
sistatically. Once the critical back pressure is exceeded, the
system would undergo a topological transformation �see Fig.
11�: the lens bubble and the spanning film would detach. The
spanning film would now cross the entire channel and �given
the model associates no drag to film end points� would
propagate forward as a flat film with velocity v= pb. The
former lens bubble of area Al would relax to a semicircular
shape, with a curvature radius �2Al /��1/2 and hence a pres-
sure pl= pb+ �2Al /��−1/2, and would not propagate. Such
semicircular bubbles attached to channel walls have been
observed in two-dimensional foam channel flow experiments
�44�. Once formed, they are difficult to flush out of the chan-

nel: if the back pressure pb is increased, they stay fixed in
position and merely increase their own internal pressure pl
by an equivalent amount.

For the alternative scenario of steady solution breakdown
�i.e., loss of stability�, once the critical back pressure is ex-
ceeded, it is still possible that the above-mentioned topologi-
cal transformation takes place. However, approaching it now
becomes an inherently dynamic phenomenon: it is not pos-
sible to maintain arbitrarily short front films for indefinite
time periods by suitably fixing the back pressure.

Loss of stability at finite film size has been observed in
other foam systems subject to deformation. For instance, a
regular three-dimensional foam structure, known as the
Kelvin foam, has been studied under slow extension and/or
shear �13,14�. As the shear proceeds, certain films shrink and
others grow: the actual structure of the foam can be com-
puted by minimizing the surface energy of the structure sub-
ject to boundary conditions imposed by the shear. Beyond a
critical shear strain, however, there is no longer an energy
minimum even though all films are of finite size. The con-
figuration that corresponds to a stationary point of the sur-
face energy switches from being an energy minimum to a
saddle. The system can run away to a topological transfor-
mation with no additional increment in strain. Similar behav-
ior has also been observed with other regular three-
dimensional foam structures under strain �16�.

Another example is dilation of a foam staircase structure
in a cylindrical tube �40�. There are flat film faces attached
normal to the cylinder wall that partly fill the cross section
and alternate across the cylinder. Additionally there are films
that zigzag across the cylinder like stairs, and these join up
the flat films. As the structure is dilated quasistatically, the
relative size of the flat films and zigzag films changes: the
actual structure is computed by energy minimization. Be-
yond a certain dilation, even though all films are of finite
size, the energy switches from having a minimum to a
saddle. A runaway to a topological transformation, leading in
this case to a bamboo structure, then ensues.

The loss of stability that we postulate is reminiscent of the
examples just discussed, but with one important difference.
We are no longer dealing with a quasistatic applied strain for
which energy minimization can be applied to determine
structure; instead we are considering the steady state of an
out-of-equilibrium foam �even though the back pressure that
determines the amount of departure from equilibrium may
itself be varied quasistatically�. If the structure is deformed

FIG. 10. The �critical� pressure pb �solid line with +� and veloc-
ity v �dashed line with �� at which steady solutions break down as
functions of the lens size parameter l.

FIG. 11. The breakdown of the lens structure following a topo-
logical transformation. The former spanning film is flat and propa-
gates with velocity equal to back pressure v= pb. The former lens
bubble �area Al� remains behind and is semicircular in shape with
radius �2Al /��1/2, the relation between Al and the lens size param-
eter l being given by Eq. �2�.
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somehow away from the steady state at any given back pres-
sure, there will be a set of eigenmodes and eigenvalues gov-
erning the rate to return �or otherwise� to that state. If the
eigenvalue corresponding to the least stable mode reaches
zero at some critical back pressure, this signals a loss of
stability.

B. Lens on the point of detachment

The methodology we have employed for determining the
nature of the breakdown of steady solutions is as follows. We
consider a steady-state lens with a vanishingly small front
film; i.e., the lens bubble is on the point of detaching from
the spanning film. We try to determine the conditions �and in
particular the back pressure� under which such a structure
could exist. If the back pressure we compute corresponds to
the value already observed where the steady solution branch
breaks down, this points to continuous shrinkage of the front
film length to zero. If the back pressure we compute has
some other different value, loss of stability at the critical
back pressure is implied.

The latter possibility is in fact what we observe. The back
pressure required to propagate the lens on the point of de-
tachment is actually lower than the critical pressure corre-
sponding to a breakdown of steady solutions. The lens on the
point of detachment is not even on the original steady-
solution branch, but is in fact the starting point of a new
steady-solution branch �believed unstable for reasons to be
discussed in Sec. VII B�. The new solution branch can be
followed from its starting point up to higher pressures, but
like the original branch, also terminates at the critical back
pressure.

In order to have a lens on the point of detachment, it is
necessary that the back film turn through an angle 2�

3 along
its length, returning to the top of the channel at this point.
This allows it to meet, at the correct angle, an arbitrarily
short front film that is flat and oriented normal to the top
channel wall.

We need to find out whether either Eq. �19� or �21� can
have a solution with yb=1 when �= 2�

3 . It turns out that Eq.
�19� has no such solution, but Eq. �21� admits a solution
when

ab � v/�pl − pb� � 1.756. �42�

The area constraint �Eq. �25�� can now be invoked: the
integral over the back film runs from �=0 through �= 2�

3 . It
is clear from Eqs. �11�, �13�, and �21� that 1−yb and dxb /d�
appearing in the integrand of Eq. �25� can be written in terms
of shape functions �depending only on the known ab and on
�� and an overall scale factor v−1. In other words, any lens
on the point of detachment has a given shape, regardless of
size. Invoking the area constraint only fixes the propagation
velocity �contrast this situation with weakly driven lenses,
Sec. IV, for which the area constraint was wholly concerned
with setting the pressure of the lens bubble�. After perform-
ing a quadrature on the shape functions,

v � 1.276Al
−1/2 � 1.410l−1, �43�

where Eq. �2� has also been used.

Thus small lens bubbles have to move very quickly before
they are on the point of detachment, but larger lens bubbles
can achieve this state for modest propagation velocities. To
date we have computed the velocity with which a nearly
detached lens of a given size will propagate: we have not yet
determined the back pressure corresponding to detachment.
This issue is addressed in the next subsection.

C. Propagation of the spanning film

In order to find the back pressure pb corresponding to a
nearly detached lens, it is necessary to analyze the spanning
film. The analysis we shall present will correspond not only
to the case of a spanning film with a nearly detached lens
bubble of arbitrary size, but also to any fast-moving lens
structure, with a small lens bubble, whether near the point of
detachment or not. The reason for the close correspondence
between these two situations is obvious: in both cases the
spanning film is required to span virtually the entire channel;
i.e., the cross-channel coordinate of the vertex, denoted yv, is
near unity.

For a nearly detached bubble the spanning film is required
to rotate through an angle ��= �

3 by the position yv=1. Since
the velocity v corresponding to near detachment is known by
Eq. �43�, then Eq. �18� gives a relation for as=v / pb and
hence pb. A Newton-Raphson technique �45� can be used to
find pb. Convergence of the Newton-Raphson method can be
guaranteed by starting with small lens bubbles, for which
values of as near unity should apply, and then moving to
progressively larger lens bubbles. The relation between back
pressure and velocity thus obtained is shown in Fig. 12.

D. Fast-moving small lenses

Small lens bubbles on the point of detachment necessarily
propagate quickly �Eq. �43��. In fact an asymptotic relation
between back pressure and propagation velocity can be ob-
tained for any fast-moving lens structure with a small lens
bubble.

