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The exact expression of the first moment and the signal-to-noise ratio �SNR� have been calculated for a
linear system subject to an external periodic field as well as a multiplicative asymmetric dichotomous noise, by
using the Shapiro-Loginov formula. It has been found that the amplitude of the output signal, and the SNR,
respectively, exhibit two kinds of the phenomena of stochastic resonance: one is as the functions of the
parameters of the asymmetric dichotomous noise, such as the noise strength D, and the parameter k describing
the asymmetric degree of the dichotomous noise; the other is as the function of the parameter of the input
signal, such as the input signal frequency �.
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I. INTRODUCTION

Noise-induced dynamics has become a center of the sub-
ject that has been investigated for a long time in nonlinear
statistical systems. One of the phenomena caused by the ap-
pearance of the noise is the phenomenon of stochastic reso-
nance �SR� that has attracted considerable interest due to its
many applications in biology, physics, chemistry, and other
scientific fields �1�. Recently, not only the number of publi-
cations on SR phenomenon is growing steadily, but also
much extension of the conception of SR has appeared, such
as doubly SR �2�, stochastic multiresonance �3�, coherence
resonance �generated in the system without an external force�
�4�, quantum SR �5�, control of SR �6�, autonomous SR �7�,
aperiodic SR �8�, etc.

Generally, one believes that the response of the system
undergoes resonancelike behavior, and the typical manifesta-
tion of SR is the existence of a maximum of the output signal
or of the signal-to-noise ratio �SNR� as a function of the
noise intensity. But now, besides the general definition, the
features of the nonmonotonic dependence of the output sig-
nal or SNR on the correlation time of the noise �9�, and the
frequency of the input signal have also been used to testify
SR phenomenon �10�.

Three ingredients �i.e., nonlinearity, a periodic signal, and
a random force� were thought of as the necessary condition
for the appearance of SR. But, it has been later found that SR
may appear under the condition in the absence of the peri-
odic signal �such as coherence resonance�. Subsequently, the
study of the linear system has shown the appearance of SR.
It had turned out that SR took place for color multiplicative
noise with a short correlation time �11� in the linear system.
It was shown that SR also occurred in the linear system for
Gaussian colored noise �12�, Poissonian noise �13�, compos-
ite noise �14� �which is intermediate between O-U noise
�Gaussian colored noise� and signal-modulated additive col-
ored noise �15��, and correlated noise �9�.

In this paper, we will investigate the phenomenon of sto-
chastic resonance induced by the multiplicative asymmetric
dichotomous noise in a linear system, from the aspect of the
amplitude of the output signal and the signal-to-noise ratio.

II. OUTPUT SIGNAL

We consider a generic linear stochastic system subject to a
sinusoidal signal described by the following stochastic dif-
ferential equation:

ẋ = 1 − bx + ��t�x + a sin��t� , �1�

where ��t� represents the asymmetric dichotomous noise,
which takes two asymmetric values −E, and kE, with E�0
and k�0. k represents the asymmetric degree of the noise.
When k=1, the noise becomes a symmetric noise. The tran-
sition rate from −E to kE is �, and the reverse transition rate
is ��. Without loss of generality, we assume that

���t�� =
kE� − E��

� + ��
= 0. �2�

Thus, we can obtain k�=��. The correlation function of the
asymmetric dichotomous noise ��t� is

���t���t��� = D� exp�− ��t − t��� . �3�

Here, �= ��+��� is the reverse of the correlation time � of
the asymmetric dichotomous noise, and the definition of the
strength of the asymmetric dichotomous noise is

D =
1

2
�

−�

+�

�������0��d� =
kE2

�
. �4�

From Eq. �4�, we can find the noise strength D is not inde-
pendent, but is connected with the asymmetric degree �i.e.,
k�, the correlation time �=1/�, and E of the noise. In Ap-
pendix A, we give an example of the application of Eq. �1�
with noise ��t� whose statistical properties satisfy Eqs.
�2�–�4�.

