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An expression for the shear viscosity of a binary fluid mixture is derived using mode-coupling theory in
order to study the mass dependence. The calculated results on shear viscosity for a binary isotopic Lennard-
Jones fluid mixture show good agreement with results from molecular dynamics simulation carried out over a
wide range of mass ratio at different composition. Also proposed is a new generalized Stokes-Einstein relation
connecting the individual diffusivities to shear viscosity.
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I. INTRODUCTION

Diffusivity and viscosity �1–6� of fluid mixtures play an
important role in various disciplines and have been investi-
gated over decades through different theoretical tools such as
hydrodynamics, kinetic theory, and more recently the mode
coupling theory �MCT�. Each of these theories has been suc-
cessful in different regimes of mass and size of the diffusing
particle and the density of the fluid mixture. For a massive
and large tagged particle, the diffusivity D is related to the
solvent viscosity � through the well known Stokes-Einstein
�SE� relation of hydrodynamics, viz. D=CkBT /����, where
C is a constant determined by the nature of hydrodynamic
boundary condition, kB is the Boltzmann constant, T is the
absolute temperature, and ��� is the arithmetic mean of the
solute and solvent sizes �diameters� ��� and ���, respec-
tively. The SE expression for diffusivity has an explicit size
dependence, but predicts a mass-independent diffusivity, al-
though simulation studies �7,8� have shown that the product
D� does not remain constant with variation of mass of the
solute particle. The failure of SE theory is attributed to the
fact that although the variation of mass of the tracer particle
does not affect the viscosity �, it does affect the diffusivity
D. However, in a binary fluid mixture of finite concentration
of each of the components, both these quantities are affected
by the variation of mass and hence one may expect a relation
similar to the SE theory to hold good. There also exists a
linear model �9� for the evaluation of shear viscosity of a
binary isotopic fluid mixture where � is expressed as a sum
of the corresponding mole fraction averaged component vis-
cosities. For an isotopic mixture, it can be expressed as

�ideal = x���
0 + x���

0 , �1�

where ��
0 and ��

0 are the shear viscosities of the � and �
components in pure form. Since the viscosity of a pure fluid
is proportional to the square root of the mass of its particles,
Eq. �1� can be rewritten as

�

��
0 = x� + x��m�

m�
�1/2

. �2�

Equations �1� and �2� correspond to the assumption of an
ideal solution model and the deviation from ideality is linked
with the interparticle correlation. The best tool for under-
standing this nonideality should theorefore consist of a mi-
croscopic theory which can incorporate the correlation ef-
fects and predict a proper mass dependent viscosity. In the
recent past, MCT has established �6,10–14� itself as a suc-
cessful microscopic theory for the study of diffusivity in flu-
ids and fluid mixtures. We have also derived simple universal
scaling laws of diffusivity, viscosity, and Kolmogorov en-
tropy �15–17� which connect these dynamical quantities with
entropy calculated from equilibrium properties alone. Al-
though attempts have been made to understand different as-
pects of viscosity using MCT, no attention has been drawn to
the effect of mass on viscosity and time-dependent viscosity.
It is thus of interest to understand through MCT the nature as
well as the origin of the mass dependence of shear viscosity
of a mixture. Kushal and Tankeswar �18� have studied the
effect of mass on shear viscosity for isotopic systems using
the expression of only short time expansion of time-
dependent shear viscosity ��t�. However, ��t� is contributed
by the short time as well as the long time dynamics of the
fluid particle which can be included in the microscopic
theory of MCT. Also they have not compared their results
with those of simulation. Hence our objective here is to un-
derstand the effect of mass on the shear viscosity and time-
dependent shear viscosity of a fluid mixture using MCT as
well as computer simulation study �19,20�. To the best of our
knowledge, such a systematic study of mass dependence has
not been addressed so far. The rest of the paper is organized
as follows. The theoretical formalism is presented in Sec. II.
In Sec. III, we discuss the models and simulation methodol-
ogy while the numerical results obtained through theoretical
calculation and simulation are presented in Sec. IV. The work
is finally concluded in Sec. V.