This is derived as follows. If as is near unity and the
turning angle � at some arbitrary point on the spanning film
is not too small �in a sense to be made precise shortly�, then
the arctan term in Eq. �18� evaluates to �

2 . Again, as as is
near unity, the −� term on the right-hand side of Eq. �18� is
negligible and after some rearrangement we deduce

pb � �1 +
�2

2v2�v, l � 1, v → � , �44�

v � �1 −
�2

2pb
2�pb, l � 1, pb → � , �45�

as � �1 −
�2

2pb
2�, l � 1, pb → � . �46�

The asymptotic formula �45� is shown in Fig. 12. It agrees
well with the true lens velocity for fast-moving, nearly de-
tached lens structures—i.e., small lens bubbles.
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Note that the analysis we have used to deduce Eqs. �44�
and �45� has not assumed any particular turning angle �� at
the end of the spanning film: merely that this angle be “not
too small.” Hence it is not restricted to the particular case of
a nearly detached lens with ��= �

3 . As stated earlier, any
fast-moving small lens bubble can be considered. Moreover,
owing to the nature of the arctan function, a broad range of �
values all map to the same ys value at or near the top of the
channel. Specifically any � value greater than order
�1−as�1/2�� / ��2pb� lies at the top of the channel; i.e.,
d� /dy is exceedingly large there.

This is a very clear indication that curvature �which by
Eqs. �7�, �9�, and �10� is simply cos � d� /dy� is confined in
a boundary layer near the top of the spanning film: curvature
confined to boundary layers has previously been observed in
other foam systems, such as a staircase foam in a cylindrical
tube �40�. This boundary layer picture is, however, a very
different situation from the slowly driven lens structure with
a small lens bubble, for which curvature is more or less
uniformly distributed along the spanning film �see Eqs. �32�
and �33��.

E. Slow- vs fast-moving small lenses

It is desired to reconcile the small lens bubble theories
�l�1� in the low- and high-pb limits and specifically to
identify the range of pb values for which the transition be-
tween the two theories is realized.

From Eq. �28� we have the following weak back pressure
analogs of Eqs. �45� and �46�:

v � 	1 −
1

2� 4�

3�3
− 1�l
pb, l � 1, pb → 0, �47�

as � 	1 −
1

2� 4�

3�3
− 1�l
, l � 1, pb → 0. �48�

For the low-pb limit to apply, it is necessary that at the top of
the spanning film both the tan and arctan terms in Eq. �18� be
replaced by their arguments. For the tan term it is sufficient
to have pb / pl

��1 �see Eq. �30��, but the requirement for the
arctan term is more stringent. Since 1−as is O�l� by Eq. �48�
and pb

� is O�l−1� by Eq. �4�, we deduce the transition between
slow-moving �the argument of the arctan is small� and fast-
moving �the argument of the arctan is large� theories when

pb � O�l−1/2�, l � 1. �49�

Evidently, with small l, the range of validity of the weakly
driven lens theory is quite wide, a fact we have already ob-
served in Sec. V B.

A universal form for the small l theory can now be pro-
posed:

v � �1 − lF�pb
2l��pb, l � 1, �50�

where F is a function of pb
2l, with the properties that

F→ 1
2

� 4�

3�3
−1� as pb

2l→0 and F� �2

2 �pb
2l�−1 as pb

2l→�. In par-
ticular, assuming the function F is smooth and considering a
correction to the leading-order slow-moving behavior, the
coefficient of the generic O�pb

3� correction term in Eq. �28�
would itself be multiplied by an O�l2� coefficient in the l�1
limit.

F. A new branch of steady solutions

The data in Fig. 12 along with Eq. �43� can be used to
determine a relation between the detachment back pressure
pb and the lens size l. In all cases where we have observed
steady solutions ceasing to exist at some critical back pres-
sure, the back pressure corresponding to a lens on the point
of detachment is less than the critical one. Moreover, if we
follow the original solution branch up to the critical pressure,
the value of �� �the rotation of the spanning film� is always
considerably less than �

3 �the value that corresponds to a lens
on the point of detachment�. Thus the lens on the point of
detachment is not the end point of the original solution
branch: rather it is on a new branch altogether.

We can follow this branch using the same technique we
used to track the original solution branch. Given a lens size l,
we know the pressure pb corresponding to detachment. We
also know the velocity v, the spanning film rotation ��, and
the lens pressure pl �obtained from Eqs. �13� and �42��. We
can then perturb pb slightly and determine how v, ��, and pl
vary to maintain constraints �23�–�25�. Solutions are avail-
able for increasing values of pb from that of the nearly de-
tached lens up to the critical back pressure, corresponding to
the disappearance of steady solutions. It is clear from Fig. 6,

FIG. 12. The velocity of a lens on the point of detachment as a
function of the back pressure corresponding to detachment �solid
line�. The long-dashed extension of the line towards lower back
pressures and velocities corresponds to parameter values which can-
not be realized starting from an equilibrium lens �regardless of the
stability or otherwise of the nearly detached lens structure�, because
the resulting nearly detached lens would have an area greater than
an equilibrium lens with l=1. The short-dashed extension towards
even lower back pressures and velocities corresponds to parameter
values that cannot be realized for any lens structure as the nearly
detached lens bubble itself would span more than one channel
width. The zero-velocity point corresponds to a back pressure for
which the spanning film is a circular arc subtending �

3 . The approxi-
mate velocity formula, Eq. �45� �dotted line�, asymptotes to the data
for large back pressure.
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which shows the spanning film turning angle ��, that these
two branches meet, after which point the steady solutions
disappear.

The mathematical behavior of the equations near the criti-
cal back pressure can be analyzed by computing the Jacobian
of the constraint violations �at a specified back pressure� with
respect to v, ��, and pl. This Jacobian becomes singular,
indicating that there is a particular direction �in the vector
space of v, ��, and pl� for which no leading-order constraint
violation occurs: it is this property that generates the two
solution branches.

VII. UNSTEADY-STATE BEHAVIOR OF THE LENS

In the previous section, we determined that there appear
to be two branches of steady solutions for the lens structure.
One joins up continuously with the equilibrium �and weakly
driven� lens, the rotation of the spanning film �� being an
increasing function of driving pressure pb. The other branch
appears at finite pb and has high �� values, which, however,
decrease as pb increases. The branches meet �and steady so-
lutions disappear� at a certain critical driving pressure, the
value of the critical pressure depending on the lens size.

Only an unsteady-state analysis can answer definitively
the question as to which of the two branches is stable. More-
over, the unsteady-state analysis can also address the issue of
what happens to the structure if the critical back pressure is
exceeded. The algorithms used to implement the unsteady-
state analysis are discussed in detail in Appendix E. In the
present section, we concentrate just on the physical descrip-
tion and results of that analysis.

A. Physical description of unsteady-state lens: The sliding
matchbox foam

The physical problem we consider is a foam confined be-
tween glass plates where the plates are moved with respect to
some laboratory frame. An impenetrable barrier spans the
gap between the plates, and this barrier is fixed in the labo-
ratory frame. We call this system �see Fig. 13� a sliding
matchbox foam as the plates slide over the barrier in much
the same way as the cover of an opening matchbox slides
over the box within. We suppose that the plate motion is to

the left at speed vbox; i.e., the plate velocity relative to the
laboratory frame is −vboxex, where ex denotes a unit vector
along the direction of sliding.

The viscous froth lens is initially in its equilibrium con-
figuration and is some distance in front of the impenetrable
barrier. Under the action of the sliding plates the lens recon-
figures itself, subject to the constraint that the area between
the barrier and the back of the lens structure remains fixed.

This sliding matchbox problem is actually entirely analo-
gous to one in which the plates are fixed but the volume of
the back bubble behind the plates grows in area at a constant

rate Ȧb. The proof of this is given in Appendix E 4 c. Since
the channel has unit dimensionless width, the analogy re-
quires vbox for the sliding matchbox problem to be equated to

Ȧb for the system with a growing back bubble.
In the sliding matchbox problem, the control variable de-

termining the ultimate fate of the system is the plate speed
vbox relative to the laboratory frame. This differs slightly
from our steady state computations in Secs. III–VI where the
back pressure pb was treated as the control variable and the
apparent propagation speed v of the foam lens structure rela-
tive to the plates was a response variable. If a steady state
exists for the sliding matchbox system, vbox �the sliding box
speed relative to the laboratory� and v �the speed of the lens
structure relative to the box� must be opposite and equal.
Thus the steady-state sliding matchbox foam structure is
fixed in the laboratory frame. Before steady state is reached,
however, different elements of film propagate at different
apparent velocities. On the approach to steady state, the back
pressure pb will now vary with time, but once steady state is
achieved, we will obtain solutions identical to those dis-
cussed in Secs. III–VI. Thus questions regarding stability of
those steady solutions can still be addressed.

