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We consider the critical short-time evolution of magnetic and droplet-percolation order parameters for the
Ising model in two and three dimensions, through Monte Carlo simulations with the �local� heat-bath method.
We find qualitatively different dynamic behaviors for the two types of order parameters. More precisely, we
find that the percolation order parameter does not have a power-law behavior as encountered for the magne-
tization, but develops a scale �related to the relaxation time to equilibrium� in the Monte Carlo time. We argue
that this difference is due to the difficulty in forming large clusters at the early stages of the evolution. Our
results show that, although the descriptions in terms of magnetic and percolation order parameters may be
equivalent in the equilibrium regime, greater care must be taken to interpret percolation observables at short
times. In particular, this concerns the attempts to describe the dynamics of the deconfinement phase transition
in QCD using cluster observables.
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I. INTRODUCTION

It is often useful to map a physical phase transition into
the geometric problem of percolation, e.g., in order to gain a
better understanding of how the transition is induced in the
system �see, e.g., Ref. �1��. This mapping is obtained through
a suitable definition of cluster in terms of the system’s vari-
ables and parameters. In the case of the Ising model, such
physical �droplet� clusters were introduced by Coniglio and
Klein �based on the prescription by Kasteleyn and Fortuin�
�2� and the mapping is well understood �3�. This also holds
for the so-called n-vector models �4�. The correct cluster
definition is of special interest in the description of more
complex phase transitions, such as the quark-deconfinement
transition in finite-temperature QCD, for which the physical
order parameter is not yet established. In this case there is
still no satisfactory definition for a “droplet” cluster, even in
the simpler pure-gauge case �5�.

When equilibrium properties are investigated, the descrip-
tions of the spin-model phase transition in terms of the mag-
netic order parameter or the percolation order parameter are
indeed equivalent and one finds the same critical exponents
�see, for example, Ref. �6� and references therein�. The same
may or may not be true for the dynamical evolution of the
different types of order parameters, although in principle one
might expect to find equivalence for dynamic quantities as
well, in particular for the behavior at short times. We recall
that the short-time behavior of the magnetic order parameter
M is described by a scale-free expression, in terms of a
power law �see, for instance Refs. �7–9��.

The study of the dynamic critical behavior of a percola-
tion order parameter with respect to the �Glauber� Monte
Carlo evolution might be of relevance for understanding
non-equilibrium effects in hot QCD, such as the effects due
to the heating and cooling of matter produced in heavy-ion

collisions. Indeed, the possible connection between the de-
confinement transition in QCD and the percolation phenom-
enon �10� has received renewed attention in recent years �5�
and the dynamics of cluster observables has been investi-
gated using hysteresis methods �11�. Note that the QCD
phase transition is predicted to fall into the Ising universality
class in the pure two-color �SU�2�� case and that the chiral
phase transition in the two-flavor full-QCD case is expected
to be in the universality class of the �continuous-spin� four-
vector model �12–14�. This motivates the connection be-
tween the percolation transitions for spin models and the
�dynamic� behavior at the QCD phase transition. We thus
consider here the short-time dynamics of the two- and three-
dimensional Ising model and focus on the dynamic critical
behavior of the percolation order parameter. �Preliminary re-
sults of our study were presented in �15,16�.� Note that the
dynamic behavior of cluster observables has been considered
for the droplet clusters in Ising and Potts models in various
studies �see, e.g., �17,18��, but mostly for the so-called clus-
ter numbers ns—which denote the average number of clus-
ters �per lattice site� containing s sites each—and not for the
percolation order parameter.

