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Radial granular segregation under chaotic flow in two-dimensional tumblers
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An initially well mixed granular material composed of two distinct subclasses of particles, small and large
or light and heavy, segregates radially into stable lobed patterns when rotated in various quasi-two-
dimensional, regular polygonal tumblers. The patterns are highly sensitive to the time-periodic flow, which in
turn depends critically on the fill fraction and container shape. Simulations of a simple model reproduce the
segregation patterns observed in experiment. Kolmogorov-Arnol’d-Moser (KAM) regions in Poincaré plots of
the velocity field used to model the flow attract smaller (denser) particles and their spatial symmetries mirror
those of the segregation patterns, suggesting that competition between the driving forces for radial segregation
(percolation and buoyancy) and those for chaotic mixing plays a key role.
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I. INTRODUCTION

An intriguing property of granular matter is the tendency
of particles with slightly different properties, such as size or
density, to segregate. In nature, segregation is evident in the
structure of sedimentary rocks, the distribution of material in
rivers, rock fields, and avalanches. Segregation also has im-
portant implications in industrial processes where it works
against the goal of mixing. In recent years the flow of and
patterns produced by granular materials have received an in-
creasing amount of attention [1]. The interest is due not only
to the wide variety of granular flows that can be found in
nature and technology but also to the range of intriguing
behaviors exhibited by driven granular matter in the lab.

A common way to mix particles in industry is through the
use of partially filled rotating tumblers, with the simplest
case being an axially rotated horizontal cylindrical drum. He-
nein et al. [2] showed that in this geometry particle flow can
be categorized into four regimes—avalanching, continuous,
cataracting, and centrifuging [3]—depending on the Froude
number of the system (the ratio of rotational to gravitational
forces) and the particle size. For very low rotation rates,
relative particle motion occurs in discrete avalanches. As the
rotation rate is increased the interval between avalanches be-
comes shorter until a continuous flow of particles is realized.
Rajchenbach [4] observed hysteresis in this transition. As the
rotation rate is increased further, the initially flat surface be-
comes S shaped, which is the primary characteristic of the
cataracting regime. Finally, for fast rotation, particles move
to and become pinned at the edges of the tumbler (centrifug-
ing); the material ultimately moves in pure solid body rota-
tion with no relative motion of particles. Tumblers with
small length to diameter ratios have negligible axial particle
flow and are referred to as quasi-two-dimensional (2D). A
simple continuum model for the continuous flow regime in
quasi-2D tumblers was developed by Khakhar et al. [5,6] for
monodisperse systems. When mixtures of particles of differ-
ent sizes (S systems) or different densities (D systems) are
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placed in a short cylindrical tumbler a core of smaller (or
denser) particles forms quickly upon rotation; this radial seg-
regation occurs in O(1) revolution. Hill er al. [7,8] studied
mixing and segregation in noncircular tumblers and found
chaotic flow and segregation patterns with additional struc-
ture. While these patterns vary slightly throughout a single
tumbler revolution, the same structure is observed at the end
of every revolution [8]. In this sense, the patterns are said to
be stable and time-independent. The exact nature of the seg-
regation and mixing trends is sensitive to fill fraction (the
percentage of the tumbler volume occupied by the granular
material) and other parameters making prediction difficult in
all but the simplest cases.

Near the free surface, particles in the “flowing layer” con-
tinually roll, slide, and collide as they move downslope. Be-
low the flowing layer in the “fixed bed,” relative particle
motion is much reduced and friction dominates the dynamics
[9]. This slow creeping/plastic flow region is similar to that
observed in flow down heaps by Komatsu et al. [10], and is
only evident after thousands of rotations. On the other hand,
mixing and segregation of the tumbler contents occur in
O(10) rotations. Therefore, for modeling segregation pro-
cesses, the tumbler is effectively divided into two distinct
regions: One in which particles undergo pure solid body ro-
tation, and another lens-shaped one in which particles move
downhill in a simple shear flow.

In this paper, we use experiment (S systems) and simula-
tion (D systems) to study the segregation of binary mixtures
in a variety of regular polygonal tumblers. Poincaré sections
constructed from the motion of passive scalars, advected by
a continuum model of the flow field, show that the structure
of segregation patterns is closely linked to the existence of
islands of regular flow that surround elliptic points. The lo-
cations of these points, which are quite sensitive to the tum-
bler fill level, are predicted by a simple geometric picture.

II. EXPERIMENT

The experimental apparatus consists of a tumbler partially
filled with different-sized glass beads, rotated horizontally
about its axis with constant angular velocity. The tumbler is
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made from a stack of four squares of acrylic with side length
25 cm and thicknesses 3.0, 6.35, 3.0, and 15.0 mm. The
6.35 mm thick piece has a central square cavity with a side
length of 15.8 cm. Square posterboard inserts with single,
centered, regular polygonal-shaped voids—having three to
eight sides—are placed within the cavity. The distance from
the void center to each void corner is 6.8 cm. A sheet of
white laminated paper between the third and fourth acrylic
sheets (3 mm and 15 mm) provides a uniform background
for imaging. The acrylic sheets are fastened together and
attached to a computer-controlled Compumotor LE357-51
stepper motor. Images of the tumbler are taken with a Kodak
DC4800 digital camera.

The granular mixture consists of glass beads with diam-
eters, d, of 0.3+0.05 mm (painted black) and 0.85+0.06 mm
(clear). Mixtures are prepared by combining by volume one
part small (black) particles and two parts by large (clear)
particles. In the experiments, the volumetric fill fraction ¢ is
varied from 0.50-0.85 in increments of 0.05 for all six tum-
bler shapes. Mixtures are placed in the insert void, and a
well-mixed initial condition is prepared by stirring the granu-
lar mixture in situ before closing the tumbler. The tumbler is
rotated clockwise at 2 revolutions per minute (RPM) until
the segregation patterns are steady, which usually occurs
within five revolutions.