In order to make the calculation of the following process
be convenient, we first transform the asymmetric dichoto-
mous noise to a one with values −c and c. Thus, we assume

��t� = ��t� + g , �5�

where ��t� is a dichotomous noise, which takes two values
−c and c �c�0�. g is a constant. The transition rate from −c
to c is �, and the reverse transition rate is ��. Taking the
ensemble average of Eq. �5� and considering Eq. �2�, we can
obtain

PHYSICAL REVIEW E 74, 051115 �2006�

1539-3755/2006/74�5�/051115�9� ©2006 The American Physical Society051115-1

http://dx.doi.org/10.1103/PhysRevE.74.051115


���t�� = − g . �6�

Similarly, we can also derive the correlation function of ��t�

���t���t��� = g2 + D� exp�− ��t − t��� . �7�

Using the relation between the asymmetric dichotomous
noise ��t� and the dichotomous noise ��t�, we can get

c =
�k + 1�E

2
and g =

�k − 1�E
2

. �8�

In order to calculate the first moment, we average Eq. �1�
about x and substitute Eq. �5� into the process of calculation,
which gives rise to

d�x�t��
dt

= 1 − �b − g��x�t�� + ���t�x�t�� + a sin��t� . �9�

We can find that there is one new correlation factor
���t�x�t�� that appeared in Eq. �9�. To solve the equation, we
will make use of the well-known “formulas of differentia-
tion” �16� that proposed by Shapiro and Loginov, and had
been extensively used in Ref. �17�. For the factor ���t�x�t��,
we have �18�

d���t�x�t��
dt

= 	��t�
dx�t�

dt

 − ����t�x�t�� + ��− g��x�t��

= − �b + � − g����t�x�t�� + �c2 − �g��x�t��

− g�1 + a sin��t�� , �10�

in which we have used �2=c2 because of �= ±c. We can find
that Eqs. �9� and �10� form the closed equations for �x�t��
and ���t�x�t��. Substituting Eq. �9� into Eq. �10�, we can
obtain the two-order differential equation about �x�t��

d2�x�t��
dt2 + �2�b − g� + ��

d�x�t��
dt

+ ��b + � − g��b − g� − c2 + �g��x�t��

= a� cos��t� + �b + � − 2g��1 + a sin��t�� . �11�

According to the character of the solution of the linear
two-order differential equation, the solution of Eq. �11� can
be decomposed into two parts. Thus, we can write the solu-
tion of Eq. �11� in the following form:

�x�t�� = �x�t��exter + �x�t��inter, �12�

where �x�t��exter represents the output signal, which is in-
duced by the input signal a sin��t�; and �x�t��inter is deter-
mined by the internal dynamical characteristic of the system.
Passing through the detailed calculation, we can obtain the
following form:

�x�t��exter = A sin��t + 	� ,

�x�t��inter =
f4

f1 + �2 , �13�

where

A = a� f3
2 + f4

2

f1
2 + f2

2�1/2

, 	 = arctan� f1f3 − f2f4

f2f3 + f1f4
� , �14�

and

f1 = �b + � − g��b − g� − c2 + �g − �2, f3 = � ,

f2 = ��2�b − g� + ��, f4 = b + � − 2g . �15�

From Eq. �14�, we can plot the figures for the amplitude A
of the output signal vs the parameters of the noise and the
input signal. Study shows that the amplitude of the output
signal exhibits two kinds of SR phenomena. One is as the
function of the parameters of the asymmetric dichotomous
noise, such as the noise strength D, and the parameter k
describing the asymmetric degree of the dichotomous noise
�see Figs. 1, 2�a�, and 2�b��. The other is as the function of

FIG. 1. The amplitude A of the output signal as the function of
the noise strength D and the parameter k with b=1, E=1, a=1.5,
and �=0.3.

