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We investigate nonequilibrium behavior of driven dissipative systems, using a model we recently presented
�Phys. Rev. Lett., 93, 240601 �2004��. We solve the non-Boltzmann steady state energy distribution and the
temporal evolution to it, and find its high energy tail to behave exponentially. We demonstrate that various
measures of effective temperatures generally differ. We discuss infinite hierarchies of effective temperatures
defined from moments of the nonexponential energy distribution, and relate them to the “configurational
temperature,” measured directly from instantaneous particle locations without any kinetic information. We
calculate the “granular temperature,” characterizing the average energy in the system, two different “fluctuation
temperatures,” scaling fluctuation-dissipation relations, and the “entropic temperature,” defined from differen-
tiating the entropy with respect to energy.
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I. INTRODUCTION

Systems of many particles interacting dissipatively are far
from thermodynamic equilibrium, and a general theoretical
description of their statistical mechanics is lacking, in con-
trast to systems in equilibrium, for which there is a well-
established theory. In this paper we use exact solutions of a
simple stochastic model in order to explore aspects of dissi-
pative systems. In particular, we are interested in steady
states: their non-Boltzmann energy distribution, the way in
which a system arrives at its steady state, and various pro-
posed definitions of temperature. Previous theoretical re-
search on energy distributions and effective temperatures in
various driven dissipative systems �granular materials �1–9�,
foams �10–12�, and glasses �13–15�� has been mostly nu-
merical or approximate. Therefore the resulting distributions
and effective temperatures may agree with an effective equi-
librium behavior due to numerical error.

In systems comprised of macroscopic particles, energy is
dissipated via interactions, being transferred from macro-
scopic degrees of freedom �such as motion of particles� into
microscopic degrees of freedom �heat�, and cannot be trans-
formed back. Continuous driving is needed in order to main-
tain such a system in a dynamic state. One way to model this
driving is by holding the system in contact with a bath, or
large energy reservoir. As in �16�, we concentrate on driving
mechanisms where this bath is in equilibrium. The bath
therefore possesses a well-defined temperature which we
shall denote TB. A nondissipative system driven by a thermal
bath would reach thermodynamic equilibrium with it, where
the energy distribution is given by the exponential Boltz-
mann distribution, and the system temperature is equal to the
bath temperature.

The temperature of an equilibrium system is manifested in
various measurements that can be performed on it. A non-
equilibrium system does not, a priori, have a unique well-

defined temperature, and each such measurement inspires the
definition of a corresponding effective temperature. For ex-
ample, the entropic temperature TS is the inverse of the de-
rivative of entropy with respect to energy �11,13,17,18�, in
analogy with the definition of temperature in statistical me-
chanics. The principle of energy equipartition in thermal
equilibrium motivates defining the granular temperature TG
from the average energy per degree of freedom �19�; the
equilibrium fluctuation-dissipation theorem suggests defining
the fluctuation temperature TF from the ratio of fluctuation to
response �20,21�; recent results expressing the equilibrium
temperature from ensemble averages of particle locations
�without any kinetic information� �22,23� lead to the defini-
tion of a configurational temperature TC as another measure
of effective temperature for nonequilibrium systems �24,25�.
All these definitions yield the same value in equilibrium.

In steady states of driven dissipative systems all effective
temperatures are generally much smaller than TB �TB charac-
terizes the driving mechanism and should not be confused
with the actual temperature of the environment which is typi-
cally much lower�. Unlike thermal equilibrium, the values of
effective temperatures of a system depend on the details of
its coupling with the bath. Although these systems are far
from equilibrium, and their energy distributions differ sig-
nificantly from the Boltzmann distribution, there is evidence
for coincidence of different effective temperatures. Different
TF’s of the same system, obtained from correlations and re-
sponse of different variables, have been found in numerical
experiments to coincide in glasses �13–15�, and to coincide
with TG in granular gases �7,8� and with TS in sheared foam
�11�.