In experiments the ratio of the tumbler length [ to particle
diameter is important. If this ratio is too small, particle crys-
tallization and jamming result, while if it is too large, signifi-
cant axial movement occurs. These effects are insignificant
in our experiments since the tumbler length to average par-
ticle diameter ratio is around 20.

III. FLOW MODELING

To study the motion and associated segregation of granu-
lar material within rotating tumblers, we use a two-
dimensional model which combines a continuum description
with discrete particle dynamics. The underlying flow is de-
scribed by a continuum model and is characterized by
Poincaré sections constructed from the motion of passive
scalars advected by the flow. To study segregation, we intro-
duce a bidisperse population of active particles that, in addi-
tion to being advected by the continuum flow, interact with
each other via an effective buoyancy term and undergo col-
lisional diffusion.

A. Continuum flow

Our model of the tumbler velocity field is based on the
single phase, incompressible, continuum flow description of
Khakhar er al. [5,6] in which a cylinder with radius R and
length [ (where R>1 so that the system is effectively two
dimensional) rotates at constant angular velocity w in the
continuous flow regime. In this regime, particles well below
the free surface move in solid body rotation with the tumbler
in a region called the fixed bed, while near the free surface
particles move relative to each other in a lens shaped shear
region designated as the flowing layer. Particles initially in
the fixed bed are transported toward the free surface and into
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FIG. 1. (a) Diagram of the circular tumbler with the coordinate
system and parameters defined. (b), (¢) Two configurations of a
75% full square tumbler with vertically translating coordinate sys-
tems. Note that the length of the free surface increases from (b) to
(c) while the height of the free surface decreases.

the flowing layer. Then, with respect to a diameter through
the middle of the flowing layer, particles move downhill to a
position roughly opposite to where they entered the flowing
layer. Here they rejoin the fixed bed and the process repeats.

Figure 1 illustrates the geometry, parameters, and coordi-
nates used to describe our system. A right-hand coordinate
system is defined with origin O at the center of the free
surface. The x axis points downhill along the free surface
while the positive y axis is normal to and points away from
the free surface. [Note that in all figures of the tumbler sys-
tem with the exception of Fig. 1(a) the perspective is rotated
by the dynamic angle of repose (approximately 30°) so that
the free surface is horizontal.] The depth of the flowing layer
8 [see Fig. 1(a)] is given by

o=ai-(;] ]

where 9§ is the maximum depth and L is the layer half length
[6]. Assuming a linear shear profile, the tangential velocity is

Y
vx=2u<1+5>, ()
where u is the depth averaged velocity of the flowing layer.
If one further assumes that u is constant along the layer and
the flow is incompressible, the continuity equation can be
used to determine the normal velocity

2
vy=-— wx(%) . (3)

Setting the mass flux into the flowing layer or, equivalently,
through &(x), for —L<x<0 equal to the mass flux through
the middle of the flowing layer (i.e., x=0, -5, <y<0) we
obtain a depth averaged velocity u=wL?/28,. The shear rate
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v then varies with x and is equal to 2u/ &(x). Particles not in
the flowing layer are assumed to undergo solid body rotation
with angular velocity w. Since the speed of particles within
the flowing layer is typically large compared to wyx*+y?,
velocity contributions due to solid body rotation are ignored
within the flowing layer.

Arguments have been made for the use of the layer profile

5=6,[1-(x/L)*]"* (Makse [11], Khakhar er al. [12]). In this
case the resulting mass balance gives v, ~ yx and v, ~y/x as
opposed to v,~y/x* and v,~y?/x* for the profile used
above in Eq. (1). Our simulations show that both profiles
produce similar mixing and Poincaré sections. However,
simulations using & are more sensitive to numerical errors, so
generally the profile in Eq. (1) is preferable. Elperin and
Vikhansky employed a layer depth that scales with x*> [13].
However, their model applies at the transition to cataracting
flow where the free surface is no longer flat.

For circular tumblers the mean velocity field is time inde-
pendent. However, if the angular velocity is varied [14]
and/or the tumbler is not rotationally invariant, the flow be-
comes time dependent and the model must be modified. In
particular, the length, depth, position, and mean velocity u of
the flowing layer vary as the tumbler rotates [see Figs. 1(b)
and 1(c)]. For a given tumbler orientation the fill fraction
determines the position, shape, and size of the free surface,
and consequently the location of the coordinate origin. To
determine the variation in u# we rely on recent experimental
measurements in various 3D geometries that indicate the sur-
face velocity and therefore u scales with L (Pohlman et al.
[15]). Note that if u~L then &~ L (since u=wL?/28,). In
experiments &, is typically 5-15 particle diameters and lin-
early dependent on L [9]. Here we use &=L/10. This com-
pletes the underlying fluid mechanical or continuum descrip-
tion of the flow.

For any quasi-2D tumbler rotated at a constant rate the
stream function is time-periodic, i.e., ¥(x,y,0)=i(x,y,¢
+T/N), where T=27/ w is the rotation period and 7' =T/N
is the period of the stream function (flow period). In general,
N is the number of flow periods per tumbler revolution,
while in the specific case of a regular polygonal tumbler it is
equal to the number of sides. The Poincaré sections associ-
ated with the stream function are generated by plotting the
location of passive scalar particles advected by the flow
given by Egs. (2) and (3) every T’. In our simulations 13
noninteracting particles equally spaced along a line from the
center of the tumbler to a corner are advected with velocities
determined by the flow model. Their positions are plotted
every T’ for a total time of 5007".