FIG. 2. �a� The amplitude A of the output sig-
nal as the function of the noise strength D for
different parameters k=1, 1.8, 2.3, and 3 with b
=1, E=1, a=1.5, and �=0.3; �b� The amplitude
A of the output signal as the function of the pa-
rameter k for different parameters D=1, 1.5, 2,
and 3 with b=1, E=1, a=1.5, and �=0.3. The
circle points are the results of numerical simula-
tion in the case of k=1.8 with b=1, E=1, a
=1.5, and �=0.3 for �a�, and D=1.5 with b=1,
E=1, a=1.5 and �=0.3 for �b�.
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the parameter of the input signal, such as the input signal
frequency � �see the dashed curve in Fig. 3�. In Fig. 1, we
depict the dependence of the amplitude A of the output signal
on the noise parameters, namely, when the noise strength D
and the noise parameter k vary simultaneously with other
parameters b=1, E=1, a=1.5, and �=0.5. To observe the
phenomena appearing in Fig. 1 clearly, in Fig. 2�a� we plot
the objective figure of dependence of the amplitude A of the
output signal on the noise strength D for different values k
�k=1, 1.8, 2.3, and 3� with the other parameters b=1, E=1,
a=1.5, and �=0.5; in Fig. 2�b�, we depict A on the param-
eter k describing the degree of the asymmetry of the dichoto-
mous noise for different noise strength D �D=1, 1.5, 2, and
3� when the other parameters take b=1, E=1, a=1.5, and
�=0.5. In Fig. 3, we draw the figure of the amplitude A as
the function of the input signal frequency � for the different
values of noise strength D and the parameter k �k=1.5 and
D=1; k=1.7 and D=5; and k=2 and D=7� when the other
parameters take E=1, a=1.5, and b=1.

The results plotted in Figs. 1–3 are the results of long
algebraic calculation. A comparison to the numerical simula-
tion would help appreciate the correctness of the algebra.
Thus, in Figs. 2�a�, 2�b�, and 3, we give some results of the
numerical simulation �see the circle points in Figs. 2�a�, 2�b�,
and 3� �19�.

III. CORRELATION FUNCTION
AND SIGNAL-TO-NOISE RATIO

Generally speaking, we usually use the signal-to-noise ra-
tio �SNR� to describe the SR phenomenon. Thus, it is neces-
sary to calculate the SNR. To obtain that, we must first cal-
culate the correlation function of the system

Multiplying x�t�� on both sides of Eq. �1�, we can get

d�x�t�x�t���
dt

= �1 + a sin��t��x�t�� − �b − g�x�t�x�t��

+ ��t�x�t�x�t�� . �16�

Taking the average of Eq. �16� about x, we can obtain

d�x�t�x�t���
dt

= �1 + a sin��t���x�t��� − �b − g��x�t�x�t���

+ ���t�x�t�x�t��� . �17�

One new correlator ���t�x�t�x�t��� appears in Eq. �17�. To get
the correlator, we will use the Shapiro-Loginov formula
�16,18�. For this correlator ���t�x�t�x�t���, we have

d���t�x�t�x�t���
dt

= 	��t�
d�x�t�x�t���

dt

 − ����t�x�t�x�t���

+ ����t���x�t�x�t��� . �18�

Substituting Eq. �16� into Eq. �18�, we obtain

d���t�x�t�x�t���
dt

= �1 + a sin��t�����t�x�t��� − �b − g + ��


���t�x�t�x�t��� + �c2 − �g��x�t�x�t��� ,

�19�

where we have used �2=c2. From Eqs. �17� and �19�, we can
obtain the two-order differential equation about �x�t�x�t���

d2�x�t�x�t���
dt2 + �2�b − g� + ��

d�x�t�x�t���
dt

+ ��b + � − g��b − g� − c2 + �g��x�t�x�t���

= �a� cos��t� + �b + � − g��1 + a sin��t����x�t���

+ �1 + a sin��t�����t�x�t��� . �20�

According to the Shapiro-Loginov formula �16�, the cor-
relator ���t�x�t��� in Eq. �20� satisfies

d���t�x�t���
dt

= − ����t�x�t��� + ����t���x�t��� . �21�

Integrating Eq. �21� from t� to t, and considering Eq. �9� in
the calculation process, we can get the form of the solution
of Eq. �21�

���t�x�t��� = ���t��x�t���exp�− ��t − t��� + g�x�t���


�exp�− ��t − t��� − 1�

= A�� cos�	� + b sin�	��exp�− ��t − t���

− Ag sin�	��cos��t��

+ �Ab cos�	� − A� sin�	� − a�


exp�− ��t − t��� − Ag cos�	��sin��t��

+ �hb − 1�exp�− ��t − t��� − hg , �22�

where h= �x�t��inter.
Substituting Eqs. �12� and �22� into Eq. �20�, we get

FIG. 3. The amplitude A of the output signal as the function of
the input signal frequency � for the different parameter k and noise
strength D �k=1.5 and D=1; k=1.7 and D=5; k=2 and D=7� when
other parameters take E=1, a=1.5, and b=1. The circle points are
the results of numerical simulation in the case of k=2 and D=7
with E=1, a=1.5, and b=1.
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d2�x�t�x�t���
dt2 + �2�b − g� + ��

d�x�t�x�t���
dt

+ ��b + � − g��b − g� − c2 + �g��x�t�x�t���

= a�� cos��t� + �b + � − 2g�sin��t���x�t���

+ �b + � − 2g��x�t��� + a��x�t���� + b�x�t���

− 1 − a sin��t���exp�− ��t − t���sin��t�

+ ��x�t���� + b�x�t��� − 1 − a sin��t���exp�− ��t − t��� .

�23�

The solution of Eq. �23� is

�x�t�x�t��� = M sin��t + �� + N sin��t + ��exp�− ��t − t���

+ D exp�− ��t − t��� + F , �24�

where

M = �w3
2 + w4

2

w1
2 + w2

2�1/2

, � = arctan�w1w3 − w2w4

w2w3 + w1w4
� , �25�

N = � z3
2

z1
2 + z2

2�1/2

, � = arctan� z2

z1
� , �26�

D =
�x�t���� + b�x�t��� − 1 − a sin��t��

�b − � − g��b − g� − c2 + �g
, �27�

and

F =
�b + � − 2g��x�t���

�b − g + ���b − g� − c2 + �g
�28�

with

w1 = �b − g + ���b − g� − c2 + �g − �2,

w2 = ��2�b − g� + �� ,

w3 = a��x�t���, w4 = a�b + � − 2g��x�t��� , �29�

and

z1 = �b − g − ���b − g� − c2 + �g − �2, z2 = ��� − 2�b − g�� ,

z3 = a��x�t���� + b�x�t��� − 1 − a sin��t��� . �30�

In Eq. �24�, �t− t��=��0. Thus, we should calculate the
correlation function when t�= t+� and t�= t−�, respectively.
Because the results of the calculation are more complicated,
we write the results in Appendix B.

For Eq. �B1�, the correlation function �x�t�x�t−��� de-
pends on both times t and �. After taking the average about t
within one period of 2�−1, we can obtain

��x�t�x�t − ����t =
�

2
�

0

2/�

�x�t�x�t − ���dt

=
1

2
�aA��w1 − �b + � − 2g�w2�

w1
2 + w2

2 sin�	 − ��� +
aA��w2 + �b + � − 2g�w1�

w1
2 + w2

2 cos�	 − ���

+
a exp�− ���

z1
2 + z2

2 
 �z2A�� cos�	� + b sin�	��cos���� − �Ab cos�	� − A� sin�	� − a�sin�����

+ z1A�� cos�	� + b sin�	��sin���� + �Ab cos�	� − A� sin�	� − a�cos�������
+

hb − 1

�b − � − g��b − g� − c2 + �g
exp�− ��� +

h�b + � − 2g�
�b + � − g��b − g� − c2 + �g

. �31�

Similarly, after taking the average about t within one period of 2�−1 for �x�t�x�t+��� �Eq. �B2��, we can get