Here we investigate the dynamic critical behavior of the
�zero-field� Ising model

H = − J�
�i,j�

SiSj , �1�

where J is positive and each Si= ±1, for short Monte Carlo
times t, using the �local� heat-bath algorithm. We measure
the magnetization M = �1/V��iSi and we consider two differ-
ent definitions for the percolation order parameter. Indeed,
given a definition for a cluster on the lattice, one may con-
sider as the order parameter in percolation theory the
strength of the percolating cluster, defined for each configu-
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ration by the relative volume of the infinite cluster. �In par-
ticular, in the droplet picture for the Ising model, this would
give zero for temperatures above the critical one.� On a finite
lattice, one might consider the volume of the infinite cluster
to be the one of the spanning cluster, or zero when there is no
percolating cluster �i.e., above the critical temperature�. Note
that a spanning cluster is a set of spins connected from the
first to the last row of the lattice in at least one of its space
directions. Alternatively, one can also consider the relative
volume of the largest cluster �see, e.g., chapter 3 in �3��. We
denote these two definitions for the percolation order param-
eter respectively by � �in the case of the spanning cluster�
and �� �in the case of the largest cluster, which is not nec-
essarily a percolating one�.

In this work we compare the behaviors of the two types of
quantities just described �i.e., percolation or magnetic order
parameters� as functions of t. As shown below, we find that
whereas the magnetic order parameter displays a power-law
increase with t, the data for the percolation order parameters
� and �� are well fitted, respectively, by a diffusion and by
a behavior similar to the one of nucleation processes in first-
order transitions. In both cases the time scales—respectively
called � and ��—are related to the relaxation time to equilib-
rium. Indeed, we show that � and �� diverge as Lz when the
lattice side L tends to infinity, where z�2 is the dynamic
critical exponent of the heat-bath algorithm �19�.

II. SHORT-TIME (MONTE CARLO) DYNAMICS

Using renormalization-group theory, it can be shown
�9,20� that the early time evolution of an order parameter
�e.g., the magnetization M� already displays universal critical
behavior, given by

M�t,�,m0� = b−�/�M�tb−z,�b1/�,m0bx0� , �2�

where m0 is the initial magnetization, �	�T−Tc� /Tc, M is a
universal function, and b is a scale factor, which can be taken
equal to t1/z. We thus expect for T=Tc and small m0 a power-
law behavior at early times

M�t��→0 
 m0t�, �3�

with �= �x0−� /�� /z. In principle, we would assume that the
two percolation order parameters � or �� defined above
should have a similar behavior.

The heat-bath dynamics consist in choosing the two pos-
sible directions of each Ising spin according to the exact
conditional probability given by its nearest neighbors. Each
spin Si is chosen “up” or “down,” respectively, with prob-
ability pi or 1− pi, where

pi =
1

1 + exp�− 2�J�
j

Sj� , �4�

�=1/kBT, and the sum is over nearest neighbors of Si. After
a certain number of iterations the spin configuration obeys
the Boltzmann distribution. In the heat-bath method, since
the updates are local, this transient time becomes consider-
ably large at criticality.

The Fortuin-Kasteleyn clusters are obtained from the
Ising-model Hamiltonian by writing the partition function as

Z = �

S�

�

n�
� �

�i,j�

nij=1

pij�SiSj�� �
�i,j�

nij=0

�1 − pij�� , �5�

where pij =1−exp�−2J�� is the probability of having a link
between two nearest-neighbor sites of equal spin value. This
link is represented by nij and determines the clusters that will
be associated with percolation at the critical temperature
�21�. Note that the above defined clusters are used in the
Swendsen-Wang algorithm �22� to perform global moves in
which the spins in a cluster are flipped together. Here we
only use these clusters to calculate percolation observables,
whereas the dynamics are given are local heat-bath updates,
as described above.

FIG. 1. Plot of the early time evolution of the magnetic �M� and
percolation �� ,��� order parameters for the two-dimensional case.
Data are shown for m0=0.02 and L=200. Note the logarithmic scale
on both axes.

FIG. 2. Plot of the early time evolution of the magnetic �M� and
percolation �� ,��� order parameters for the three-dimensional
case. Data are shown for m0=0.02 and L=64. Note the logarithmic
scale on both axes.
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III. NUMERICAL RESULTS

In order to study the short-time dynamics we simulate at
T=Tc and force the system to have a random configuration
with initial magnetization m0. This is done by flipping the
appropriate number of randomly located spins of a com-
pletely disordered �infinite-temperature� configuration. We
let the system evolve in time and look for power-law behav-
ior of the order parameters M, �, and �� as functions of the
�Monte Carlo� time. Each temporal sequence is generated
from a different random seed, i.e., each sequence has a dif-
ferent initial spin configuration. The time history is then ob-
tained from an average over all the generated sequences.