In simulating the motion of particles along streamlines we
must also account for the changing height /& of the free sur-
face above the rotation center as a function of tumbler ori-
entation. For example, Figs. 1(b) and 1(c) show a square
tumbler in which & decreases significantly after 1/8th of a
revolution. If / is decreasing and v, is positive, particles near
the free surface could leave the flowing layer. To prevent this

the time derivative of the height / is added to v, in Eq. (3).

The Poincaré section for a time independent velocity
field, such as the half-full circular tumbler in Fig. 2(a), con-
sists entirely of regular flow regions with closed loops cor-
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FIG. 2. (Color online) Computationally derived Poincaré sec-
tions for (a) a circular tumbler and (b) a square tumbler. Note in (b)
the lobes of regular flow surrounded by a chaotic region.

responding to streamlines (here we arbitrarily choose T’
=T/2 since N is infinite). For time periodic flow, see, for
example, the square tumbler flow in Fig. 2(b), particle tra-
jectories are time dependent and the streamlines associated
with different times (or equivalently different tumbler orien-
tations) cross.

One consequence of time-periodic velocity fields is the
emergence of periodic points. A point is said to be periodic
with period n if a particle initially at that point returns to it
after nT’. These points are either elliptic or hyperbolic. For
elliptic points, the nearby linearized flow is a rotation. Figure
2(b) shows that the elliptic point and a region of regular flow
surrounding it, known as the Kolmogorov-Arnol’d-Moser
(KAM) region, are separated from the rest of the flow by a
boundary which no particles cross in the absence of diffu-
sion. For hyperbolic points, the nearby linearized flow is
stretched in one direction and compressed in another. These
dynamics lead to stretching and folding and to chaotic mix-
ing [16]. The hyperbolic point shown in Fig. 2(b) lies in a
chaotic region.

B. Segregation model

The patterns generated by tumbling a mixture of two dif-
ferent particle types result from the interplay of advection,
collisional diffusion, and segregation; the latter are assumed
to act only in the flowing layer. To combine these elements in
a single model we treat advection separately from segrega-
tion and diffusion. As was the case for the calculation of the
Poincaré sections, we consider finite populations of particles
advected by the continuum velocity field developed above
for identical particles. Segregation is included by allowing
the distinct populations to interact locally, while diffusion is
added as a Langevin term to the advection equations.

We first address segregation where pure S systems and
pure D systems provide two limiting examples of segregat-
ing mixtures. Segregation models for § systems are in gen-
eral more complicated than those for D systems. For ex-
ample, Khakhar et al. have proposed a model for § systems
based on a statistical mechanics approach [17]. We will dem-
onstrate by means of experiment and simulation that al-
though the driving forces of segregation in S and D systems
are undoubtedly different, the resulting (steady) segregation
patterns are almost identical. Therefore we use a simple and
well tested D system segregation model that employs an ef-
fective buoyancy mechanism based on the local number den-
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sity of more dense particles f and a characteristic velocity

Vo= ZB(I - ﬁ)Dcoll
O d b
where B is a constant of O(1), p is the density ratio of light

to heavy particles, and D, is the collisional diffusivity. Spe-
cifically, the vertical “drift velocities” are

ydmz_vO(l _f)a (43)

Yar=vof (4b)

for more and less dense particles, respectively. Savage [18]
used hard-sphere particle dynamic models to obtain an ex-
pression for the diffusivity

Doy =g( 7])d27", (5)

where the shear rate is y=dv,/dy and g(7) is a function of
the solids volume fraction 7. Since Dy is independent of
particle density we assume it to have the same value for both
particle types used in our model. [Note that we do not cal-
culate D using Eq. (5)—see below.] For our model v,y
which implies that  is constant. Consequently, Egs. (4) de-
pend only on f. We discuss the calculation of f and our
specific choice for the functional dependence of the drift ve-
locities on f in greater detail below and in the Appendix.

Collisional diffusion is incorporated into the model by
adding a small random velocity component S in the y direc-
tion to particles within the flowing layer. S is drawn from a
Gaussian velocity distribution with variance 2D;/At,
where A is the simulation time step.

The velocities associated with segregation and diffusion
are added to the y components of the velocity but not to the
x components. This omission can be understood by examin-
ing the Péclet number (Pe) which characterizes the ratio of
convective to diffusive transport. Here we use it to quantify
the relative strengths of segregation and diffusion in com-
parison to advection. According to Eq. (4), y,, and y, are
directly proportional to D.y. For the tumbler system, Pe
=ulL/D_y;. In the x direction, uL is large compared to D SO
Pe> 1. For this reason, segregation and diffusion in the x
direction can be ignored.

The complete D system advection, diffusion, and segre-
gation model is then specified by the particle velocity at a
point (x,y). In the fixed bed particles move in pure solid
body rotation with radial velocity wyx?+y?. In the flowing
layer, particle velocities in the y direction are given by

2 .
y'mz—wx<y—g) +S+h—vy(1=1), (62)
- v\ :
y;=— wx 3 +S+h+uvof (6b)

for more and less dense particles, respectively.