B. Relaxation to steady state

The first set of unsteady state simulations that we consid-
ered started with an equilibrium lens structure, which was
suddenly set into motion via some plate sliding velocity vbox.
Values of vbox were chosen to be in the range for which
steadily migrating solutions with v canceling vbox are known
to be possible.

In all cases that we examined �various l and vbox values�
solutions settled over time into a steady state corresponding
to the original branch of steady solutions—i.e., the branch
joining up continuously with the equilibrium pb=0 state: we
conclude that this branch is the stable one.

The alternative steady-solution branch �identified in Sec.
VI D� has not been observed as the final state of any un-
steady simulations, at least not in cases where the initial
condition is the equilibrium lens structure. This supports our
belief that the branch in question is unstable. This is, more-
over, consistent with general bifurcation theory �46�: steady-
state solutions should appear �or in this particular case dis-
appear� in a stable-unstable solution pair at a so-called
saddle-node bifurcation. The fact that the branch should be
unstable helps to reconcile some of its counterintuitive
physical properties: e.g., vertex rotation �� �Fig. 6� and sur-

FIG. 13. The sliding matchbox system. A foam �e.g., the lens
structure� is confined between glass plates that slide over an impen-
etrable barrier. As drawn, the plates move to the left at speed vbox

relative to some laboratory frame, while the barrier and the lens
structure �if and when it reaches steady state� do not move in the
laboratory frame.
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face energy E �Fig. 9� are decreasing functions of driving
pressure pb.

Note that according to the discussion in Sec. VI A, as vbox
approaches the maximum allowed value for which steady
solutions are available �at any given l� the characteristic rate
of approach to steady state should become vanishingly small.
This is because the eigenvalue governing that rate of ap-
proach becomes zero. Under those circumstances it can take
an extremely long time for the system to approach its final
steady state.

C. Loss of stability

Now consider suddenly imposed driving velocities vbox
sufficiently high that no steady-state solution could exist.
Again the equilibrium lens structure is used as the initial
condition with various l values being examined.

As expected, over time the lens structure breaks apart via
a topological transformation: the lens bubble and spanning
film detach from each other. This breakup process is an in-
herently dynamic one. For given l and vbox, it is achieved in
a finite time and at a finite distance along the channel. More-
over, the configurations seen on the route to the topological
transformation do not correspond to steady states for any set
of parameter values.

Figures 14 and 15, respectively, show the dimensionless
time to achieve the topological transformation and the di-
mensionless distance at which it occurs, as functions of the
driving velocity vbox. The dimensionless time scale has al-
ready been defined in Sec. III �see also Appendix B�. The
dimensionless distance is easy to understand: it is merely

distance along the channel measured in units of one channel
width.

For values of vbox just in excess of critical, the time and
distance to achieve the topological transformation tend to
diverge: this is as might be expected. The system is only
marginally unstable, and the characteristic growth rate of the
instability is low.

This argument can be made more explicit by considering
the evolution of the shape of the lens structure to be a tra-
jectory in a function space consisting of all possible shapes.
Consider two cases, both starting from an equilibrium lens,
one with vbox slightly less than critical and one with vbox
slightly greater than critical. Even though the eventual fates
of two such trajectories will be very different, the trajectories
themselves should be continuous with vbox. In other words,
they can be kept close together �according to some measure
of distance in the function space� over any chosen time in-
terval, merely by choosing the respective vbox values suffi-
ciently close either side of the critical value. Recall that all
the simulations of subcritical trajectories �starting from the
equilibrium lens� have been found to approach the steady
solution branch according to the discussion in Sec. VII B and
that slightly subcritical trajectories should approach steady
state �a fixed point in the function space� exceedingly slowly.
It follows that trajectories with the same initial state but with
slightly supercritical vbox values should be held up for ex-
tremely long times in the same neighborhood of the function
space, before eventually running away to a topological trans-
formation.

In any case, as vbox increases further above the critical
value, the time to achieve transformation decreases. Mean-

FIG. 14. Dimensionless time for the occurrence of the topologi-
cal transformation �lens bubble detaching from the spanning film�
as a function of the driving velocity vbox for rapidly driven systems
that have no steady state. The initial condition upon start up of the
driving velocity was the equilibrium lens structure. Various lens
sizes are shown: Solid line with +: l=0.9. Long-dashed line
with � : l=0.7. Short-dashed line with � : l=0.5. Dotted line with
� : l=0.3. The vertical lines to the left of each curve show the
velocities at which the time to topological transformation should
diverge to infinity �since steadily propagating lenses are possible
below these velocities�: Solid line: l=0.9. Long-dashed line:
l=0.7. Short-dashed line: l=0.5. Dotted line: l=0.3.

FIG. 15. Distance along the channel �in units of one channel
width� for the occurrence of the topological transformation �lens
bubble detaching from the spanning film� as a function of the driv-
ing velocity vbox for rapidly driven systems that have no steady
state. The initial condition upon start up of the driving velocity was
the equilibrium lens structure. Various lens sizes are shown: solid
line with +: l=0.9. Long-dashed line with � : l=0.7. Short-dashed
line with � : l=0.5. Dotted line with � : l=0.3. The vertical lines to
the left of each curve show the velocities at which the distance to
topological transformation should diverge to infinity �since steadily
propagating lenses are possible below these velocities�: Solid line:
l=0.9. Long-dashed line: l=0.7. Short-dashed line: l=0.5. Dotted
line: l=0.3.
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while, the distance to achieve the transformation �which is
simply time multiplied by vbox� also decreases; it appears to
be a slowly decreasing function in the limit of large imposed
vbox.

The behavior of time �and distance� to topological trans-
formation with respect to the lens size l is interesting: in
most cases �i.e., for sufficiently large vbox�, smaller l values
tend to need less time and distance to break up the structure.
This may seem counterintuitive at first as smaller lenses are
“harder to break” in the sense that steady solutions only
break down at higher imposed back pressures and velocities.
However, it should be remembered that the topological trans-
formation requires the vertex �at which the three films meet�
to migrate from its original equilibrium position to the top of
the channel. The smaller the lens, the less distance the vertex
must migrate before the transformation occurs. It is only as
vbox decreases somewhat that the time and distance to break
smaller lenses in Figs. 14 and 15 overtake their larger-lens
counterparts, since the former are approaching the regime
where they can propagate steadily and indefinitely without
breaking up.

We have already described the state of the system after
the topological transformation �Sec. VI A�. Specifically this
is a flat spanning film crossing the entire channel and propa-
gating along it, with a stationary semicircular bubble being
left behind �see Fig. 11�. The semicircular bubble cannot be
flushed out of the channel merely by blowing harder. How-
ever, if the spanning film is blown back in the opposite di-
rection, it will reattach to the bubble, reproducing the lens
structure, which can then be blown forward again. In this
manner bubbles, which may have been trapped on channel
walls, can be flushed out of the channel.

VIII. CONCLUSIONS

The viscous froth model is a valuable tool for elucidating
the physics that governs flowing foams, incorporating the
balance between pressure, surface-tension-induced curvature
forces, and viscous drag. The inclusion of viscous drag in the
model means it is capable of resolving rapid processes, such
as fast-flowing foam rheology and foam relaxation after a
topological transformation. Without any viscous drag term, it
would only be possible to address quasistatic deformation of
foams, while topological transformations could be repre-
sented merely as discrete jumps in the foam configuration.
With viscous terms included, any topological transformations
can be fully resolved, but whether and when they occur de-
pends on the rate at which the foam is flowing or deforming:
this conclusion seems to be robust across a range of model
systems and experimental geometries �21,28,31,32,34�.