We have studied the two- and three-dimensional cases,
performing Monte Carlo simulations, respectively, with
50 000 and 40 000 seeds, for several initial magnetizations
m0 and several lattice volumes, using the heat-bath algo-
rithm. We consider periodic boundary conditions. Note that
in order to compare the percolation order parameters � and
�� to M we consider the volumes of clusters of “up” spins
with positive sign and volumes of clusters of “down” spins
with negative sign when taking the average over the seeds.

We obtain that a power-law fit works very well for M,
yielding the literature value �23� for the exponent �. How-
ever, as can be seen in Figs. 1 and 2, the percolation order
parameters � and �� do not show a power-law behavior,
being consistent with exponential behaviors in terms of t /�,

thus having � as a time scale. As verified below, the expo-
nential behaviors are different for � and ��, but � is in both
cases directly related to the relaxation time to equilibrium.
We thus find the surprising result that although the equilib-
rium behaviors of M, �, and �� are equivalent, the different
types of order parameters show qualitatively different dy-
namic critical behavior.

More precisely, the behavior of � is given in the two- and
three-dimensional cases by

��t� = A exp�− �/t� , �6�

as can be seen from Table I. On the other hand, the behavior
of �� is given by

���t� = B
1 − exp�− �t/������ , �7�

as shown in Table II.
Fits of the data to the above forms are shown �for the

largest lattices considered� in Figs. 3 and 4, respectively, for
the two- and three-dimensional cases. Note that the values of
	2 per degree of freedom �DOF� may be significantly smaller
than one, since we perform uncorrelated fits. We see that the
departure of the percolation order parameters from the
power-law behavior of the magnetization remains even long
after the so-called microscopic time �9�. In other words, nei-
ther � nor �� can be fitted to a power law at short times. In
fact, the forms proposed for � and �� in Eqs. �6� and �7� are

TABLE I. Fits of ��t� to the form A exp�−� / t�. Data for the case m0=0.02. The fit intervals are chosen as
shown in the second column, whereas the errors in the fit parameters are adjusted to account for the fluctua-
tions in these parameters for slightly different fit intervals.

Volume 
t A � 	2 /DOF

1002 18–83 0.061�1� 85.5�9� 0.97

1252 28–110 0.062�1� 134�1� 0.98

1502 30–150 0.063�1� 192�2� 0.91

2002 41–240 0.061�1� 334�3� 0.69

243 3–100 0.0366�3� 5.9�3� 0.57

323 10–120 0.0397�5� 11.7�6� 0.42

483 15–120 0.0446�4� 28.4�4� 0.58

643 20–130 0.0467�3� 51.6�3� 0.68

TABLE II. Fits of ���t� to the form B
1−exp�−
t /������. Data for the case m0=0.02. The fit intervals are
chosen as shown in the second column, whereas the errors in the fit parameters are adjusted to account for the
fluctuations in these parameters for slightly different fit intervals.

Volume 
t B �� � 	2 /DOF

1002 7–100 0.104�5� 82�1� 0.71�1� 0.35

1252 8–100 0.126�5� 168�14� 0.70�1� 0.23

1502 7–100 0.115�4� 179�13� 0.72�1� 0.17

2002 10–100 0.20�1� 380�32� 0.73�1� 0.17

243 3–100 0.0349�1� 8.0�1� 0.82�1� 0.42

323 5–120 0.0372�2� 15.4�3� 0.83�2� 0.50

483 10–130 0.0394�3� 34.4�4� 0.90�1� 0.48

643 15–150 0.0402�5� 60.5�4� 0.93�1� 0.56
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well fitted by the data in two and three dimensions, for all
volumes considered. �We note however that the two-
dimensional data for � were fitted in �16� considering also a
second exponential term, adding a third parameter to this fit.�
The above data for � and �� can be fitted to the form Lz, in
the two- and three-dimensional cases separately. In all four
cases we find z�2. The two time scales can therefore be
associated with the relaxation time to equilibrium.