II. THEORETICAL FORMALISM

The system of interest here is a binary fluid mixture con-
sisting of two components � and � with N� and N� number
of particles, respectively. The expression for the time-
dependent shear viscosity of this N�=N�+N�� particle system
of volume V is given by the Green-Kubo formula
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��t� =
1

kBTV
��xz�0��xz�t�� , �3�

where �xz is the off-diagonal element of the microscopic
stress tensor defined as

�xz�t� = 	
i=1

N

�mivixviz + xiFiz� �4�

with mi ,vix, and xi denoting respectively the mass and x
components of velocity and position of the ith particle while
viz and Fiz are the z components of the velocity and the force
acting on the ith particle. The shear stress thus consists of
two terms representing the kinetic and potential energy con-
tributions, respectively. At higher density of the liquid, the
contribution of the second term is more prominent than the
first one.

In MCT, �6,10� the total time-dependent shear viscosity
can be decomposed into two parts, viz.

��t� = �bin�t� + �mct�t� , �5�

where �bin�t� represents the short time contribution and
�mct�t� is the long time collective mode-coupling contribu-
tion. The short time binary contribution �bin�t� can be ob-
tained through the well known Gaussian expression �6,10� as

�bin�t� = ��0�exp�− t2/��
2� , �6�

where ��0�, representing the zero time shear viscosity, is
defined as

��0� =
1

kBTV
��xz�0��xz�0�� , �7�

which can be expressed as

��0� = 
�kBT +
2	

15 	

,�

�
���
0

�

dr g
��r�
d

dr
�r4d
��r�

dr
� .

�8�

Here, ��=	
�
� is the bulk density representing the sum of
the two component densities �� and �� ,g
��r� is the partial
radial distribution function, and 
��r� is the interparticle
interaction potential. The value of �� can be obtained from
the time derivative of ��t� using Eq. �6� as

�� = �− 2��0�/�̈�0��1/2. �9�

The integrated shear viscosity � can be obtained as �=�bin
+�mct, where �bin=�0

��dt �bin�t� and �mct=���

� dt �mct�t�.
From Eqs. �3� and �4�, it is clear that there are three dis-

tinct contributions �kinetic, kinetic-potential, and potential�
to the time-dependent viscosity. The major contribution,
however, comes from the potential part as has been clear
from the study of Balucani et al. �21� in a one component
dense fluid. Thus the expression for the time-dependent vis-
cosity ��t� can be well approximated by the expression

��t� =
1

kBTV��	
i=1

N

xiFiz��	
j=1

N

xjFjz�� . �10�

The second derivative of the total short time ��t�, which
involves contributions from two- and three-particle correla-
tion terms since the four-particle correlation term �̈4�0� is
exactly zero �21�, can be expressed as

�̈�0� = �̈2�0� + �̈3�0� . �11�

The contributions from the two- and three-particle correla-
tion terms �̈2�0� and �̈3�0�, respectively, can be expressed as

�̈2�0� = −
4	

15 
 	

,�=�,�

�
��

m

�

0

�

dr r2�7
�� �r�2

+ 2r
�� �r�
�� �r� + r2
�� �r�2�g
��r�� �12�

and

�̈3�0� = −
8	

75 
 	

,�,�=�,�

�
����

m

� dk k2h���k�

��3I3

��k�I3


��k� + 2I1

��k�I1


��k��� �13�

where h���k� is the Fourier transform of the pair correlation
function and m
 is the mass of a particle of the 
th compo-
nent. Here the integrals I3


��k� and I1

��k� are defined as

I3

��k� = �

0

�

dr r2J3�kr��r
�� �r� − 
�� �r��g
��r� �14�

and

I1

��k� = �

0

�

dr r2J1�kr��r
�� �r� + 4
�� �r��g
��r� , �15�

where J1�kr� and J3�kr� are the spherical Bessel functions
and 
�� �r� and 
�� �r� denote the first and second derivatives
of 
��r�. Using Eqs. �6�, �8�, �9�, and �11�, one thus has a
route to the calculation of the binary contribution to the shear
viscosity.