C. Simulation details

For all simulations the system is rotated with a constant
angular velocity of w=2. In regular polygonal shapes the
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center-to-corner distance is 1 so that L(¢) < 1. Particle trajec-
tories in the flowing layer are calculated by integrating Eqs.
(2) and (6) for segregation or Egs. (2) and (3) with the addi-

tion of the / term (computed with a forward Euler method)
for Poincaré sections. A fourth-order Runga-Kutta scheme is
used with a time step of Ar=107%. In the fixed bed, positions
are converted to polar coordinates and updated using a for-
ward Euler method with the same time step. Since the fill
fraction is constant, () and L(z) are computed for each ori-
entation using geometrical arguments.

For segregation simulations a mixture of 1/3 heavy and
2/3 light particles is used. The number of particles is deter-
mined by the fill fraction and the particle diameter d
=0.016. Particles are initially placed on a close packed hex-
agonal lattice. The segregation model parameters are [=2,
p=0.5, and Pe=100. D is determined from D ,;=uL/Pe
and has a value of 7/10 for our choice of parameters. Simu-
lations are typically run for ten rotations, while patterns be-
come periodic after about five rotations.

The concentration of more dense particles f at each time
step and for each particle is computed by finding all “rel-
evant” neighboring particles whose centers are less than 1.5d
away and then calculating the fraction of more dense par-
ticles. For less (more) dense particles the relevant neighbors
lie above (below). The motivation for this particular protocol
is discussed in the Appendix.

IV. RESULTS: FILL FRACTION OF ONE-HALF

In this section experiment and simulation are used to ex-
amine segregation in half-full (¢=0.5) polygonal tumblers
with even and odd numbers of sides (see Figs. 3 and 4,
respectively). In columns from left to right the figures
present images of the experiment, computationally generated
Poincaré sections, and results from simulations of the con-
tinuum segregation model.

A. Even-sided tumblers

Consider first tumblers with an even number of sides as
shown in Fig. 3. Experimental and computational results
both exhibit segregation with the formation of a multilobed
core of small or dense particles, respectively, which reaches
steady state within a couple of revolutions. Each core has
N/2 lobes that point toward a tumbler corner, and each lobe
passes through the flowing layer twice per tumbler revolu-
tion. In the square and hexagonal tumblers, the lobes are
curved such that they are asymmetrical about the diagonals.
While the patterns change during rotation as lobes pass
through the flowing layer, the patterns are the same at the
end of each flow period 7".

The Poincaré sections reveal elliptic points surrounded by
relatively large islands of regular flow (KAM regions) lo-
cated halfway along the diagonals between the center and the
corners of the tumbler. The elliptic points have period 7/2
which we characterize as a multiple n of the temporal peri-
odicity of the stream function 7’. For these elliptic points
n=N/2. Their associated islands are readily identified with
the lobes in the segregation patterns. (Note that for the par-
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Poincaré Seg. Model

Experiment

FIG. 3. (Color online) Half-full polygonal tumblers with an
even number of sides. Left column: Experimental size segregation
results. Center column: Poincaré sections from simulation. Right
column: Density segregation results from simulation.

ticular configurations of the hexagonal and octagonal tum-
blers shown in Fig. 3 a lobe is passing through the flowing
layer and the associated elliptic point is located at the center
of the flowing layer. When the tumbler is rotated slightly
further, the elliptic point returns to the diagonal.) Most areas
around the KAM regions exhibit chaotic flow. Closer to the
edges of the tumbler there are additional areas of regular
flow with streamlines reminiscent of those found in the cir-
cular tumbler (see, for instance, the octagonal tumbler in Fig.
3). The regions near the edges of the hexagonal tumbler
show higher period elliptic points surrounded by small KAM
regions. However, in light of collisional diffusion and segre-
gation, these small regions are not expected to play a major
role in the segregation process unless the ratio of small
(heavy) to large (light) particles is very large. Generally, the
relative tumbler area that exhibits chaotic flow decreases as
the number of sides is increased.

B. Odd-sided tumblers

Segregation patterns in odd-sided tumblers are shown in
Fig. 4 and reveal different structure than in the even-sided
tumblers. The segregation data from experiment and simula-
tion again show a distinct core but with a shape resembling
the container and with mostly smaller lobes (e.g., N=5 and
N=7 from experiment). For the triangle and pentagon there
are N lobes where, in addition to lobes pointing toward the
corners, there also exist additional smaller lobes directed to-
wards the middle of each side (this is seen most clearly in the
segregation simulations).
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FIG. 4. (Color online) Half-full polygonal tumblers with an odd
number of sides. Left column: Size segregation experiment results.
Center column: Poincaré sections from simulation. Right column:
Density segregation simulation results.

Poincaré maps again provide insight into the segregation
structure. Large regular islands lie along the diagonals and
along lines between the tumbler center and the middle of the
sides. There are N associated elliptic points each with period
N. These islands alternate between the diagonal and the
middle of the side configurations on each successive pass
through the flowing layer. Consequently, and unlike the case
for even-sided polygons, each KAM region passes through
the flowing layer twice (corresponding to a complete tumbler
rotation) before returning to its original position. Near the
center of the odd-sided tumblers there are (N—1)/2 addi-
tional smaller regular islands each with n=N. Note that for
¢=0.5 the segregation patterns are less structured in the odd-
sided tumblers than in even-sided tumblers even though the
layer height is a function of time in the former and constant
in the latter. Additionally, despite the existence of obvious
KAM regions, no clear lobe structure is evident in the seg-
regation results for the heptagonal container.