Note that the behavior of � �in two and three dimensions�
is a factor �t times the solution of a one-dimensional diffu-
sion equation at a fixed position in space �24�. In fact, the
expression for the concentration of diffusion material due to
a change in chemical potential along a direction x at a posi-
tion x0 and time t is given by �C /�t�exp�−x0

2 /4Dt�, where D
is the diffusion coefficient. Comparing this to the form for �
in Eq. �6�, we see that if we multiply the percolation order
parameter in this case by �t we obtain the diffusive form,
identifying x0

2 /4D with �. Of course, the factor �t corre-
sponds to the diffusion length for a random walk at time t.
Moreover, the fixed position x0 is proportional to ��, i.e.,
roughly the length of the lattice �since ��Lz as mentioned
above�. This connects the occurrence and strength of perco-
lation at time t to the probability that a random walk will
reach a length L after t steps.

The behavior of �� is similar to the one of the volume
fraction of particles in a process of nucleation and growth
�24�. We note that such a process occurs in first-order phase
transitions, while the physical transition in the two- and
three-dimensional Ising models is a continuous one. In par-
ticular, the behavior in Eq. �7� is observed in the dynamics of
weak first-order phase transitions, as seen, e.g., in Ref. �25�.
In that reference, the critical dynamics of a scalar field
quenched to a metastable state was investigated with a
model-A Langevin equation. In this context, our result for ��
would illustrate that for the same underlying dynamics
�model A, in this case of the heath-bath dynamics�, the short-
time behavior clearly depends on the specific observable and
its initial configuration. It would also be interesting to check

if the exponent � goes to 1 in the limit of very large L in
three dimensions �as seems to be suggested by the data in
Table II� or to relate the exponents in two and three dimen-
sions to the fractal dimensions associated with the percolat-
ing clusters in the two cases.

Regarding the so-called percolation cumulant or percola-
tion probability—taken as 1 if there is percolation and 0 if
there is not—we obtain that this quantity does not show a
power-law behavior in time, contrary to what is observed for
the Binder cumulant �9�. We find that the percolation cumu-
lant is also described by an exponential exp�−� / t�, with the
prefactor �t in two dimensions and t−0.34 in three dimensions.

IV. CONCLUSIONS

We have investigated numerically the critical heat-bath
dynamics for magnetic and percolation order parameters in
the Ising model at short Monte Carlo times, starting from a
small magnetization m0. From our results we see that al-
though the equilibrium behaviors of the magnetization M
and of the percolation order parameters � and �� are
equivalent, the two types of order parameters show qualita-
tively different dynamic critical behavior at short times. In-
deed, whereas the magnetic order parameter M shows a
power-law behavior with the exponent �, one finds that �
and �� have a time scale, given respectively by � in Eq. �6�
and �� in Eq. �7�. This time scale seems to be related to the
relaxation time of the algorithm used for thermalization.

The short-time behaviors of � and �� are well described
respectively by diffusion and by a behavior similar to a
growth and nucleation process. This may be related to the
difficulty in forming a macroscopic cluster at the early stages
of the simulation.
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FIG. 4. Data for the three-dimensional case and fits of � �lowest
curve� and �� �middle curve� according to the forms in Eqs. �6� and
�7�, respectively. The magnetization �top curve� is also shown, for
comparison. Data and fits are shown for m0=0.02 and L=64. Error
bars correspond to one standard deviation.

FIG. 3. Data for the two-dimensional case and fits of � �lowest
curve� and �� �middle curve� according to the forms in Eqs. �6� and
�7�, respectively. The magnetization �top curve� is also shown, for
comparison. Data and fits are shown for m0=0.02 and L=200. Error
bars correspond to one standard deviation.
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