In this work, the viscous froth model has been applied to
a very simple geometrical configuration of a two-
dimensional foam flowing along a channel: this configuration
is called a lens structure. It consists of a lens-shaped bubble
contacting one channel wall and extending part of the way
across the channel, with an additional film, known as the
spanning film, connecting from the lens-shaped bubble to the
opposite channel wall. Thus altogether there are just three
films in the structure.

Even for a configuration this simple, the viscous froth
model is revealed to have a very rich dynamics. There is an
equilibrium state of the lens structure, but the system can be
driven out of equilibrium by imposing a driving pressure
behind it. The structure then deforms and migrates along the
channel.

The behavior of the system can be described parametri-
cally in terms of two dimensionless parameters: a lens size
parameter l �the fraction of the channel width which the
equilibrium lens bubble extends across the channel� and the
dimensionless driving pressure pb �made dimensionless
based on film tension and channel width�. Given these state
parameters, the system response can be described in terms of
various geometric and dynamical properties of the structure,
such as the cross-channel displacement of the vertex �at
which the three films meet�, the rotation or turning angle of
the vertex �relative to the equilibrium state�, the distribution
of curvature along films, the steady migration velocity of the
structure along the channel �assuming the structure eventu-
ally attains a steady state�, the pressure in the lens bubble
itself, and the total energy of the structure �equal to the total
film length in our dimensionless system�.

Perturbation results for steady-state migration can be ob-
tained in the limit of “small” driving pressures pb. These
results are valid over a restricted pressure range for large- or
medium-size lens bubbles, but up to quite high O�l−1/2� di-
mensionless pressures for small l�1 lenses. Beyond these
range�s�, numerical steady-state solutions can be obtained.

The vertex does not displace at all in the cross-channel
direction according to the weakly driven theory. For higher
driving pressures the vertex displaces toward the lens bubble,
flattening that bubble along the channel wall and also extend-
ing the spanning film. The results of the weakly driven
theory suggest that lens structures with both small and large
lens bubbles resist vertex rotation: the stiffness to rotation
arises in the former case from the small lens bubble and in
the latter case from the short spanning film. However, the
symmetry between vertex rotation or turning angles for the
small and large lens bubble cases breaks down as the driving
back pressure grows. Thus, as the vertex displaces and the
spanning film stretches, the large-lens-bubble case becomes
much more compliant and rotates considerably more than its
small-lens-bubble counterpart. The distribution of curvature
along the spanning film producing the vertex rotation is also
interesting: it tends to be uniform for weakly driven struc-
tures, but confined to a boundary layer near the vertex for
strongly driven ones.

Structures with small lens bubbles migrate faster than
those with large lens bubbles: this is because small lens
bubble structures have less overall length of film and hence
less drag. The adverse effect of a large lens bubble on mo-
bility of the structure can be mitigated somewhat for high
back pressures by displacing the vertex to extend the span-
ning film �thereby replacing two films by a single one across
much of the channel width� and by flattening the lens bubble
somewhat along the channel wall: the more that films of the
lens bubble reorient parallel to the channel wall, the less drag
they incur during propagation.

The pressure in the lens bubble is augmented �relative to
the equilibrium pressure� by at least half the back pressure.
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Bubble pressures and film lengths are closely coupled in the
viscous froth model, and the pressure increase for a weakly
driven lens bubble reflects an important symmetry property
of the films in this limit. One film of the lens bubble grows
and the other shrinks: at leading order these changes cancel.
The spanning film likewise only curves but does not extend
at leading order in weakly driven systems. As we have said,
the system energy is the overall film length of the entire
structure �including all three films�. While this exhibits no
leading-order change for weak back pressures, rapid growth
in energy is seen for larger back pressures on larger-size lens
bubbles.

The above conclusions refer to lens structures propagating
at steady state. However, we have observed that there is a
critical back pressure �and associated critical velocity� be-
yond which steady solutions cease to exist. This critical pres-
sure is �mostly� a decreasing function of lens size l. At the
critical pressure, stability is lost and the structure runs away
to a topological transformation: the lens bubble detaches
from the spanning film. The lens bubble is then left behind in
the channel, while the spanning film propagates forward.

Returning to the situation below the critical back pressure,
an unsteady-state simulation has revealed that the steady so-
lutions we have considered previously are stable: hence if the
structure is disturbed in some way, it will return to steady
state. Although we have not formulated the problem as such,
it should be possible to decompose any deformation away
from steady state in terms of a series of eigenmodes. The
eigenvalue associated with the least stable eigenmode will
control the ultimate rate of approach back to steady state. A
second branch of steady solutions �believed to be unstable�
has also been identified. For each lens size, it joins the origi-
nal steady branch at the critical back pressure. At the point
where these two branches meet, the rate associated with the
least stable deformation mode must fall to zero.

Above the critical back pressure �or technically above the
associated critical velocity�, we have simulated both the time
to run away to a topological transformation and the distance
along the channel at which the topological transformation
takes place. Just slightly above the critical velocity, the time
to achieve a topological transformation and hence the corre-
sponding distance are arbitrarily large. The time and distance
to achieve the topological transformation decrease as the ve-
locity imposed on the lens structure grows, distance to topo-
logical transformation, in particular, being a slowly decreas-
ing function of imposed velocity.

In summary, the dynamics of the viscous froth model is
surprisingly complex even for a structure with as few as
three films. The behavior of the model in a foam consisting
of a multitude of films is likely to be more fascinating still.

APPENDIX A: FOAM CONFINED BETWEEN GLASS
PLATES

It is generally considered that a foam confined between
two closely spaced glass plates can be treated as effectively
two dimensional. The precise details of how this comes
about are quite subtle and require a good understanding of
the forces on foam films, as we now describe. Instead of the

dimensionless variables used almost exclusively throughout
the main text, we shall employ dimensional variables in the
following discussion: this will help to make the force balance
arguments we describe somewhat clearer.

We consider a moving foam film �see Fig. 16� confined
between two closely spaced plates with the thickness of the
gap between the plates denoted H. We suppose the length of
the foam film is many times larger than H. The film shape is
somewhat analogous to the interface shape that arises during
two-phase displacement in Hele-Shaw cells �47�: specifically
the moving film can billow like a sail and will have a curva-
ture both along the plates �denote this �� and across the
plates �denote this K�. These curvatures are associated with
spatial changes in film tangent directions, respectively, for
tangents t �along the plates� and T �across the plates�.
Throughout the main text we focused exclusively on � and t.
Our aim here is to show how terms involving K and T can be
eliminated from consideration.

The viscous froth model can be derived by considering a
length ds along the plates of the billowing film. The film
segment swells into channels �so-called Plateau borders� ad-
jacent to the plates themselves. We consider a force balance
on three separate regions of the film segment across the
thickness between the plates: the Plateau border channel re-
gion at the upper plate, the analogous region at the lower
plate, and the remaining space between the plates �which
accounts for the bulk of the film, the Plateau border regions
being small compared to H�.

FIG. 16. A segment of length ds of moving foam film. The film
is confined between plates separated by a distance H, with the plate
separation being much smaller than the total film length. For clarity
the plates are not actually shown in the figure. The film has a cur-
vature K in the direction across the plates and a curvature � along
them. These curvatures are associated with spatial changes in film
tangents T and t, respectively, the changes in T being between
upper and lower plates �see Tupper and Tlower in the figure� and
those in t being between positions along the film s and s+ds. These
spatial changes in the tangents, coupled with surface tension, lead to
forces on the film. A pressure difference �p across the film also
produces force. At the plates, the film edges swell into Plateau
border channels �indicated as bold curves in the figure�. These chan-
nels incur viscous drag forces, according to their rate of motion
over the plates v� �a projection of their velocity in the direction of
the film normal n, which is a vector in the plane of the plates and at
right angles to t�. Consideration of separate force balances on the
upper plate, on the lower plate and on the film segment excluding
the plate regions, can be used to derive the two-dimensional viscous
froth model.
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1. Force balance at the upper plate

There is a surface tension force acting on the upper-plate
Plateau border region that depends on the curvature K. Spe-
cifically we are interested in the amount that the tangent
Tupper deviates from the vertical owing to this curvature. We
therefore need to project the surface tension force in the di-
rection n, which is a vector in the plane of the plates, but
normal to t. The projected surface tension force on the Pla-
teau border element of length ds is −2�Tupper ·n ds: the sign
convention for T is chosen such that �for an undeformed
film� T would point from the lower to the upper plate.