V. RESULTS: FILL FRACTION GREATER
THAN ONE-HALF

Previous results for both quasi-2D and -3D tumblers show
that segregation patterns can be highly sensitive to fill frac-
tion [19]. One important robust difference between ¢=0.5
and larger fill fractions occurs when, for large enough ¢, the
bottom of the flowing layer remains always above the center
of tumbler (8,<h). In this case, particles surrounding the
center never pass through the flowing layer which results in
an unmixed core. The shapes of these cores usually resemble
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Experiment Poincaré Seg. Model

FIG. 5. (Color online) Even-sided polygonal tumblers with fill
fractions of 75% (square), 65% (hexagon), and 75% (octagon). Left
column: Size segregation experiment results. Center column:
Poincaré sections from simulation. Right column: Density segrega-
tion simulation results.

that of the container but vary as ¢ is increased. In long
duration experiments [O(10?) rotations] the core evolves due
to creeping motion below the flowing layer [20], but these
slow motions are not relevant in our relatively short duration
simulations [O(10) rotations].

A. Even-sided tumblers

The top row of Fig. 5 shows a square tumbler with ¢
=0.75 in which three lobes form along the diagonals versus
two lobes for ¢=0.5 (Fig. 3). The corresponding Poincaré
section shows regular islands along the diagonals which have
n=3. As with the half-full tumblers the lobes form near the
islands and extend outward from a core of unmixed material.
The curvature of the lobes is even more apparent here than
with the half-full cases shown in Fig. 3. The hexagonal and
octagonal tumblers also show an increase in the number of
lobes with larger ¢p—Fig. 5 presents examples with four and
six lobes, respectively. Again the lobes appear to match up
with regular islands in the Poincaré sections and have n
equal to the number of lobes. In all these examples a KAM
region takes more than half of a tumbler rotation to return to
its original position.

B. Odd-sided tumblers

As the fill fraction is increased for odd-sided tumblers the
segregation patterns exhibit a variety of behaviors. Figure 6
presents a triangular tumbler with two lobes, a pentagonal
tumbler with three lobes, and a heptagonal tumbler with five
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FIG. 6. (Color online) Odd-sided polygonal tumblers with fill
fractions of 60% (triangle), 60% (pentagon), and 70% (heptagon).
Left column: Size segregation experiment results. Center column:
Poincaré sections from simulation. Right column: Density segrega-
tion simulation results.

lobes. The lobes are much more pronounced than for the
corresponding shapes with ¢=0.5. The corresponding
Poincaré sections show regular islands occurring only along
the diagonals. As with even-sided tumblers the segregation
results for these cases exhibit lobe formation around the is-
lands. For all cases n equals the number of lobes.

When lobes form only on the diagonals, the number of
lobes that pass through the flowing layer per rotation equals
N independent of the container shape. For example, the pen-
tagonal tumbler with ¢=0.6 in Fig. 6 has three lobes that
pass through the flowing layer five times per rotation so that
each lobe passes through the layer an average of 5/3 times
per rotation. In general the elliptic points corresponding to
N; lobes lying only along the diagonals have period N;, or
equivalently take a time (N,/N)T to return to their initial
positions, and pass through the flowing layer N/N; times
each tumbler revolution. The maximum number of lobes ly-
ing solely on the diagonals is N—1. Thus, as the number of
lobes increases, particles make fewer passes per rotation
through the flowing layer which slows segregation requiring
more rotations to reach a steady state.

C. Segregation in the pentagonal tumbler

To better understand how segregation varies with fill frac-
tion we examine the pentagonal tumbler for increasing ¢. As
shown earlier in Fig. 4, the half-full tumbler has elliptic
points with n=5 and a core that is roughly pentagonal in
shape with little apparent lobe structure in the segregation
pattern. As the fill fraction is increased to ¢=0.55, Fig. 7
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FIG. 7. (Color online) The evolution of segregation patterns in a
pentagonal tumbler as fill fraction is increased. The fill fractions are
55, 60, 65, and 75 % from top to bottom. Left column: Size segre-
gation experiment results. Center column: Poincaré sections from
simulation. Right column: Density segregation simulation results.

indicates that the Poincaré map passes through a state with
regular rings similar to those in a circular tumbler. Despite
the dramatic differences between the Poincaré sections for
¢=0.5 and 0.55, the segregation patterns are nearly identical.
As ¢ is increased to 0.6, 3 regular islands form along the
diagonals of the Poincaré section, and the segregation pattern
develops three large amplitude lobes. The corresponding
KAM regions form at the edge of the unmixed core and
move along the diagonals towards the corners with increas-
ing fill fraction. At ¢=0.65 the three elliptic points and regu-
lar regions have moved to the corners and disappeared, and
the system again enters a state of mostly radial segregation.
With further increases in ¢ regular islands with n=4 develop
just outside the unmixed core which results in the formation
of four distinct lobes at ¢=0.75.

The same general process occurs for tumblers with differ-
ent numbers of sides as the fill fraction is increased. Lobes
wax then wane to a radial core matching the container shape.
Further increases in ¢ produce lobes again but with N; in-
creased by one for patterns with lobes along the diagonals.
The maximum number of diagonal lobes corresponds
roughly to the number of tumbler corners that can be simul-
taneously covered by the grains. At some intermediate values
elliptic points appear on the lines from the center to the
middle of the sides. Sometimes lobes are associated with the

Poincaré Seg. Model  Lobe Transport

FIG. 8. (Color online) Interlobe transport in 65 and 70 % full
hexagonal tumblers. Left: Poincaré sections from simulation. Cen-
ter: Density segregation simulation result. Right: Lobe plot. Light
colored particles remain in the same lobe in the next rotation while
dark colored particles move to the next lobe.

corresponding KAM regions, but in other cases the core
mimics the shape of the container.