��x�t�x�t + ����t =
�

2
�

0

2/�

�x�t�x�t + ���d�t + ��

=
1

2�aA��w1 − �b + � − 2g�w2�
w1

2 + w2
2 sin�	 − ��� +

aA��w2 + �b + � − 2g�w1�
w1

2 + w2
2 cos�	 − ���

+
a exp�− ���

z1
2 + z2

2 �z2A�� cos�	� + b sin�	��cos���� − �Ab cos�	� − A� sin�	� − a�sin�����

+ z1A�� cos�	� + b sin�	��sin���� + �Ab cos�	� − �A� sin�	� − a�cos�������

+
hb − 1

�b − � − g��b − g� − c2 + �g
exp�− ��� +

h�b + � − 2g�
�b + � − g��b − g� − c2 + �g� . �32�

JING-HUI LI AND YIN-XIA HAN PHYSICAL REVIEW E 74, 051115 �2006�

051115-4



Comparing Eq. �31� to Eq. �32�, we can find that the correlation functions ��x�t�x�t−����t and ��x�t�x�t+����t are the wholly
same. This is the fact that the system is in its asymptotic limit. The power spectrum S��� is defined as the Fourier transform
of the correlation function. We first obtain one-side averaged power spectrum

S����+�� = �
−�

0

��x�t�x�t − ����t exp�− i���d� + �
0

+�

��x�t�x�t + ����t+� exp�− i���d�

=


2
�aA��w2 + �b + � − 2g�w1�

w1
2 + w2

2 cos�	� +
aA��w1 − �b + � − 2g�w2�

w1
2 + w2

2 sin�	������ + �� − ��� − ���

+
a

2�z1
2 + z2

2�
�z2A�� cos�	� + b sin�	�� + z1�Ab cos�	� − A� sin�	� − a��� �

�� − ��2 + �2 +
�

�� + ��2 + �2�
+

2h�b + � − 2g�
�b + � − g��b − g� − c2 + �g

���� +
hb − 1

�b − � − g��b − g� − c2 + �g

�

�2 + �2 . �33�

By the same way, we can also obtain the other-side aver-
aged power spectrum. Thus, the total power spectrum is

S��� = G1��� − �� + G2���� + G3, �34�

where

G1 = �aA��w2 + �b + � − 2g�w1�
w1

2 + w2
2 cos�	�

+
aA��w1 − �b + � − 2g�w2�

w1
2 + w2

2 sin�	�� ,

G2 =
4h�b + � − 2g�

�b + � − g��b − g� − c2 + �g
,

G3 =
a

�z1
2 + z2

2�
�z2A�� cos�	� + b sin�	��

+ z1�Ab cos�	� − A� sin�	� − a��


 � �

�� − ��2 + �2 +
�

�� + ��2 + �2�
+

hb − 1

�b − � − g��b − g� − c2 + �g

�

�2 + �2 . �35�

We can note that the power spectrum in Eq. �34� is di-
vided into three parts: the signal output, which is exhibited
by a � function at the frequency �; the zero-frequency term,
which is connected with interaction between the asymmetric
dichotomous noise and the internal dynamical of the system;
and the broadband noise output term.

The SNR that we can obtain is

fSNR =
G1

G3�� = ��
. �36�

In Fig. 4, we plot the dependence of SNR on the noise
strength D and the noise parameter k, simultaneously, for the
other parameters E=1.0, �=0.3, a=1.5, and b=1.0. It is
clear that there is SR phenomenon. In addition, we also de-
pict the dependence of SNR on the noise parameters k and D,
respectively �see Figs. 5�a� and 5�b��. Some results of the
numerical simulation �19� are also given in Figs. 5�a� and
5�b� �see the circle points in Figs. 5�a� and 5�b��.

IV. CONCLUSION AND DISCUSSION

In this paper, we have derived the exact expression of the
first moment, the correlation function, and the signal-to-noise
ratio for a linear system subject to the multiplicative asym-
metric dichotomous noise by making use of the “formula of
differentiation” proposed by Shapiro and Loginov �16,18�.
By studying the influence of the amplitude of the output
signal of the first moment and the SNR as the functions of
the parameters of the noise and the parameter of the input
signal, we have found that the amplitude of the output signal
and the SNR, respectively, have exhibited two kinds of SR
phenomena. One is as the function of the parameters of the
asymmetric dichotomous noise, such as the noise strength D
�see Figs. 1, 2�a�, 4, and 5�a��, and the parameter k �see Figs.