In this paper we study an exactly solvable dissipative
model, in which interactions occur randomly and redistribute
energy stochastically between the interacting particles. In
�26� we first introduced the model, discussed its similarities
to granular gases, calculated all moments of its steady-state
energy distribution, and showed that TF differs from TG.
Here we present these results in more detail and provide
further results on the model: We define the model in Sec. II
and investigate its energy distribution in Sec. III. We use the
energy scales defined by high moments of the energy distri-
bution to show that the high energy tail is exponential with a
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decay constant corresponding to the bath temperature TB, and
solve the temporal evolution to the steady state. Section IV
deals with various effective temperatures in our model. We
show that spontaneous fluctuations of different quantities are
scaled by different fluctuation temperatures. We demonstrate
that for systems with a single energy scale and with smooth
energy distributions, the entropic temperature coincides with
the granular temperature, and then investigate cases where
they differ. We relate the infinite hierarchies of different ef-
fective temperatures defined from the energy distribution to
generalizations of the configurational temperature. All results
are calculated exactly in the context of our model, and in
Sec. V we discuss the generality of these results to other
driven dissipative systems.

II. MODEL DEFINITION

At its most basic, a dissipative system consists of a set of
degrees of freedom, or modes of excitation, which interact
among themselves and with the external environment. When
two modes interact with each other, there is energy ex-
change, with some of the energy being lost to the environ-
ment. External driving may be thought of as the injection of
energy into the system’s modes from the environment. Our
model is constructed as a minimal model including these
essential features. When two particles �we shall refer to the
modes as particles for simplicity� interact they lose some of
their energy and exchange what remains, and when a particle
interacts with the environment it is more likely to gain en-
ergy rather than to lose.

Our model consists of N particles with energies �ei�, with
a constant interaction rate between any two particles in the
system. In every interaction two particles from the system
are chosen at random and their energies are summed. In the
case of conservative dynamics �analogous to elastic colli-
sions� this total energy is repartitioned randomly between the
two interacting particles �as in �27��. For dissipative dynam-
ics with inelastic collisions, only a fraction 0���1 of the
total energy is repartitioned between the particles and the rest
is dissipated out of the system. Thus � is analogous to a
restitution coefficient. The system is coupled to a driving
heat bath so that it may be maintained in a nontrivial steady
state. The interactions are shown diagrammatically in Fig. 1
and described in further detail below.

For conservative dynamics ��=1� an isolated system �i.e.,
not in contact with the driving bath� reaches thermodynamic
equilibrium with the exponential Boltzmann distribution for
each particle’s energy, p�e�=T−1 exp�−e /T�, where the tem-
perature equals the average energy per particle T= �e� �we
measure temperature in units of energy and set Boltzmann’s

constant to one�. Dissipative dynamics �0���1� cause en-
ergy to decay, therefore we drive the system by attaching it
to a heat bath, constructed as an infinitely large system of
particles obeying the conservative dynamics described
above, kept in equilibrium at a temperature TB. The coupling
of the dissipative system to the bath is through conservative
interactions between a particle chosen at random from the
system and a particle chosen at random from the bath. �The
system-bath interactions are taken as conservative for sim-
plicity; dissipative interactions may as well be considered,
yielding qualitatively similar results.� This contact is charac-
terized by a coupling strength, 0� f �1, defined as the frac-
tion of every particle’s interactions with the bath out of all its
interactions. Unlike thermodynamic equilibrium, the dissipa-
tive system’s steady state depends on the bath through both
TB and f �see also �5� which emphasizes the importance of
similar coupling details in granular gases�.