D. Interlobe transport

The results presented above show a strong correlation be-
tween KAM regions in the Poincaré maps and segregation
patterns even though the former are generated in the absence
of the particle-particle interactions and particle diffusion in-
cluded in the latter. As we now demonstrate, the presence
and location of KAM regions relative to the lobes influences
the flow in yet another way. Figure 8 shows steady state
segregation patterns from simulations of two hexagonal tum-
blers with ¢=0.65 and ¢=0.7. Both tumblers generate four
lobed segregation patterns with period four lobes, but there is
an important difference between the two: for ¢=0.65 the
lobes overlap the KAM regions while for ¢»=0.7 they stretch
toward but do not overlap these regions. To see the effect of
this difference consider the motion of the heavy core par-
ticles that lie outside the unmixed core after one period of the
elliptic points (2/3 of a rotation). The right column of Fig. 8
shows the final positions of the particles—particles that have
moved from their original lobe are colored green (dark). For
¢=0.65 only a few particles near the core (19.4%) move to a
new lobe, while for ¢=0.7 nearly twice as many particles
(mainly along one side of each lobe) leave their initial lobe
(36.3%). After eight four-period cycles, 43.5% of the par-
ticles in the 65% full tumbler leave their initial lobe while
nearly all heavy particles (89.3%) switch to other lobes for
the 70% full tumbler. Thus, despite the influence of diffusion
and segregation, KAM regions located within lobes appear to
limit the transport of particles between lobes.

VI. DISCUSSION: LOBE FORMATION

Our results demonstrate that segregation patterns in
quasi-2D rotated tumblers are sensitive to container shape
and fill fraction. Simulations of our segregation model accu-
rately reproduce the steady state structures observed in ex-

051305-7



CISAR, UMBANHOWAR, AND OTTINO

1

PHYSICAL REVIEW E 74, 051305 (2006)

FIG. 9. (Color online) Mapping of elliptic
points in a half-full square tumbler. (a) Initial
condition with period-2 elliptic points along the
diagonals. (b) Orientation at which point 1 enters
the flowing layer. (c) Point 1 exits the flowing
layer just as 1, the new position of elliptic point

1 (advanced by 180°), rotates to the same posi-
tion. (d) State after one period of flow. Points 1
and 2 have swapped positions.

(d)

periment. Further, the regular regions surrounding elliptic
points in the Poincaré sections are clearly correlated with the
lobe structure. Below we present a simple method of under-
standing the structure of the Poincaré maps and their sensi-
tive dependence on the fill fraction. We then discuss various
physical pictures of how the segregation mechanism contrib-
utes to the association of lobes with KAM islands. Finally
we demonstrate how the relative proportion of small (more
dense) to large (less dense) particles affects segregation pat-
terns.

A. Periodic points

Poincaré maps exhibit structure throughout the entire oc-
cupied area of the tumbler. However, relative motion of par-
ticles, including mixing and segregation, occurs only when
material is passing through the flowing layer. Therefore, in-
sight concerning periodic (elliptic) points is gained by exam-
ining the changes in radial and relative angular positions that
occur when particles transit the flowing layer. Consider first
a half-full square tumbler which has period-2 elliptic points
surrounded by KAM regions along the diagonals as illus-
trated in Fig. 9. A particle initially located on the left elliptic
point at (1) [Fig. 9(a)] moves to the same location on the
opposite (right) diagonal (1’) after each pass through the
flowing layer (1/4 revolution) [Fig. 9(d)]. When the tumbler
is rotated to the orientation where point 1 enters the flowing
layer, as shown in Fig. 9(b), the particle begins moving rela-
tive to the container. Since the particle is at an elliptic point,
the amount of time it takes a particle at point 1 to exit the
flowing layer at the opposite end must equal the time for
point 1’ to move to the bottom of the flowing layer via solid
body rotation. Figure 9(c) shows the tumbler orientation

where points 1 and 1’ have moved to the same location at the
bottom of the flowing layer at the right side of the tumbler.

While the dynamics depicted in Fig. 9 require a priori
knowledge of the elliptic point locations, the mapping tech-
nique can also identify elliptic points along the diagonal.
Place a series of particles along the diagonal and rotate each
one until it reaches the flowing layer. Calculate both the time
it takes the particle to pass through the flowing layer using
the velocity field in Egs. (2) and (3) and the time for a point
at the same relative position on the diagonal closest to the
free surface to rotate to the bottom of the flowing layer. The
solid curves in Fig. 10(a) show these two times as a function
of the particle’s initial radial distance along the diagonal /L
for ¢=0.5. The intersection of the two curves (labeled A) is
the radial location of the elliptic point. Also, since the new
diagonal is 180° from the initial one the elliptic point has
period 2. For ¢»=0.55 the flowing layer passage time is simi-
lar to the half-full case [dashed lines in Fig. 10(a)], but the
time for the diagonal to rotate to the bottom of the flowing
layer is reduced. This results in a periodic point (labeled B)
that is closer to the center of the tumbler.

Figure 10(b) uses the method illustrated in Fig. 10(a) to
locate all periodic points on diagonals as a function of fill
fraction. The two cases from Fig. 10(a) are indicated with the
labels A and B. Period-1 points are found near the corners for
very low fill fractions, see, for example, Figs. 11(a) and
11(b). As ¢ is increased they move towards the center of the
tumbler and disappear just before the system reaches half
full. Period-2 points first appear in the corners of the tumbler
(r/L=1) at $=0.4. These points move rapidly inward as ¢ is
increased, reaching the center at ¢=0.59. With further in-
creases in ¢, period-3 points form near the center of the
tumbler and move outward as Figs. 11(c) and 11(d) show.
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FIG. 10. (Color online) (a) Time for points to pass through the
flowing layer and time for reflected points on diagonal to rotate to
flowing layer bottom versus initial radial position along the diago-
nal for ¢=0.5 (solid curves) and ¢=0.55 (dashed curves) in a
square tumbler. The intersection of the two curves locates the peri-
odic points A and B for ¢=0.5 and ¢=0.55, respectively. (b) Peri-
odic point location along diagonal vs ¢. The left dashed, solid, and
right dashed curves represent period-1, period-2, and period-3
points, respectively. Points A and B from (a) are shown on the
period-2 curve.