The mode-coupling contribution �mct�t� to the shear vis-
cosity of the fluid mixture can be evaluated by using the
general approach initiated by Bosse et al. �22� and Gestzi
�23� for the one component system. In an MCT framework,
where the first step involves a choice of suitable bilinear
modes in terms of which one defines the projection operator
P as

P = 	
k

�A��AA�−1�A� , �16�

with �A� denoting the column matrix represented by the prod-
uct of the component density modes as
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�A� = ����k���
*�k�

���k���
*�k�

���k���
*�k�

� . �17�

Also, for a binary mixture, there are two density components
���k� and ���k� defined as

���k� = 	
j=1

N�

exp�− ik · rj
�� , �18�

���k� = 	
j=1

N�

exp�− ik · rj
�� . �19�

The next step is to extract the dominant slow variable con-
tributions by introducing the projection operator P which
projects any variable onto the subspace spanned by the bilin-
ear density products. As a result, the quantity �mct�t� pre-
dicted by MCT turns out to be

�mct�t� = lim
k→0

1

k2V
�jx�k�P�exp�iLt��Pjx�k�� , �20�

where the momentum density Jx�k� for simple dense liquids
is given by

Jx�k� =
1

N1/2 	

=�,�

	
j=1

N


m
v j

�0�exp�ik · r j


�0�� , �21�

with v j

�0� and r j


�0� as the velocity and position of the jth
particle belonging to the 
th component. Equation �20� is
further simplified by using Gaussian approximation, along
with the translational invariance properties of the correlation
function and also the change of summation over k to an
integral, to obtain the final expression

�mct�t� =
kBT

60	2�
0

�

dk k4	

,�

	

�,��

c
,�� �k�c
�,��
� �k�

�F

��k,t�F����k,t� , �22�

where c
,�� �k� is the first derivative of the direct correlation
function c
,��k�. Here F
��k , t� is the partial dynamic struc-
ture factor which can be evaluated using time-dependent
density functional theory, the details of which are given else-
where �12�. We present here the final expression given by

F
��k,t� =
S
��k�

�− − +�
�A
��k,−�exp�−t�

− A
��k,+�exp�+t�� , �23�

where

A
��k,±� = �± + D�k2�1 − ��c���k��

+ D
k2��c
��k� 	
���


S����k�� , �24�

with

± = −
��1 + �2� ± ���1 − �2�2 + 4�3

2
,

�1 = D�k2�1 − ��c���k�� ,

�2 = D�k2�1 − ��c���k�� ,

�3 = D�D�����c��
2 �k� ,

and S
��k� representing the partial static structure factor. It is
interesting to note that the expression given by Eq. �22�,
which is obtained here through MCT is identical to the re-
sults obtained using fluctuating hydrodynamics �24,25�. It is
clear from Eqs. �22� and �23� that the time-dependent shear
viscosity ��t� depends on the static quantities, viz. the partial
static structure factor S
��k�, direct correlation function
c
��k�, and the self-diffusivities D� ,D�.

Another approach which connects the shear viscosity �
with the diffusivity D for a pure fluid uses the generalized SE
relation �26,27� given by

D* = A/�*�, �25�

where the scaled diffusivity D*=D / �kBT�2 /m�1/2 and scaled
viscosity �*=� / �mkBT /�4�1/2. Here A and � depend on the
system parameters. However, in a binary fluid mixture, there
are two component diffusivities and a similar relation is not
known yet. We propose here a general SE relation for a bi-
nary fluid mixture as

D

* = A
/�*�
, 
 = �,� , �26�

where A
 and �
 are empirical constants to be determined by
best fitting. Here the component diffusivity D


* has been
scaled by �kBT���

2 /m��1/2. Therefore, the above equation
provides a direct route to calculate the shear viscosity in
binary fluid mixture from a knowledge of the individual dif-
fusivity parameters.