The stochastic evolution of the energy of particle i during
an infinitesimal time step dt is hence given by

ei�t + dt� = 	
Value: Probability:

ei�t� 1 − �dt

z��ei�t� + ej�t�� �1 − f��dt

z�ei�t� + eB� f�dt

 , �1�

where � is the interaction rate per particle per unit time,
j� �1, . . . ,N� �j� i� is the index of the particle with which
particle i may interact �chosen randomly at every interac-
tion�, z� �0,1� is the fraction of repartitioned energy given
to particle i in the interaction �chosen randomly with a uni-
form distribution at every interaction�, and eB is the energy
of the bath particle with which particle i may interact, which
at every interaction is chosen randomly from the equilibrium
distribution in the bath: pB�eB�=TB

−1 exp�−eB /TB�.
The simplicity of our model derives from the fact that

every particle in it is described only by its energy, as op-
posed, for example, to the 2d degrees of freedom per particle
in a d-dimensional frictionless hard sphere gas. By eliminat-
ing the momentum and spatial variables and using only the
energy, we replace the vectorial collisions between particles
by scalar interactions. Furthermore, since any two particles
may interact, there are no spatial correlations.

III. ENERGY DISTRIBUTION

In this section we investigate our model’s single-particle
energy distribution p�e�. We calculate from Eq. �1� the tem-
poral evolution of any moment of p�e�. This is used to obtain
the temporal evolution of p�e�, as well as its form in steady
state. We use the energy moments to define two hierarchies
of energy scales, whose asymptotic behavior is then used to
characterize the high energy tail of p�e�. In particular, we
shall show that although p�e� differs from the Boltzmann
distribution, its high energy tail is exponential.

A. Average energy

The most direct way to characterize the system’s state is
by the average energy per degree of freedom. It is solved by

FIG. 1. The possible interactions in our model: dissipative two
particle interaction �left� and conservative system-bath interaction
�right�.
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averaging Eq. �1� over the stochasticity in the dynamics and
over all particles:

�e�t + dt�� = �1 − �dt��e�t�� + �1 − f��dt��e�t��

+ f�dt
1

2
��e�t�� + TB� . �2�

Hence �e�t�� satisfies the differential equation

2

�

d�e�t��
dt

= − A1�e�t�� + fTB, �3�

with A1�� , f��1+ �1− f��1−2���0. This has the steady
state solution

�e� =
fTB

A1
=

TB

2� − 1 + 2�1 − ��/f
. �4�

In analogy with granular materials, this is denoted as the
granular temperature TG��e�. It is plotted vs � and f in Fig.
2.

It is interesting to note that despite the simplicity of our
model, it captures, at least qualitatively, some aspects of ac-
tual driven dissipative systems �28,29�. For instance, the sta-
tionary value of �e� is always smaller than TB and depends
not only on the dissipation through the restitution coefficient
�, but also on the details of the coupling to the bath through
the coupling strength f . �e� coincides with TB only in the two
nondissipative limits: conservative interactions ��=1� and
strong coupling to the bath �f =1�.

B. Energy fluctuations

We now consider the energy distribution around the aver-
age energy �e�. This tests whether the system is equivalent to
an equilibrium system at an effective temperature TG= �e�.
That is, whether the effect of the dissipation is to modify the

Boltzmann distribution only by changing its characteristic
temperature from TB to TG. However, this is not the case: we
find that the energy distribution is clearly nonexponential, in
qualitative agreement with realistic driven dissipative sys-
tems, such as granular gases �1,3,4,28� and colloidal suspen-
sions �30–33�.

The first moment of p�e� is the average energy calculated
above. Higher moments are obtained by taking the average
of the nth power of Eq. �1�. This yields the following differ-
ential equation for �en� in terms of all lower moments and the
moments of the energy distribution in the bath �for which
�eB

m�=m!TB
m�:

n + 1

�

d�en�
dt

= − An�en� + �
m=1

n−1  n

m
��em���1 − f��n�en−m�

+ f�eB
n−m�� + f�eB

n� , �5�

where

An��, f� � n + �1 − f��1 − 2�n� . �6�

Any initial distribution will evolve with time to the steady
state distribution given by

�en� = ��
m=1

n−1  n

m
��em���1 − f��n�en−m� + f�eB

n−m�� + f�eB
n��/An.