This surface tension force must be balanced to a drag
force. Drag occurs when the motion of the film projected in
the direction n is nonzero: denote this normal film speed by
v�. Suppose that the motion of the swollen channel across
the upper plate is characterized by a linear friction law with
drag coefficient �per element length� �upper. We then deduce

�upperv� = − 2�Tupper · n . �A1�

No pressure forces appear in Eq. �A1�. This is because
pressure forces require a finite area over which to act, but the
thickness of the swollen channel region at the plate is con-
sidered to be arbitrarily small compared to the spacing H
between the confining plates. For a similar reason there are
no surface tension forces associated with changes in the tan-
gent t appearing in Eq. �A1�: this is because such forces
require a finite height over which to act.

2. Force balance at the lower plate

A similar force balance can be applied to the swollen
channel region around the lower plate, where the relevant
tangent direction is Tlower and the relevant drag coefficient is
�lower. According to our sign convention,

�lowerv� = 2�Tlower · n . �A2�

Note in particular that �lower is not necessarily the same as
�upper since under the action of gravity, the swollen channels
might be thicker on the lower plate compared to the upper
plate. For a foam liquid fraction of  confined between the
plates, the capillary suction pressure into the swollen chan-
nels will be on the order of � / �1/2H�. Meanwhile, the liquid
hydrostatic pressure difference between upper and lower
plates will be �gH, where � is the liquid density and g is
the gravitational acceleration. Utilizing physical and geomet-
ric properties from a recently reported experiment �36�,
�=27�10−3 N m−1, �=1000 kg m−3, g=9.8 m s−2, and
H=3 mm, the ratio between the capillary suction and hydro-
static pressures �for a relatively dry foam with =0.01� is
around 3. Based on the value of this ratio, moderate differ-
ences between channels on upper and lower plates might be
expected, but large order-of-magnitude differences between
them �and hence between �upper and �lower� are ruled out.

3. Force balance across the bulk of the film

It remains to write a normal force balance on the element
of film �length ds, height H� between the plates, but exclud-

ing the Plateau border regions at the plates. Surface tension
forces 2�Tupper ·n ds and −2�Tlower ·n ds apply at above and
below, respectively. On the sides of the film element, forces
2�Ht�s+ds and −2�Ht�s apply: since dt /ds�−�n, the net nor-
mal force component is −2��H ds. Meanwhile, the normal
pressure force �for a film pressure difference �p� is �pH ds.
All these forces must sum to zero: no dissipative forces enter
the force balance, since these only occur near the plates, a
region we have explicitly excluded. We deduce

0 = �pH − 2��H + 2�Tupper · n − 2�Tlower · n . �A3�

4. Derivation of the viscous froth model

If we substitute Eqs. �A1� and �A2� into Eq. �A3�, then
divide through by H, and define an overall drag coefficient
�= ��upper+�lower� /H, we obtain the two-dimensional viscous
froth equation given originally in Eq. �1�. In particular the
difference between Tupper and Tlower terms �which depends
on the cross-plate film curvature K� has been eliminated from
the governing equation, in favor of frictional drag terms,
which can be represented �via the overall drag coefficient ��
in a wholly two-dimensional way.

APPENDIX B: TYPICAL SCALES FOR THE VISCOUS
FROTH LENS

The vast majority of the results considered in this work
have been cast in dimensionless form. This appendix gives
the conversions back to dimensional variables, to enable a
better appreciation of the scales on which the predicted phe-
nomena might occur.

We base our estimates around an apparatus used for a
two-dimensional foam channel flow experiment that was re-
ported recently �36�. The apparatus was a channel of width
L=9 mm, confined by Plexiglas plates, with a thickness be-
tween the plates �which we shall denote H� of H=3 mm. The
liquid used to make the foam was a water-surfactant-glycerol
mixture with viscosity �=1.16�10−3 Pa s and surface ten-
sion �=27�10−3 N m−1. Although this experiment only
used a modest amount of glycerol �5% by volume�, raising
the viscosity only slightly above that of water, generally
speaking, mixing glycerol into a water-surfactant mixture is
a useful experimental strategy when one wants to observe
out-of-equilibrium foams. Large departures from equilibrium
are only observed when the imposed deformation rate ex-
ceeds the viscous relaxation rate and become more accessible
if the relaxation time is increased via higher liquid viscosity.

Values of velocity along the channel of “a few centimeters
per second” have been reported in the above-mentioned ex-
periment �36�. Suppose a typical speed, which we denote
vtyp, is 0.025 m s−1. Since the capillary number is defined as

Ca = �v/� , �B1�

a typical capillary number �denoted Catyp� is Catyp�0.0010.
Clearly the capillary number is a small parameter.

The main complication in estimating the dimensional
scales for the viscous froth lens system concerns finding a
suitable value of the viscous drag parameter �. This is be-
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cause a drag law that is linear in velocity is not strictly ap-
propriate.

The physical reason for this is the complicated hydrody-
namics of a Plateau border sliding over a plate. Most of the
dissipation is confined in a so-called transition region near
the Plateau border of thickness Ca2/3 �relative to the inter-
plate spacing� and extent Ca1/3 along the plates �again rela-
tive to the interplate spacing� �47,48�. The typical shear
stress in this region is of order �vtyp / �Catyp

2/3H�, and if it is
integrated over the order Catyp

1/3H region extent, the drag force
per length of Plateau border is order �vtypCatyp

−1/3. Clearly by
Eq. �B1� this is simply �Catyp

2/3.
We wish to convert this to a drag force per unit channel

cross section, which is easily achieved by multiplying by the
Plateau border perimeter and dividing by cross sectional
area. For a single flat film �as opposed to a lens structure�
propagating along the channel, drag per cross-sectional area
equates to the driving film pressure difference, for which an
equation is known from literature �36�. We hence deduce

�vtyp =
38�2L�

LH
�Catyp

2/3 =
76

H
�Catyp

2/3 ⇒ � = 76
�

H
Catyp

−1/3, �B2�

where 38 is an experimentally observed coefficient, 2L is
essentially the Plateau border perimeter �assuming a large
aspect ratio limit for simplicity�, and LH is channel cross
section. Substituting in values quoted previously we find
��290 kg m−2 s−1.

Although this value of � strictly applies only when v
=vtyp or equivalently when Ca=Catyp, we shall assume a
linear drag law where a constant � applies over a wide range
of velocities: from Eq. �B2� it is clear that � is in any case a
weak function of capillary number.

An additional cause for uncertainty in the value of � is
that the experimental result �Eq. �B2�� gives a drag that is an
order of magnitude greater than some theoretical analyses. In
order to minimize any possible confusion surrounding the
validity of Eq. �B2�, we briefly summarize the findings of the
theoretical analyses here. Specifically if P is the Plateau bor-
der perimeter, the predictions are

�v =
�̄P
LH

�Ca2/3, �B3�

where �̄ is a geometric factor equal to 1.8 for a square chan-
nel �36,41�, 2.1 for a channel with L=2H, and 5.0 for a

channel with L�H �41�. Note that the value �̄=3.8 is often
associated with the L�H case �47�, but this only applies to
drag from the front of a bubble: the quoted value 5.0 incor-
porates drag from the rear of the bubble also �41�. The reason
Eq. �B3� appears to give substantially lower drag than Eq.
�B2� is believed to be due to surfactant effects �36�. The
theory assumes tangential stress-free bubble boundaries,
whereas experiments �on the basis of which our quoted �
value has been estimated� have Marangoni stresses making
boundaries somewhat more rigid. Indeed in the extreme case
of tangentially immobile bubble surfaces �37� powers of Ca
other than those suggested by Eqs. �B2� and �B3� may arise.