FIG. 4. The SNR as the function of the noise strength D and the
parameter k for the other parameters E=1, �=0.5, a=1.5, and
b=1.
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1, 2�b�, 4, and 5�b�� describing the asymmetric degree of the
dichotomous noise; the other is as the function of the param-
eter of the input signal, such as the input signal frequency �
�see the dashed curve in Fig. 3�. We have noted that the SR
phenomenon produced by the multiplicative noise has been
first reported by Gammaitoni et al. �20�. �They call this phe-
nomenon “Multiplicative stochastic resonance.”� Moveover,
SR in the presence of zero-mean asymmetric drives has also
been studied in the literature �21�; in Ref. �22�, Marchesoni
et al. have investigated the effect of the asymmetry of an
asymmetric Schmitt triger on the phenomenon of stochastic
resonance and characterized this effect in terms of both spec-
tral properties and switch time distributions of the trigger
output.

In Figs. 2 and 5, we can observe that the phenomenon of
stochastic resonance happens for different values of D and k.
This is because, for the fixed parameters b, E, a, and �, the
intrinsic frequency of the system is determined by D and k
�23�. In addition, in Fig. 5�b� we can observe the apparent
divergence for large value of k. This is because, with increas-
ing the value of k, for a large value of k, the broadband noise
output for the power spectrum will become smaller and
smaller �when k→�, the noise output will tend to zero� �24�.

The external periodic signal, a random force �noise�, and
nonlinearity are the necessary conditions for the appearance
of SR. Nonlinearity means the system has two or more po-
tential wells. SR can happen when the particles of the system
are forced to move from one well to the other in the presence
of the proper noise. However, there is only one potential well
in a linear system. The additive noise can only change the
internal thermal motion of particles and enhance the re-
sponse of the system. It cannot affect the structure of the
system. Thus a linear system, only driven by the additive
noise, cannot give rise to SR phenomenon in the absence of
the nonlinearity condition. Although multiplicative color
noise belongs to the non-Markov noise, it can produce the
nonlinearity which is needed for the appearance of the SR
phenomenon. That is the reason why we find that SR takes
place only for multiplicative color noise in a linear system.

The asymmetric dichotomous noise ��t�, which we as-
sume it takes a and b �a�b� and ���t���t���=D� exp�−��t
− t���, can be transformed into the white �non-Gaussian� shot
noise when a→�, �→�, and b, D fixed; it turns out to
white Gaussian noise when �→�, a→�, b→�, and D
fixed. In studying these situations, we can find that no SR
phenomena appear.

The system considered by us, in this paper, is driven by
the multiplicative asymmetric dichotomous noise. It is found

that SR phenomena appear. If the system is driven by addi-
tive asymmetric dichotomous noise, then no SR phenomenon
appears. If the noise becomes three-states, or even more-
states noise, then how is the case? This problem will be
studied by us in the future.
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APPENDIX A

In this appendix, we give an example of the application of
Eq. �1� with noise ��t� whose statistical properties satisfy
Eqs. �2�–�4�.

See the electric circuit in Fig. 6, where L is a electric
inductance �constant�, R a resistance �constant�, and r�t� a
dichotomous resistor that fluctuates between two values ra
and rb, with mean waiting times ta and tb, respectively. This
can be achieved by inserting into the circuit a point contact
whose conductance is controlled by an asymmetric two-level
system tunneling incoherently between the two states with
rates �=1/ ta and ��=1/ tb �25,26�. Accordingly, the fluctua-
tions in the point contact resistor can be modeled as a sta-
tionary Markovian dichotomic process �telegraphic noise�.