�7�

These expressions for all energy moments are exact arbi-
trarily far from equilibrium �for general values of � and f�
and contain information about the entire energy distribution.
In the equilibrium limits ��=1 or f =1� Eq. �7� yields the
moments of the exponential Boltzmann distribution, for
which �en�=n!TB

n .
The steady state energy distribution with moments given

by Eq. �7� is shown in Fig. 3. At low energies �of the order of

FIG. 2. Contours of the ratio �e�/TB between the average energy
per particle in the system and the bath temperature vs the restitution
coefficient � and the coupling strength f to the bath, as given by
Eq. �4�.

FIG. 3. Steady state energy distribution for restitution coeffi-
cient �=0.5 and coupling strength f =0.5 �resulting in TG=TB /2�
obtained in a numerical simulation of the model �solid line�. Expo-
nential distributions at temperatures TB and TG are given for refer-
ence �dashed lines�.
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several times TG� the distribution is roughly exponential with
a decay constant corresponding to the average energy TG.
At intermediate energies the distribution seems to exhibit
an overpopulated high energy tail, decaying slower than
exp�−e /TG�. However, for higher energies �e�10TG=5TB

for the parameters in Fig. 3�, the distribution exhibits an
exponential decay of the form

p�e� � exp�− e/TB� . �8�

The overpopulation of the high energy tail is only with re-
spect to scaling the energy with the average energy in the
system and considering energies comparable to �e�, as is cus-
tomarily done in granular gases �1,3–6,28�. Interactions with
the bath dominate the high energy tail, since a particle is
much more likely to arrive at such high energies due to a
conservative interaction with the bath rather than due to a
dissipative interaction within the system �and the fraction of
very high energy particles in the bath is larger than in the
system�. In the next section, we use the asymptotic behavior
of energy scales defined by the moments to show that the tail
is indeed exponential.

C. High energy tail

The exponential energy distribution of a system in
equilibrium contains a single energy scale—the temperature
of that system. For a nonequilibrium system, with a non-
exponential energy distribution, infinite hierarchies of effec-
tive temperatures may be defined from the energy distribu-
tion. We define two such hierarchies, TR

�n� from the ratios of
succeeding energy moments, and TM

�n� by scaling the mo-
ments themselves:

TR
�n� �

�en�
n�en−1�

, �9a�

TM
�n� �  �en�

n!
�1/n

. �9b�

Both reduce in equilibrium to the system’s temperature for
any n. Away from equilibrium they typically differ and de-
pend on n �see Fig. 4�, and for n=1 both reduce to the granu-
lar temperature TG��e�.

The large n behavior of TR
�n� and TM

�n� reflects the
distribution’s high energy tail. For an exponential tail p�e�
�exp�−e /Teff�, TR

���=TM
���=Teff; for a stretched exponential

tail, p�e��exp�−cea�, TR
���=TM

���=0 if a�1, and TR
���=TM

���

=� if a�1; for a power-law tail TM
���=� while TR

��� is unde-
fined.

We now show that the energy moments in our model are
consistent with an exponential high energy tail with a decay
constant corresponding to the bath temperature TB. Since
0���1 for n	1, An�n �see Eq. �6��. Furthermore, for
0� f �1, since 0���1, we have �1− f��n�en−m�
 f�eB

n−m�,
and Eq. �7� reduces to

�en� � f�n − 1�!�
m=0

n−1
�em�
m!

TB
n−m, �10�

where the term f�eB
n� in Eq. �7� has been incorporated as the

m=0 term in the summation in Eq. �10�. The solution for
large n may be approximated by taking the continuum limit,
where the sum in Eq. �10� transforms to an integral, and the
resulting equation may be solved to yield

�en� � Cn!TB
nnf−1 �11�

with C a dimensionless constant independent of n. Therefore
in the large n limit TR

�n� and TM
�n� both converge to TB,

TR
�n� = TB n

n − 1
� f−1

→ TB, �12a�

TM
�n� = TB�Cnf−1�1/n → TB �12b�

as can also be seen in Fig. 4. This supports the observation
that the high energy tail behaves as exp�−e /TB�.

It is intriguing to speculate on the generality of this result,
that for very high energies the distribution behaves as an
equilibrium distribution with a temperature equal to the bath
temperature TB �see also �16� where similar results have been
found for a granular gas driven by an ideal gas heat bath�.