The period-3 points reach the edge at ¢»=0.94. Note that
while period-3 points begin as soon as period-2 ones end,
there is a region for 0.4<<¢$<0.48 in which period-1 and
period-2 points coexist.

In addition to periodic points along the diagonals, higher
order periodic points also exist. For ¢=0.63 Figs. 11(e) and
11(f) show period-5 KAM regions with periodic points lying
along both the diagonals and the normals to the side centers.
At this value of ¢, period-3 points simultaneously exist
along the diagonals and are visible as the blue bounded re-
gions near the center of Fig. 11(e). Other period-5 points
such as those shown in Figs. 11(e) and 11(f) occur in a ¢
range that overlaps both the period-2 and period-3 regions.
In Fig. 11(f), point 1 is initially located along a radius to the
side center but moves to the diagonal 135° away. Conversely,
point 2 is mapped from a diagonal to the side center normal.
Since the center to edge distance differs between diagonals
and normals we cannot immediately apply the same tech-
nique used above to locate the periodic points. However, the
technique can be readily generalized to higher order periodic
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FIG. 11. (Color online) Relation between the number and peri-
odicity of elliptic points and the fill fraction in a square tumbler. (a)
Poincaré section for ¢=0.2 and (b) corresponding period-1 elliptic
point with future diagonal position (1’) which advances by 270°.
(c) Poincaré section for ¢=0.75 and (d) period-3 elliptic points with
1" advanced by 90°. (e) Poincaré section with off-diagonal elliptic
points for ¢=0.63 and (f) period-5 points with 1’ advancing by
135°.

points by considering the motion after multiple passes
through the flowing layer (2 in the present case).

This technique for understanding the location of periodic
points is also readily applied to other regular polygons. Also
notice that the flowing layer passage time curves [Fig. 10(a)]
are essentially horizontal and only weakly dependent on the
fill fraction and that subsequently most of the change in pe-
riodic point location is due to the shift in the curve associated
with diagonal rotation. Consequently, the quantitative analy-
sis of simple as well as higher order periodic points should
be amenable to analytic techniques using iterated maps.

B. Volume fraction

We have presented numerous pieces of evidence indicat-
ing that segregation patterns are closely related to the struc-
ture of Poincaré sections. However, there are details for some
shapes and fill fractions that are not observed in accord. For
instance, the Poincaré map for the half-full pentagonal tum-
bler in Fig. 4 shows period-2 and period-5 KAM regions, but
the segregation pattern exhibits just five small lobes. Similar
situations may occur with even-sided tumblers such as the
square with ¢=0.63 that shows period-3 and -5 KAM re-
gions. As another example, the ¢=0.7 hexagon in Fig. 8
generates small lobes that do not reach the diagonals where
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FIG. 12. Segregation patterns for a 70% full hexagonal tumbler
with various mixtures of small and large particles. The percentage
of small particles (by volume) are 10, 30, and 50 % from left to
right.

the KAM regions are observed in the Poincaré section.

Throughout this paper, the relative composition of the
granular material has been held constant at 1/3 small (heavy)
particles and 2/3 large (light) particles. Figure 12 shows im-
ages from experiments in a hexagonal tumbler with ¢=0.7
for three different particle mixtures. The first image, with
10% small particles and 90% large particles by volume, dis-
plays only radial segregation. The second image, with 30%
small particles, generates small lobes that point toward the
edges. In the third image, a mixture with 50% small particles
produces well defined lobes that stretch toward the corners of
the tumbler and which are reminiscent of the patterns shown
in Figs. 5 and 6.

We speculate that the observed lobe structure is also re-
lated to the relative size of the segregated core at fixed fill
fraction. If the core is too small to reach the KAM regions
the core will not exhibit lobes. Adding small particles in-
creases the core size allowing it to reach out to the KAM
region and form lobes. If the core completely engulfs the
KAM regions lobes will not be visible. For fill fractions
where multiple sets of elliptic points are present, the ob-
served lobe structure will correspond to the elliptic points
whose KAM regions are closest to the core boundary. Addi-
tionally, the images in Fig. 12 clearly show that the lobes do
not extend directly along the diagonal but rather follow a
curved path, similar to the asymmetry observed in the half-
full square and hexagonal tumblers in Fig. 3. Insights can be
made into the nature of the curvature by examining the re-
gions of chaotic flow and the hyperbolic points that charac-
terize them. This sensitivity to chaotic flow and small par-
ticle volume fraction is part of an ongoing study [21].

C. Segregation mechanisms

We have shown that segregation patterns are clearly cor-
related with the location of KAM regions, but we have not
identified or described a physical mechanism that explains
why this is the case. Various possibilities exist to explain the
structure of segregation patterns. First, consider the tendency
for the lobe patterns to extend from the center of the tumbler
towards the corners. As the tumbler rotates toward a configu-
ration where the free surface intersects the corner, the flow-
ing layer grows in length and depth. As this occurs, the small
(heavy) particles in the lower half of the flowing layer flow
for more time and thus move closer to the edges. Conversely,
as the free surface rotates out of the corner and the flowing
layer shrinks, these particles leave the layer earlier and are
closer to the center of the tumbler. The net result is lobe
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formation. However, this description does not explain the
large variations in lobe size with ¢—see, for example, Fig.
7.