The dynamics of the circuit is governed by the following
stochastic differential equation:

FIG. 5. �a� The SNR as the function of the
noise strength D for different parameters k=3, 4,
5, and 6 with b=1, E=1, a=1.5, and �=0.5; �b�
the SNR the function of the parameter k for dif-
ferent parameters D=0.6, 0.65, 0.7, 1 and 2 with
b=1, E=1, a=1.5, and �=0.5. The circle points
are the results of numerical simulation in the case
of k=4 with b=1, E=1, a=1.5, and �=0.5 for
�a�, and D=0.65 with b=1, E=1, a=1.5, and �
=0.5 for �b�.

FIG. 6. An electric circuit considered by us. R is a constant
resistance; L is a constant electric inductance; r�t� is the dichoto-
mous resistance, which has values ra and rb �the transition rate from
ra to rb is �, and the reverse transition rate is ���; U0 is a constant
voltage source; and �=a sin �t is an ac oscillatory voltage source.
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L
i

dt
+ Ri + ir�t� = U0 + A sin��t� , �A1�

where r�t��ra ,rb �ra�rb�0� is the dichotomous resistor,
which is a telegraphic noise.

We assume ��=k�, i.e., k=�� /�. In order to get Eq. �1�,
we make the following transformation. Set r�t�=��t�+g,
where ��t� is a dichotomous noise, which takes two values E
and −kE, g is a constant, and the transition rate from E to
−kE is � for ��t�, and the reverse transition rate is ��. Using
the relations between the noise r�t� and the noise ��t�, we
can get E= �ra−rb� / �1+k� and g= �kra+rb� / �1+k�. Taking
the ensemble average of r�t�=��t�+g, we can obtain ���t��
=0. We can also derive the correlation function of ��t�:
���t���t���=D� exp�−� � t− t� � �.

Substituting r�t�=��t�+g into Eq. �A1�, in the dimension-
less form setting L=1, U0=1 and R+g=b, and writing A, i
and ��t� respectively as a, x and −��t�, we get

ẋ = 1 − bx + ��t�x + a sin��t� , �A2�

in which the statistical properties of the noise ��t� satisfy
Eqs. �2�–�4�.

Equation �A2� is just the model we considered in this
paper. Now model �1�, studied in this paper, becomes a prac-
tical physical problem �i.e., an electric circuit �see Fig. 6��.

APPENDIX B

When t�= t−�, Eq. �24� becomes

�x�t�x�t − ��� =
1

2
�aA��w1 − �b + � − 2g�w2�

w1
2 + w2

2 sin�	 − ��� −
aA��w2 + �b + � − 2g�w1�

w1
2 + w2

2 cos�	 − ���

+
a exp�− ���

z1
2 + z2

2 �z2A�� cos�	� + b sin�	��cos���� − �Ab cos�	� − A� sin�	� − a�sin����� − z1A�� cos�	�

+ b sin�	��sin���� + �Ab cos�	� − A� sin�	� − a�cos�������cos�2�t� +
1

2
�aA��w1 − �b + � − 2g�w2�

w1
2 + w2

2


 cos�	 − ��� −
aA��w2 + �b + � − 2g�w1�

w1
2 + w2

2 sin�	 − ��� +
a exp�− ���

z1
2 + z2

2 �z1A�� cos�	� + b sin�	��cos����

− �Ab cos�	� − A� sin�	� − a�sin����� + z2A�� cos�	� + b sin�	��sin���� + �Ab cos�	� − A� sin�	�

− a�cos�������sin�2�t� + �ah��w2 + �b + � − 2g�w1�
w1

2 + w2
2 +

a�hb − 1�z1 exp�− ���
z1

2 + z2
2

+
A�b + � − 2g�cos�	 − ���

�b + � − g��b − g� − c2 + �g
+

A�� cos�	� + b sin�	��sin���� + �Ab cos�	� − A� sin�	� − a�cos����
�b − � − g��b − g� − c2 + �g