D. Approach to steady state

We solve Eq. �5� recursively with n, and find that the
time-dependent solution is of the form

�en�t�� = �en� + �
m=1

n

Cn,m exp−
Am�

m + 1
t� , �13�

where �en� are the steady state moments given by Eq. �7�,
and �Cn,m� are constants depending on the initial distribution.
Am is discrete and increases monotonically with m, therefore
the slowest exponential decay with time, exp�−A1�t /2�,
dominates the long time behavior of all moments. When
scaling high moments to units of energy, one has

FIG. 4. �Color online� The hierarchies of effective temperatures
TR

�n� and TM
�n� for several model parameters, obtained by substituting

Eq. �7� in Eqs. �9�.
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TM
�n� � �en�t��1/n � exp−

A1�

2n
t� . �14�

Thus the high energy components of the distribution ap-
proach their steady values slower than the low energy ones.
It is interesting to note that this is similar to the analysis of
�34� for the approach to equilibrium in plasmas.

Figure 5 provides the temporal evolution of the energy
distribution starting from two different initial conditions. In
both cases the system started with all particles having the
same energy, e0=0 in one case, and e0=5TB in the other, and
reaches its stationary distribution within several interactions
per particle. For e0=0 this approach is uniform and faster.
For e0=5TB the system needs a slightly longer time until it
arrives to the steady state, and the distribution behaves dif-
ferently on the two sides of e0. For e�e0 single particle
interactions with the bath dominate, and the system exhibits
the bath dominated exponential tail. For e�e0, on the other
hand, the two-body dissipative interactions require multiple
collisions in order to change the shape of the distribution
continuously from the initial delta function to the smooth
steady state distribution.

IV. EFFECTIVE TEMPERATURES

Various definitions of effective temperatures are used to
characterize systems far from equilibrium. One of the impor-
tant questions to be answered in this context is to what extent
do effective temperatures defined by different measurements
on a single system yield the same numerical value. In Sec. III
we defined the granular temperature as the average energy
per degree of freedom TG��e�, and then used the energy
moments to define two generalizations of TG to the hierar-
chies TR

�n� and TM
�n� of effective temperatures �Eq. �9��. For a

nonexponential energy distribution these generally differ and
moreover depend on n �see Fig. 4�.

In this section we investigate the inter-relations between
three additional definitions of effective temperatures—the
fluctuation temperature TF, the entropic temperature TS, and
the configurational temperature TC. These effective tempera-
tures are used extensively to characterize various nonequilib-
rium systems �see Sec. I� and most results on their interrela-
tions are based on numerical simulations. Here we provide
theoretical results allowing a careful comparison between
them.

A. Fluctuation temperature

In equilibrium the fluctuation-dissipation theorem may be
used to deduce a system’s temperature from the spontaneous
fluctuations of any of its physical quantities. The theorem
assures that such a fluctuation is equal to the temperature
multiplied by the corresponding response function or suscep-
tibility. As such, fluctuations and susceptibilities of various
quantities in nonequilibrium systems may be similarly used
to define effective temperatures. Here we calculate two such
fluctuation temperatures and show that they generally differ
one from the other as well as from the granular temperature
TG and bath temperature TB.

To measure fluctuation-dissipation relations, we add to
our model degrees of freedom �xi�, whose correlations may
be measured, and upon which a response measurement may
be performed. To this end we couple the �xi� to an external
field Fi. That is, we modify the total energy of particle i to
ei−xiFi, and refer to �ei� as “kinetic” energies �or the system�
and to �−xiFi�t�� as “internal” energies �or the probe�. �This
probe is added only for measuring fluctuation-dissipation re-
lations as described in this section; all other sections of the
paper deal with the model defined in Sec. II without these
“internal” degrees of freedom.�

We assume the driven dissipative dynamics defined in
Sec. II for the system together with nondissipative exchange
of “kinetic” and “internal” energy, as described by Fig. 6.
This yields the following stochastic equations of motion:

ei�t + dt� =	
Value: Probability:

ei�t� 1 − �dt

z��ei�t� + ej�t�� �1 − f��dt

z�ei�t� + eB� f�1 − h��dt

z�ei�t� − xk�t�Fk�t�� fh�dt

 ,

�15a�

xi�t + dt� = 	 Value: Probability:

xi�t� 1 − fh�dt

z�xi�t� − ek�t�/Fi�t�� fh�dt

 ,

�15b�

where h is a parameter introduced to describe the coupling
strength between the system and the probe: 0�h�1 is the

FIG. 6. The interactions between the system �ei� and the probe
�xi�, introduced in addition to those given in Fig. 1.

FIG. 5. �Color online� Temporal evolution to the steady state
energy distribution �dashed line� for restitution coefficient �=0.5
and coupling strength f =0.5 obtained in a numerical simulation of
the model, starting with all particles having energy e0=0 �ascending
lines after N and 2N interactions in the system�, or e0=5TB �de-
scending lines after N, 2N, 3N, 4N, and 5N interactions�.
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fraction of the system’s interactions with the probe out of all
its nondissipative interactions �with the bath and with the
probe�, and k� �1, . . . ,N� is the index of the particle with
which particle i may interact in a “kinetic”-“internal” inter-
action �this is denoted differently from the index j of the
second particle in a “kinetic”-“kinetic” interaction, since ei
may not interact with ei �thus j� i�, while ei and xi may
interact �k may take the value i��.

We examine two measurements testing the relation be-
tween steady state fluctuation and response. First, we con-
sider the fluctuation ��x2���xi

2�− �xi�2 of a single particle’s
xi, and its response with respect to a small change in Fi,
r���xi� /�Fi. Second, we define the total system’s X
��i=1

N xi and consider the relation between its fluctuation
��X2���X2�− �X�2, and its response with respect to a small
change in the uniform field F, R���X� /�F. �In analogy with
spin systems, xi may be thought of as a single site magneti-
zation and X as the total system magnetization, with ��x2�,
��X2�, r, and R the corresponding fluctuations and suscepti-
bilities.�

The fluctuation-dissipation theorem relates these in equi-
librium by ��x2�=r ·T and ��X2�=R ·T, and inspires the defi-
nition in nonequilibrium systems of effective fluctuation
temperatures TF

�1����x2� /r and TF
�N����X2� /R for single-

particle and many-particle measurements, respectively. In
this section we theoretically calculate TF

�1� and TF
�N� for our

model and demonstrate that they generally differ one from
each other and from both TG and TB. As in �26� we concen-
trate here on space- and time-independent fluctuation-
dissipation relations; their temporal dependence has recently
been investigated in �36� and the spatial dependence in �37�.

By averaging Eq. �15� and taking the steady state solution
we see that

�xi� =
�X�
N

= −
�e�
Fi

, �16�

with �e�=TBf�1−h� / �A1− fh� �this reduces to Eq. �4� in the
h→0 limit�. Therefore

r =
R

N
=

�e�
F2 . �17�

The response functions r and R are defined by small varia-
tions in the external field F about a fixed value. These reflect
the system’s linear response, where the unperturbed system
feels a constant field F, and the perturbation on it is the
infinitesimal variation in the field used to calculate r and R
�Eq. �17�� by differentiating Eq. �16�.

For the steady state averaged second moments we obtain,

��x2� =
�e2�
2F2 = b��, f ,h,N�rTG, �18a�

��X2� = N��x2� −
�XE� − �X��E�

F
= B��, f ,h,N�RTG,

�18b�

where E��i=1
N ei, and b and B are dimensionless functions of

the dimensionless model parameters and of the system size.
We are interested in the thermodynamic limit �N	1�, for
which b and B reduce to the expressions given in �38�.