In any case, now that � has been estimated via Eq. �B2�,
the velocity 2� / �L�� and time scales L2� / �2�� defined in the
main text �see Sec. III� can be estimated. These evaluate,
respectively, to 0.020 m s−1 �which is sufficiently close to the
above quoted vtyp=0.025 m s−1 for our estimate of � to be
valid� and 0.43 s �which could be resolved on a charge-
coupled-device �CCD� camera recording 25 images per sec-
ond as in previous experiments �36��. Remember that this
characteristic time scale controls both rate of approach to the
steady-state lens structure �when one exists� and rate of
break up of the structure �when stability is lost�. As already
alluded to above, even longer characteristic times could be
achieved by mixing more glycerol into the foaming fluid. In
summary the velocity and time scales we have predicted for
phenomena in the viscous froth lens system seem compatible
with typical laboratory experiment scales.

APPENDIX C: UNSTEADY-STATE AREA CONSTRAINT

Equation �25� is an area constraint for the lens. In
unsteady-state viscous froth computations it would be nor-

mal to replace this constraint by a condition that Ȧl=0. For
the lens this can be written �using the same subscript nota-
tion for back and front films as in the main text�


b

v�ds = 
f
v�ds . �C1�

After invoking Eqs. �6� and �7� and using the known turning
angles �

3 ±�� of the back and front films, this can be ma-
nipulated �31� into the form

plL f + �pl − pb�Lb =
2�

3
, �C2�

where Lb and L f are the back and front film lengths. This is
the usual form of the pressure equation used in unsteady-
state viscous froth simulations �we return to using dimen-
sionless variables here� and it could be used to find pl for a
given pb if instantaneous film lengths were known.

In order to see mathematically why the above equations
are inadequate for steady-state computations, we proceed as
follows. For a steady state, uniform migration velocity v, we
have v�=v cos � by Eq. �8� and dy=cos � ds �see the dis-
cussion preceding Eq. �10��. Thus Eq. �C1� reduces to


b

v dy = 
f
v dy . �C3�

Canceling the constant v from both sides merely reproduces
one of the constraints in Eq. �23�: namely, that matching the
front and back films at the vertex. No new mathematical
constraint is implied by Eq. �C1�. The physical reason for
this is that a condition that rate of change of lens area van-
ishes in the steady state is not sufficient to ensure strict area
conservation: it is also necessary to ensure that area does not
change at all times on the approach to steady state. Thus
purely steady-state calculations, which only address the final
steady version of Eq. �C2�, must additionally impose Eq.
�25�.
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APPENDIX D: NUMERICAL PROCEDURES FOR THE
STEADY-STATE LENS

Here we discuss the numerical procedures used to solve
the constraint equations �23�–�25� for the steady-state lens.
Solutions can be found by a Newton-Raphson technique
�45�. However, the right-hand side of constraint �25� gener-
ally needs to be obtained via a quadrature �specifically we
used Simpson’s rule with an adaptive step size to keep error
within a specified tolerance�, rather than by an analytic for-
mula. As a result of this, Jacobians, which are required by
the Newton-Raphson technique, are computed numerically.

Depending on the solution branch of interest, either the
perturbation theory of Sec. IV or the nearly detached lens
theory of Sec. VI B will provide excellent starting guesses
for the Newton-Raphson technique. The back pressure can
then be increased in small increments, using the solution
from the previous increment as the Newton-Raphson guess
for the next. The solution can be carried as far as is desired,
provided the branch of steady-state solutions continues to
exist.

We have also used an independent computational method
�see Appendix D 1 below� as a check on the results, obtain-
ing identical solutions in both cases.

1. Shooting method

As a check on the results for the steady-state lens struc-
ture, we have also used another independent technique for
computing the lens configuration subject to a finite back
pressure pb. The technique is the so-called shooting method
�45�. It has the advantage that it avoids the somewhat tedious
integrations needed to obtain Eqs. �18�–�21�.

In order to set up the method we first need to define a
vector film position x�s�, a tangent t�dx /ds, and a normal
n, being the clockwise rotation of the tangent through �

2 . As
s is measured upwards in our notation, t has a upward point-
ing component and n has a forward pointing component.

We now employ the definition of curvature: namely,

d2x/ds2 = dt/ds � − �n , �D1�

to deduce from Eqs. �6� and �8�

d2x/ds2 = �v cos � − �p�n , �D2�

where cos � is obtained as the projection of t onto the
vertical.

Given pb we guess the values of ��, pl, and v.
We start the integration off for the spanning film at the

bottom of the channel, where t is known to be vertical. We
integrate Eq. �D2�, using a second-order accurate integration
scheme with a fixed step size for s �chosen, after tests for
convergence, to be 5�10−4�, until t turns through the
guessed angle ��. The final step of the integration for this
film needs an adjustment of step size so as to achieve the
required turning angle exactly, but this is easy to determine
as the tangent is known at both the start and end of the final
step.

Now the tangent is turned through an angle ± �
3 and we

integrate along the back and front films. We can stop the

integration once the film coordinates equal �or exceed� the
channel width. Tangent directions at the top of the channel
can be obtained by interpolating over this final step.

The extent to which the constraints have been violated is
determined by the amount that the tangents at the channel
top deviate from vertical on both front and back films and by
any violation of the lens area constraint. A Newton-Raphson
scheme is employed adjusting the guessed ��, pl, and v val-
ues so as to ensure the constraint violations vanish. Jacobians
required by the Newton-Raphson scheme are computed nu-
merically. Again the scheme can be started off at low pb
values �for which the weakly driven lens perturbation theory
supplies excellent guesses� and carried forward to higher pb,
using each solution obtained as a starting guess for the next
one.

Although the scheme is slower to execute than the one
described previously, computing constraint violations via a
detailed numerical procedure, rather than a more straightfor-
ward function evaluation and/or simple quadrature, it none-
theless provides an excellent, independent check on any re-
sults obtained.

APPENDIX E: ALGORITHMS FOR THE
UNSTEADY-STATE LENS

The algorithm we used to simulate the unsteady-state vis-
cous froth is similar to one already in the literature �31� but
with a number of innovations to improve its performance.
These innovations are concerned with �i� improving the spa-
tial accuracy of the algorithm, �ii� improving the handling of
film end points, �iii� improving the temporal accuracy of the
algorithm, and �iv� avoiding undesired stretching or shrink-
ing of film segments.

1. Discretization of the films

Each film x�s� is discretized into a finite number of
points: given that unsteady-state simulations are expensive,
we chose a modest number of such points, only around
20–50 points on average per film �contrast the steady-state
computations in Appendix D 1. Subject to the discretization,
our target is to describe geometric properties along the film:
i.e., tangent vector t, normal vector n, and curvature �, with
a spatial accuracy up to second order in the discretization.
Improving the spatial accuracy from first to second order not
only reduces the memory requirements of a simulation �as a
given film can be tracked accurately using fewer discrete
points and segments�, but also the simulation time �curvature
is known to diffuse along films in the viscous froth model
�30�, so that permissible simulation time increments are
bounded by the square of the spatially discretized film seg-
ment lengths, as is standard in diffusive problems �45��. Con-
versely, going beyond second-order spatial accuracy is pro-
hibitively awkward, as it would no longer be permitted to
approximate distance along the film as the sum of the
straight line lengths for each discrete segment.