III. MODELS AND SIMULATION METHODS

The system considered here consists of two kinds of par-
ticles �� and �� of mass �m� and m��, interacting with each
other through the pair potential, given by the Lennard-Jones
�LJ� form, viz.


��r� = 4�
�
��
�

r
�12

− ��
�

r
�6� , �27�

where �
� and �
� denote the LJ parameters for the pair of
particles of types 
 and �. For dissimilar particles, the pa-
rameters are obtained from those for similar particles by us-
ing the Lorentz-Berthelot mixing rules, viz.

�
� = ��

 + ����/2, �
� = ��

����1/2. �28�

The mass m� of the � component has been varied by
keeping the mass of the � component fixed. We consider
here only a model system with the size and potential remain-
ing unchanged with variation of mass, as is the standard
practice for investigating the effect of only one property, viz.
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the mass here. Thus we have used ���=��� and ���=���.
We have truncated the potential at a cutoff distance of
2.5���. Also, the LJ model parameters used here for the
isotopic system considered correspond to Ar.

We have carried out molecular dynamics �MD� simulation
of LJ fluid mixture in micro-canonical �NVE� ensembles and
calculated the diffusivity and shear viscosity. We have con-
sidered a total number of particles N=500 placed in a cubic
box with periodic boundary conditions. We have used the
reduced LJ units �based on the parameters for species ��, viz.
reduced density �*=����

3 , reduced temperature T*

=T�kB /����, reduced time t*= t�m����
2 /����1/2, reduced self-

diffusivity D

* =D
�������

2 /m��1/2, and reduced shear viscos-
ity �*=��m�����1/2 /���

2 . The equations of motion are inte-
grated using the velocity Verlet algorithm �19� with a time
step of �t*=0.005. Starting from a fcc lattice configuration,
the system was equilibrated for 5�105 MD steps. In order to
allow a target temperature T*, velocities were scaled at every
time step during equilibration and this constraint was re-
moved during a production run of 5�105 MD steps. All the

coordinates, velocities, and pressure tensors were stored at
every time step during the production run for further analy-
sis. The self-diffusivity and shear viscosity have been calcu-
lated using a Green-Kubo relation for velocity autocorrela-
tion function and stress-stress autocorrelation function,
respectively.

Due to the oscillating nature of the stress-stress correla-
tion function at long time, the integrand in Eq. �3� has been
multiplied with exp�−�t*� to evaluate the integral with the
value of � needed for convergence found �28� to be 0.001.

IV. RESULTS AND DISCUSSION

The input parameters such as the radial distribution func-
tion, pair correlation function, direct correlation function,
and static structure factor needed for the calculation of shear
viscosity using the MCT approach discussed here have been
obtained through the integral equation theory by adopting the
procedure of Duh and Henderson �29�. The self-diffusivity
values for both the components have been obtained from our
simulation results.

We have used the present theory to calculate the shear
viscosity � of a LJ isotopic binary mixture for the physical
parameters: �*=0.85 and T*=0.965 at different composi-
tions. The particle mass for the � component has been kept

FIG. 1. Plot of the normalized ��t� vs time t* of isotopic LJ fluid
mixtures at different values of the dimensionless relative mass m�

*

for the � component. The size and interaction potential of both the
components are taken as identical and the density, temperature, and
composition parameters used are �*=0.85, T*=0.965, and x�=0.5.
The solid and dashed lines represent the present MCT based results
for ��t� for m�

* =2 and 16, respectively, whereas the symbols �filled
squares and circles� represent the corresponding simulation results.

FIG. 2. Plot of the scaled shear viscosity �� /�ideal� vs square
root of the dimensionless relative mass �m�

*�1/2 of isotopic LJ fluid
mixtures for the parameters �*=0.85, T*=0.965, and x�=0.5. The
MD simulation results are shown by filled circle whereas the MCT
results are represented by the solid line.