The ratios of fluctuations to responses define effective
temperatures

TF
�1� �

��x2�
r

= b��, f ,h�TG, �19a�

TF
�N� �

��X2�
R

= B��, f ,h�TG, �19b�

which are finite and independent of F.
Our model exhibits a singularity both in the response

functions r and R and in the fluctuations ��x2� and ��X2� as
F→0 �39�. Nonetheless, TF

�1� and TF
�N� may be defined about

any baseline value of the external field F. They probe the
system’s linear response about this baseline value of the
field, and turn out not to depend on the field.

The two fluctuation temperatures TF
�1� and TF

�N� generally
differ one from the other, are larger than the granular tem-
perature TG��e�, and smaller than the bath temperature TB.
Only in the equilibrium limits ��=1 and f =1� do all effec-
tive temperatures coincide with TB.

TF
�N� is generally larger than TF

�1�, but in the limit presented
in �26� of weak coupling between the system and the probe
�h→0� the two coincide, and the expression for them sim-
plifies to that given in �40�. Nonetheless, they differ from the
granular temperature, as shown in Fig. 7. The difference be-
tween the two fluctuation temperatures is most prominent in

FIG. 7. Contours of the ratio TF /TG between the fluctuation
temperatures and the granular temperature vs the restitution coeffi-
cient � and the coupling strength f in the limit of weak coupling
between the probe and the system �h→0�, as given in �40�. In this
limit, TF

�N�=TF
�1�.

YAIR SHOKEF AND DOV LEVINE PHYSICAL REVIEW E 74, 051111 �2006�

051111-6



the maximal dissipation limit ��=0�, where they reduce to
the expressions given in �41�. The ratio between them for
this case is shown in Fig. 8.

The single-particle fluctuation temperature TF
�1� directly

probes the second moment of the single-particle energy dis-
tribution and thus gives the effective temperature TR

�2� defined
in Sec. III C �compare Eqs. �16�–�19� to Eq. �9a��. The
many-particle fluctuation temperature TF

�N�, on the other
hand, is defined by a measurement on the entire system, and
thus reflects global correlations between particle energies
and cannot be related directly to the effective temperatures
defined from the single-particle energy distribution.

In dissipative systems with strong coupling to the driving
mechanism �f �1� and large restitution coefficient ���1�
the energy distribution is close to exponential, and correla-
tions are weak, hence the values of TF

�N�, TF
�1�, and TG are

similar �but not identical�. As has been predicted by kinetic
theory �9�, we expect the fluctuation temperatures to be
larger than the granular temperature �see Fig. 7� in granular
gases as well, where the energy distribution is nonexponen-
tial. In the cases studied numerically �7,8� the energy distri-
butions were only slightly nonexponential, resulting in small
differences between the effective temperatures, which may
explain their seeming coincidence.

B. Entropic temperature

In analogy to equilibrium statistical mechanics, a further
definition of an effective temperature in nonequilibrium sys-
tems is constructed by differentiating the system’s entropy S
with respect to its average total energy �E�, yielding the en-
tropic temperature TS���S /��E��−1 �11,13,17,18�. Besides
investigating the behavior and significance of entropy in
driven dissipative systems, it is intriguing to inquire as to
how the entropic temperature relates to other effective tem-
peratures of a system.

In this section we calculate TS for the continuous energy
model defined in Sec. II, as well as for its discrete energy

version �described below�. We first identify simple scaling
arguments leading to the coincidence of TS with the granular
temperature TG��e�. This scaling holds for the continuous
energy model with ��0. We then demonstrate the break-
down of this scaling both in the singular limit of the continu-
ous energy model at �=0, which exhibits a condensation at
e=0, and by introducing a discrete energy version of the
model, where the structure of the particles’ energetic levels
contains an additional energy scale �.

1. Scaling

For systems coupled to a heat bath of temperature TB with
no internal energy scale characterizing the system’s structure
�such as an interaction energy or energy spacing between
possible states� the only energy scale in the system is TB:
When TB is varied all energies in the system change linearly
with its change. This is the case for the model defined in Sec.
II. Different effective temperatures, or energy characteristics
of the system, may differ, however they all scale linearly
with TB. The ratios between effective temperatures are di-
mensionless numbers depending on the dimensionless model
parameters.