exp

�− ����sin��t� + �ah��w1 − �b + � − 2g�w2�
w1

2 + w2
2 +

a�hb − 1�z2 exp�− ���
z1

2 + z2
2 +

A�b + � − 2g�sin�	 − ���
�b + � − g��b − g� − c2 + �g

+
A�� cos�	� + b sin�	��cos���� − �Ab cos�	� − A� sin�	� − a�sin����

�b − � − g��b − g� − c2 + �g
exp�− ����cos��t�

+
1

2
�aA��w1 − �b + � − 2g�w2�

w1
2 + w2

2 sin�	 − ��� +
aA��w2 + �b + � − 2g�w1�

w1
2 + w2

2 cos�	 − ���

+
a exp�− ���

z1
2 + z2

2 �z2A�� cos�	� + b sin�	��cos���� − �Ab cos�	� − A� sin�	� − a�sin����� + z1A�� cos�	�

+ b sin�	��sin���� + �Ab cos�	� − A� sin�	� − a�cos������� +
hb − 1

�b − � − g��b − g� − c2 + �g
exp�− ���

+
h�b + � − 2g�

�b + � − g��b − g� − c2 + �g
. �B1�

However, when t�= t+�, the Eq. �24� becomes
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�x�t�x�t + ��� =
1

2
�aA��w1 − �b + � − 2g�w2�

w1
2 + w2

2 sin�	 − ��� −
aA��w2 + �b + � − 2g�w1�

w1
2 + w2

2 cos�	 − ���

−
a exp�− ���

z1
2 + z2

2 �z2A�� cos�	� + b sin�	��cos���� − �Ab cos�	� − A� sin�	� − a�sin�����

− z1A�� cos�	� + b sin�	��sin���� + �Ab cos�	� − �A� sin�	� − a�cos��������cos�2��t + ���

+
1

2
�aA��w1 − �b + � − 2g�w2�

w1
2 + w2

2 cos�	 − ��� +
aA��w2 + �b + � − 2g�w1�

w1
2 + w2

2 sin�	 − ���

+
a exp�− ���

z1
2 + z2

2 �z1A�� cos�	� + b sin�	��cos���� − �Ab cos�	� − A� sin�	� − a�sin����� + z2A�� cos�	�

+ b sin�	��sin���� + �Ab cos�	� − A� sin�	� − a�cos�������sin�2��t + ���

+ �a�hb − 1�z1 exp�− ���
z1

2 + z2
2 cos���� +

a�hb − 1�z2 exp�− ���
z1

2 + z2
2 sin���� +

ah��w2 + �b + � − 2g�w1�
w1

2 + w2
2 cos����

+
ah��w1 − �b + � − 2g�w2�

w1
2 + w2

2 sin���� +
A�b + � − 2g�cos�	�

�b + � − g��b − g� − c2 + �g

+
�Ab cos�	� − A� sin�	� − a�exp�− ���

�b − � − g��b − g� − c2 + �g �sin���t + ��� + �−
ah��w2 + �b + � − 2g�w1�

w1
2 + w2

2 sin����

+
ah��w1 − �b + � − 2g�w2�

w1
2 + w2

2 cos���� −
a�hb − 1�z1 exp�− ���

z1
2 + z2

2 sin���� +
a�hb − 1�z2 exp�− ���

z1
2 + z2

2 cos����

+
A�b + � − 2g�sin�	�

�b + � − g��b − g� − c2 + �g
+

�A� cos�	� + Ab sin�	��exp�− ���
�b − � − g��b − g� − c2 + �g �cos���t + ���

+
1

2
�aA��w1 − �b + � − 2g�w2�

w1
2 + w2

2 sin�	 − ��� +
aA��w2 + �b + � − 2g�w1�

w1
2 + w2

2 cos�	 − ��� +
a exp�− ���

z1
2 + z2

2


 �z2A�� cos�	� + b sin�	��cos���� − �Ab cos�	� − �A� sin�	� − a�sin������ + z1A�� cos�	�

+ b sin�	��sin���� + �Ab cos�	� − �A� sin�	� − a�cos�������� +
hb − 1

�b − � − g��b − g� − c2 + �g
exp�− ���

+
h�b + � − 2g�

�b + � − g��b − g� − c2 + �g
. �B2�
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