FIG. 3. Plot of the scaled shear viscosity �� /�ideal� vs square
root of the dimensionless relative mass �m�

*�1/2 of isotopic LJ fluid
mixtures for the parameters same as in Fig. 2 except x�=0.75. The
key is same as in Fig. 2.

FIG. 4. Plot of ��mct /�� and ��bin /�� vs square root of the
dimensionless relative mass �m�

*�1/2 of isotopic LJ fluid mixtures for
the parameters same as in Fig. 2. The key is same as in Fig. 2.
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constant whereas the same for the � component is varied
covering a wide range. For convenience, the mass of the
particles of the � component is expressed in dimensionless
form as m�

* = �m� /m��, in units of that of the � component.
We have plotted in Fig. 1 the time-dependent shear viscosity
��t� �MCT based as well as simulation results� versus time at
different values of m�

* for the composition x�=0.5. It is ob-
served that decay of ��t� slows down with increase in m�

* ,
leading to an increase in the value of the integrated quantity
�. With increase in m�

* , the MCT contribution to viscosity,
�MCT�t�, slows down due to slow relaxation of the collective
dynamic structure factor F
��k , t�. It is clear from Eq. �23�
that for a particular isotopic composition, the relaxation of
F
��k , t� mainly depends on the component diffusivities D�

and D�, both of which decrease with increase in m�
* , leading

to a slow relaxation of F
��k , t�. Although � increases with
an increase in the mass of the � component, what is more
interesting is its deviation from the ideal behavior, for which
we have plotted the quantity � /�ideal for a wide range of
values of the mass m�

* in Figs. 2 and 3 for the composition
x�=0.5 and x�=0.75, respectively. Also plotted in the same
figures are our simulation results for the shear viscosity and
a good agreement between the calculated and the simulation
results is observed. It is clear from these figures that the
nonideal behavior of � depends rather strongly on the mass
ratio especially at higher values. In order to understand the
relative contributions of the binary and mode-coupling com-
ponents to the total viscosity, we have plotted these quanti-
ties in Fig. 4. It is clear from the figure that the relative
binary contribution to the total viscosity gradually decreases,
whereas the relative mode-coupling contribution gradually
increases with increase in the mass m�

* . The decrease in the
binary contribution to the total viscosity with increase in
mass can easily be understood from Eqs. �9�, �12�, and �13�,
while the increase in the relative MCT contribution can be
attributed to slow relaxation of the collective modes.

Using the present simulation results of the component
diffusivities D� ,D� and shear viscosity �, we have obtained
the best fitted values for A
 and �
 as ln A�

=−1.94, ln A�=−1.66, ��=1.05, and ��=1.30 in Eq. �26� for
the composition x�=0.5. Using these constants in Eq. �26�,
we have plotted D
 vs � for the composition x�=0.5 in Fig.
5 along with the simulation results. An excellent agreement
with the simulation results justifies the proposed equation
�26�. It is interesting to note that while an increase in mass of
the heavier particle does affect the diffusivity of both the
components, the data for the lighter particle obey the Stoke-

Einstein relation rather well as is clear from the value of ��

being quite close to unity whereas for the heavier � particle,
the deviation is significant.

V. CONCLUSION

In this work, we have studied the effect of mass on the
shear viscosity of a binary fluid mixture using the micro-
scopic MCT as well as molecular dynamics simulation. The
calculated results based on the present MCT formalism are in
good agreement with our simulation results. The shear vis-
cosity increases with increase in the mass of the heavier
component, due to slowing down of the relaxation of the
collective dynamic structure factor. Earlier theoretical �12� as
well as simulation studies �30� have shown that the diffusiv-
ity depends only weakly on mass whereas the present study
shows that the shear viscosity has a much stronger mass
dependence than diffusivity. We have also proposed a
Stokes-Einstein like relation for a binary fluid mixture and
the calculated results using this relation are in excellent
agreement with the simulation results.
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