Another mechanism is presented by Fiedor and Ottino for
circular tumblers in which a modulated angular velocity gen-
erates lobes [14]. They argue that when the tumbler, and
therefore the particles in the flowing layer, accelerates
(equivalent to lengthening of the free surface in a polygonal
tumbler as it approaches a corner) the segregation mecha-
nism slows. For size segregation, this means that small par-
ticles travel farther before percolating to the bottom of the
layer resulting in lobe formation in these areas. This expla-
nation shows how a well mixed system could form lobes.
However, the patterns shown in Figs. 3 and 7 develop inde-
pendent of the initial conditions. For instance, if a well
mixed system forms lobes, lobes will still form even if the
initial condition is instead a segregated radial core.

Finally, rotated bidisperse systems are subject to mecha-
nisms that mix as well as segregate. Consider the half-full
square tumbler of Fig. 3 in which a large portion of the flow
is chaotic, including the interface between segregated par-
ticles. Particles at the interface are driven to mix as well as
segregate. The particle distributions evolve until an equilib-
rium is reached where as soon as particles at the interface
mix, they unmix, leaving the interface stable. This results in
an effective perimeter between the two phases even in the
absence of a KAM boundary.

VII. CONCLUSIONS

Segregation of bidisperse particle mixtures in rotating,
quasi-2D, regular polygonal tumblers is sensitive to tumbler
shape, fill fraction, and particle concentration. The number,
amplitude, and location of the lobes in the segregated core
vary nonmonotonically with the fill fraction and with the
tumbler shape for fixed fill fraction. Patterns in tumblers of
different shape exhibit qualitatively similar behavior. Nearly
all characteristics of the patterns are captured by a segrega-
tion model that combines advection by a continuum velocity
field, random diffusion, and a particle interaction that drives
segregation via an effective buoyancy mechanism.

Our research also reveals a strong connection between
patterns observed in Poincaré sections generated by a con-
tinuum model and size segregation patterns observed in ex-
periment as well as density segregation patterns found using
the segregation model. Lobes of small (or more dense) par-
ticles occur around KAM regions observed in Poincaré sec-
tions. The location and number of elliptical points and asso-
ciated KAM regions evolves with fill fraction, sometimes
undergoing drastic changes for a very small change in fill
fraction. If the KAM regions lie well within or far outside the
segregated core mostly radial segregation with little or no
lobe formation is observed. The location and period of ellip-
tic points as a function of fill fraction and tumbler shape is
captured by a simple model that compares the flowing layer
passage times with the rotation of symmetry lines of the
container. The results for the size segregation experiments
and density segregation simulations match each other, sug-
gesting that the segregation mechanism operates indepen-
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dently of the driving forces. In fact, varying the density ratio
from 0.1 to 0.95 in simulations had no impact on the final
patterns. Possibilities for future work on segregation in
quasi-2D polygonal tumblers include studies examining the
role of the concentrations of large and small particles (in
progress), iterated map models to fully capture the structure
of the flow dynamics, and investigations of the effects of
varying the size or density ratios on segregation structure and
temporal evolution.
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APPENDIX: SEGREGATION FLUX

The form of the segregation flux (drift velocities) in Eq.
(6) is in some sense arbitrary. Here we first show that the
final segregation patterns depend only weakly on the specific
functional relation between the drift velocities and the local
particle concentration. In our simulations the particle drift
velocities in Eq. (4) are chosen proportional to (1-)? and f?
with p=1 because these forms meet the conditions that y,,
and y approach O for areas with pure species. However, any
positive value of p will also satisfy these conditions.

For p=0.25, 0.5, 0.75, 1, 1.5, and 2 we have simulated
segregation in a half-full square container and found the
same two-lobed segregation pattern as shown in the first row
of Fig. 3. The only significant difference between the various
values of p is the time to reach this steady state, which we
quantify using the degree of mixing M. For a given particle
consider the number of neighboring particles (within a radius
d) of the same type divided by the total number of neighbor-
ing particles—this quantity averaged over all particles is M.
Figure 13 shows M versus time for various p. For all values
of p we tested, M initially decreases linearly with a slope
inversely proportional to p, and during this time the segrega-
tion is primarily radial. Slow oscillations of O(1) in M(z)
indicate the formation of lobes. For p<1 the oscillations
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FIG. 13. (Color online) Degree of mixing versus time in a half-
full square tumbler for different values of p:}l,%,%, 1, %, and 2.
For the simulation data shown the segregation drift velocities for
heavy and light particles are proportional to (1—f)” and f?,

respectively.

decay and a similar final value of M is achieved after ten
revolutions. For p=3/2 and 2 the oscillations in M are
longer and decay more slowly; eventually they decay and M
approaches the same value as for p<1.

The choice of particle neighborhood has an influence on
some details of the segregation patterns. Consider a configu-
ration which should be stable: a sheared horizontal layer of
segregated particles with light particles on the top and heavy
particles on the bottom. With a circular neighborhood the
segregation drift velocities are non-zero for particles at the
interface and the layers repel. The resultant gap increases as
the particles enter the fixed bed. A smaller radius neighbor-
hood minimizes, but does not eliminate, the gap. However,
by considering for light (heavy) particles only neighboring
particles whose y positions are larger (smaller) the gap is
removed. This semi-circular neighborhood is used in our
segregation simulations. The resulting segregation patterns
are virtually the same as those calculated with a circular
neighborhood but without a gap between segregated regions.
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