Film tangents t at any selected film point are evaluated via
a weighted sum of the unit vectors along the directions of the
segments connecting the film point to its two neighbors. If

GREEN et al. PHYSICAL REVIEW E 74, 051403 �2006�

051403-20



the segments are of unequal length, the shorter segment re-
ceives a higher weight in the sum: this weighting �not em-
ployed in previous formulations �31�� ensures that the film
tangent at each film point is computed with second-order
spatial accuracy. Film normals n are then computed by rotat-
ing the film points through �

2 .
The second derivative of film position with respect to

length along the film—i.e., d2x /ds2—is computed by taking
a finite difference of the tangent vector with respect to tan-
gents at neighboring film points. If segments happen to be of
unequal length, a weighted average of the finite differences is
used, weighted to shorter segments as before. If the tangent
vectors were exact, this would give a second-order accurate
approximation to d2x /ds2. In fact, since the tangents them-
selves are finite-difference approximations, in a worst case
only first-order accuracy for d2x /ds2 is obtained. The curva-
ture �=−n ·d2x /ds2 would then be obtained at the same level
of accuracy.

Second-order accuracy can only be achieved in general by
�i� calculating second derivatives explicitly in terms of
nearest- and next-nearest-neighbor film points with carefully
chosen weightings or �ii� retaining the formula that employs
a finite difference of tangent vectors, but invoking more ac-
curate approximations to the film tangents, which themselves
incorporate more distant film points.

Neither of these are particularly attractive options from
the point of view of a simulation, as penultimate film
points—i.e., those neighboring the end point of each film—
need special treatment �as they only have next-nearest neigh-
bors on one side and not the other�.

However, fortunately, second-order accuracy is also re-
covered in the special case where adjacent film segments are
of equal length. This is not a trivial point, as under the vis-
cous froth model, the distance between film material points
evolves over time. Even if film segments are chosen to be
equal length initially, their lengths will become unequal as
time progresses. The options are either a regular regridding
to equalize the segment lengths and/or some other strategy to
prevent discrete segments from stretching or shrinking in the
first place. Specifically our regridding algorithm imposed the
minimum point separation to be 0.01 and the maximum point
separation to be 0.05, destroying or creating points, respec-
tively, in case these minima �maxima� were violated. Sensi-
tivity to the precise minimum �maximum� separations em-
ployed was low. Additional strategies were, however, put in
place to reduce the need for regridding, at least for systems
not undergoing any topological transformation: these strate-
gies will be addressed later in Appendix E 4.

Obviously in cases involving topological transformation
�see, e.g., Sec. VII C� one film shrinks away to nothing and
regridding cannot be entirely avoided. In the computations,
films always had, in addition to their end points, at least one
interior point. As a result, topological transformations were
assumed to occur when the film length shrank to twice the
minimum point separation.

2. Locating film end points

The viscous froth model �Eq. �6�� describes the dynamic
evolution of points interior to a film, but film end points are

instead determined via a constraint—namely, that films must
meet threefold at 2�

3 angles and must meet channel walls at
right angles.

We shall consider how to incorporate these constraints in
a simulation, focusing primarily on the threefold meeting
angle constraint �the treatment of the right-angle constraint at
channel walls may be handled similarly�.

In the lens structure consider the three films �back, front,
and spanning� and, specifically, the film points that are near-
est neighbors to the so-called vertex at which the films meet.

As a first approximation, straight lines can be drawn from
the nearest-neighbor film points into the vertex to meet at 2�

3
angles. This is a classical mathematical problem known as
Steiner’s problem �49–54�: the vertex is the so-called Steiner
point of the triangle formed by the nearest-neighbor film
points. There are several geometric constructions �55,56� en-
abling the Steiner point to be located: elementary coordinate
geometry on these constructions then yields an explicit for-
mula for the Steiner point.

The Steiner point, however, is only an approximation to
the true vertex location. It has been located by assuming that
films are straight lines between the vertex and nearest-
neighbor film points. In reality our discretized film points are
approximations to a true underlying curved film, with the
film tangent varying continuously along each of the curves.

The 2�
3 meeting angle rule really applies to the film tan-

gents evaluated at the vertex, not to film secants joining the
vertex to nearest-neighbor film points �which is what the
Steiner point technique produces�. Accurate positioning of
the vertex at each increment of time is essential to ensure
that curvatures at film points neighboring the vertex are com-
puted correctly, these curvatures subsequently affecting the
evolution of film point location for later-time increments.

The effects of film curvature at and/or near the vertex can
be incorporated as follows. Suppose we guess the �unknown�
vertex position xv. For each film, a unique parabola can then
be obtained interpolating the guessed vertex position and the
known nearest- and next-nearest-neighbor film points. Then
the tangents to each parabola are obtained at the guessed xv,
each tangent being a known function in terms of the guessed
xv. Owing to the sense in which we measure arc length s
�i.e., from below�, the spanning film tangent ts points into the
vertex, while the back and front film tangents tb and t f point
away. If xv has been guessed correctly, then

ts = tb + t f . �E1�

The correct vertex position can be obtained by applying a
Newton-Raphson technique �45� to solve Eq. �E1� for xv.
The Steiner point provides an excellent starting guess to the
value of xv, so that rapid Newton-Raphson convergence is
guaranteed.

3. Update of film point positions

We have already described in Appendix E 1 the chal-
lenges concerned with obtaining second-order spatial accu-
racy. Now we address the issue of temporal accuracy.

Related to this is the issue of ensuring that the area con-
straint �Eq. �25�� remains satisfied. Ideally Eq. �C2� would be
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sufficient to ensure this: in practice, truncation errors in the
numerical scheme may lead over time to a secular drift in the
lens area away from the correct value. Such drifts are well
known in simulations of other physical systems subject to
constraints �57,58� and require that a strategy be adopted in
the simulation algorithm to counteract any drift and explic-
itly enforce the constraint.

Previous work on the viscous froth model �31� employed
an explicit first-order temporal scheme. This can be im-
proved using a predictor-corrector method, with a first-order
predictor and second-order corrector. The predictor-corrector
technique �discussed below� is fully compatible with the ver-
tex locator algorithm discussed in Appendix E 2: it is simply
necessary to apply that algorithm upon each predictor and
corrector step.

Suppose �x� denotes a set of discrete film points, while
�n� and ��� are, respectively, normal vectors and curvatures
evaluated at these film points �as described in Appendix
E 1�. We adopt subscripts �0�, �p�, and �c� to denote, respec-
tively, the state at the beginning of a time step, the predicted
state at the end of a time step, and the corrected state at the
end of a time step. The duration of the time step is �t �which
we chose to be 10−4 dimensionless time units given our
roughly 20–50 points per film spatial resolution�. Suppose
that bubble pressures are computed at the beginning of a
time step using Eq. �C2�, pressure differences across films
�p�0� thus being obtained.

The predictor step �as used in previous studies �31�� is

�x�p�� = �x�0�� + n�0���p�0� − ���0����t . �E2�

This may, however, lead to an area constraint violation.
Previous work �31� has shown how to correct this area vio-
lation by considering a generalized version of Eq. �C2�,
which describes bubbles that can change their area by coars-
ening driven by gas diffusion across films. This equation
when applied to the lens structure yields

plL f + �pl − pb�Lb =
2�

3
+ Ȧl. �E3�

If the area increases spuriously by some amount during a

step, it can be corrected by setting Ȧl in Eq. �E3� to cancel
the spurious increase. Previously �31� with a first-order tem-
poral scheme, the correction for any particular time step was
only applied on the following step, by which stage yet an-
other spurious area change could have accumulated. How-
ever, we effect the correction within the time step itself by
assigning predictor pressures according to the area violation
�denoted �A�p�� incurred during the predictor step, which
may be computed using the set of film points �x�p�� from Eq.
�E2� and associated lengths �denoted L�p�� for each film. Spe-
cifically we have

pl�p�L f�p� + �pl�p� − pb�Lb�p� =
2�

3
−

2�A�p�

�t
, �E4�

from which predicted film pressure differences �p�p� can be
obtained, assuming the imposed back pressure pb is fixed.
The case we actually solved, for which the rate of advance of

the lens structure averaged across the channel �rather than
pb� was fixed, is only very slightly more complicated math-
ematically. We shall not give details here, but note that again
predicted pressures at the end of the step can be readily
obtained.

Given the predicted film pressure differences �p�p�, a cor-
rector equation can be applied, giving better estimates of film
point positions at the end of the step:

�x�c�� = �x�0�� + n�0���p�0� − ���0���
�t

2
+ n�p���p�p� − ���p���

�t

2
.

�E5�

By construction �x�c�� will violate the constraints to a much
lesser extent than �x�p��. The reason that −2�A�p� /�t, rather
than just −�A�p� /�t, appears on the right-hand side of Eq.
�E4� is that the predictor pressure only applies for half the
time step in Eq. �E5� to obtain �x�c��.

A corrected lens pressure can now be obtained via an
analog of Eq. �E4� and yet more improvements in �x�c�� val-
ues found using an analog of Eq. �E5�. This process can be
applied iteratively until the area constraint violation is arbi-
trarily small. Multiple iterations are generally unnecessary,
however: the only requirement is that the constraint violation
be less than the difference between the true area of a bubble
with curved films and the polygonal representation of the
bubble using discretized segments.

4. Controlling the behaviour of film segments

In Appendix E 1 we have already discussed the impor-
tance of keeping film points on discretized films relatively
evenly spaced so as to obtain second-order or near-second-
order spatial accuracy for estimates of film curvature. In this
section we consider the reasons for film points failing to
maintain even spacing and the strategies for correcting this.
The strategy we ultimately adopt has an elegant physical
interpretation, is simple to implement, and automatically
maintains even film point spacing as steady state �if it exists�
is reached.

a. Film segment growth and shrinkage

Consider a differential segment of film dx, which we sup-
pose to be a material element. Applying Eq. �6� the rate at
which this segment evolves is

dẋ = d��p − ��n + ��p − ��dn = − d� n + ��p − ���t ds .

�E6�

where we have used the fact that �p is uniform along the
film and dn /ds=�t. Since the segment length ds satisfies
ds= t ·dx, we deduce via Eq. �E6�

dṡ = t · dẋ = ��p − ��� ds . �E7�

Since �p�� for the viscous froth in general, dṡ is nonzero.
Moreover, since � varies along the films of the lens structure

in general, dṡ also varies along films. Clearly different ma-
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terial elements stretch and/or shrink at different rates over
time.

b. Introducing artificial tangential motion

The viscous froth model as stated in Eq. �6� only associ-
ates drag with normal film motion, not with any sliding mo-
tion of points along films. Indeed any artificial tangential
dynamics can be added to the model without film shapes
being affected and therefore without model predictions being
altered in any way. In other words, the discretized segments
used to represent films in simulations no longer need to cor-
respond to material elements �contrast Appendix E 4 a�, but
rather may slide tangentially relative to them.

Suitably chosen tangential dynamics can help to keep seg-
ments between film points roughly uniform, allowing
second-order spatial accuracy of curvatures to be ap-
proached. One possibility to achieve this is to allow the film
points to repel one another. The stronger the repulsive force,
the more uniform the segments remain. However, stronger
repulsive forces also speed up the artificial tangential dynam-
ics. Small time steps must then be chosen to resolve the
tangential motion, meaning that simulations to address the
�normal� dynamics of real interest become exceedingly ex-
pensive. This feature is well known in other systems for
which nearly equal spacing of elements is maintained by
strong or stiff forces �57,58�. It is far more practical to
compute the rate of tangential stretching or shrinkage ac-
cording to Eq. �E7� and apply a tangential velocity that sim-
ply offsets it.

If the viscous froth model, incorporating some extra arti-
ficial tangential motion vart, is written in vector form as

v = ��p − ��n + vartt , �E8�

then one proposal for the specific form of the tangential mo-
tion is

dvart/ds = − ��p − ��� , �E9�

which can be shown to result in dṡ=0. For the lens structure,
Eq. �E9� can be solved subject to vanishing vart at the point
where each film meets the channel walls: as the films meet
the channels at right angles, such points then move exclu-
sively along the channel walls.

Equations �E8� and �E9� are not in fact the ones we solve.
Instead we treat a rather similar system of equations, which
we discuss in the next subsection.

c. Sliding matchbox foam vs the growing back bubble

In Sec. VII C we mentioned that the unsteady-state prob-
lem we actually solved was that sketched in Fig. 13, which
we called a sliding matchbox system. This corresponds to
confining a foam between plates and then sliding the plates
�to the left at some speed vbox� over a barrier.

Here we will demonstrate explicitly the analogy already
alluded to in Sec. VII A between the sliding matchbox sys-
tem and one in which plates are fixed but the back bubble

grows at a constant rate Ȧb. We will also demonstrate a sig-
nificant computational advantage of the sliding matchbox

foam: namely, that it has an automatic tendency to compen-
sate for growth and shrinkage of film material elements men-
tioned in Appendix E 4 a and E 4 b.

Consider, for the sliding matchbox system, the dynamics
of the foam between the plates. Viscous froth equation �6� of
course only describes the foam film motion relative to the
plates. The film motion relative to the laboratory frame,
which we denote V, obeys

V = ��p − ��n − vboxex = ��p − � − vboxex · n�n − vbox�ex · t�t .
�E10�

We are free to add in any artificial motion along film tan-
gents �cf. Eq. �E8��. Specifically we choose to add in
vbox�ex · t�t to produce in place of Eq. �E10�:

V = ��p − � − vboxex · n�n; �E11�

i.e., motion in the laboratory frame is entirely normal to the
film.

In the main text �Sec. VII� we stated that the simulations
were performed in a situation where the confining plates
slide over a barrier, with the back bubble �located between
the barrier and the lens structure� being fixed in size; i.e., no
gas can cross either the barrier or the lens structure. This was
compared with a situation with no imposed plate sliding, but
where the rate of advance of the lens structure averaged
across the channel was fixed; i.e., the back bubble behind the
lens grew at a constant rate. However, the two situations—
i.e., sliding plates and a back bubble of constant size versus
stationary plates and a growing back bubble—are completely
analogous.

Consider the general equation for rate of change of back
bubble size written in the frame of the plates. The barrier has
unit length and advances at speed vbox in this frame �consum-
ing back bubble area�. Meanwhile, the so-called back and
spanning films of the lens advance �augmenting area�: only
the normal velocity is relevant in producing area changes,
and in the frame of the plates this is �p−� regardless of
whether laboratory frame motion via Eq. �E10� or �E11� is
applied. Using these facts, we can express

Ȧb = − vbox + 
s
v�ds + 

b
v� ds �E12�

in the form

Ȧb = − vbox + 
s

��sp − ��ds + 
b

��bp − ��ds , �E13�

where we have employed the subscript notation used in the
main text �see, e.g., Secs. III A and III B�. By comparing two

situations in Eq. �E13�, the growing back bubble Ȧb�0 with
no plate sliding vbox=0, and the fixed size back bubble

Ȧb=0 with a nonzero vbox, the analogy is made explicit: the
same pressures are found in each case.

The sliding matchbox system is a somewhat more conve-
nient one to analyze than the original system with its con-
stantly growing back bubble. The film shapes computed by
the sliding matchbox system can be thought of as corre-
sponding to those that would be seen in the original system
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by a camera moving along with the growing back bubble. As
a result, the steady state of Eq. �E11� is simply V=0: there is
no normal motion and hence no further shape distortion.

The sliding matchbox system is therefore ideally suited to
simulations that aim to describe the relaxation of a lens
structure to steady state. It is very easy to judge when steady
state has been achieved: V must vanish �within some toler-
ance� at all points along the film.

It is also simple to demonstrate that Eq. �E11� gives no
shrinkage or stretching of film segments at steady state: since

V vanishes for each and every film point, the differential
velocity dV across a film segment of length ds also vanishes.

Hence dṡ= t ·dV must be zero.
The sliding matchbox system is a significant improvement

in computational terms over the original viscous froth equa-
tion �6� for which tangential stretching and shrinking of ele-
ments continues indefinitely. Although some regridding may
still be necessary early on to correct inequities that develop
in segment lengths, the rate at which regridding needs to be
applied decreases dramatically as steady state is approached.
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