Since the N-particle energy distribution has dimension of
inverse energy to the Nth power, as long as it is nonsingular
it scales as

P�e1, . . . ,eN� =

 e1

TB
, . . . ,

eN

TB
;�, f�

TB
N , �20�

with  a dimensionless function of the dimensionless ener-
gies �ei /TB� and the dimensionless model parameters �� and
f in our case�.

We define the system’s entropy as

S � −� P�e1, . . . ,eN�ln P�e1, . . . ,eN�de1 ¯ deN. �21�

After changing the integration variables from �ei� to �ei /TB�,
and using the normalization of P�e1 , . . . ,eN�, we see that

S = N ln TB + const, �22�

with the additive constant depending only on the dimension-
less parameters � and f , but not on TB. Since the energy of
the system �E� scales linearly with TB �see Eq. �4��, we may
write

S = N ln�E� + const, �23�

and conclude that

TS �  �S

��E�
�−1

=
�E�
N

� TG. �24�

The functional form of the dimensionless distribution
�e1 /TB , . . . ,eN /TB�, which depends on the model param-
eters, manifests itself only in the additive term in the entropy,
and does not affect the relation TS=TG. These two effective
temperatures are obtained by different measurements, none-
theless their values coincide. This theoretical result differs

FIG. 8. Contours of the ratio TF
�N� /TF

�1� between the many-
particle and single-particle fluctuation temperatures vs the coupling
strengths f and h in the maximal dissipation limit ��=0�, as given
in �41�.
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from most comparisons between effective temperatures
which are typically based on numerical simulations.

Our result that TS and TG coincide requires the system to
contain a single energy scale and that its distribution be non-
singular. This is not always the case, and in the following
sections we shall demonstrate how TS and TG may differ in
systems with additional energy scales. We shall do this using
a definition of TS which is simpler to calculate, and which for
the single energy scale case exactly coincides with the cal-
culation given above. Instead of defining the entire system’s
entropy S from the entire system’s energy distribution �Eq.
�21��, we consider a subsystem comprised of a single particle
and measure its entropic temperature. From the single-
particle energy distribution p�e�, we define the single-particle
entropy as

s � −� p�e�ln p�e�de , �25�

and differentiate it with respect to the particle’s average en-
ergy: TS���s /��e��−1. Since all particles have the same
single-particle energy distribution, TS is clearly equal for all
particles in the system. The aforementioned scaling argument
holds for the single-particle distribution, thus for systems
with a single energy scale the single-particle definition gives
TS=TG as well.

2. Condensation in the maximal dissipation model

For the maximally dissipative limit ��=0� of our model,
every particle undergoing an interaction with another particle
in the system is left with zero energy after the interaction,
and the system exhibits a condensation at e=0. Since in the
steady state for 1− f of the particles the last interaction was
such an energy draining interaction and not an interaction
with the bath �see Eq. �1��, a fraction 1− f of the particles
have zero energy, and the single-particle energy distribution
has the general form

p�e� = �1 − f���e� + f

 e

TB
, f�

TB
. �26�

Due to the normalization of p�e�, this singular distribution
yields upon substitution in Eq. �25� an entropy of the form

s = − �1 − f�ln�1 − f� + f ln TB + const. �27�

The average energy per particle �e� scales linearly with TB.
Therefore

s = f ln�e� + const, �28�

and consequently TS=TG / f , which is larger than TG. That is,
we managed to theoretically analyze a case where TS and TG
differ.

3. Discrete energy model

Another way the scaling arguments leading to TS=TG may
be broken is when the system has an additional energy scale.
This occurs in realistic systems where, for example, the in-

teraction potential between particles incorporates a typical
energy scale. We shall demonstrate the breakdown of the
equality TS=TG by a simple modification to our model, how-
ever, we emphasize that TS is generally expected to differ
from TG in any system containing an internal energy scale
unrelated to the bath temperature TB. We introduce this in-
ternal energy scale by allowing the energy of each particle to
take only discrete values ei=0,� ,2� , . . .. The spacing � be-
tween states constitutes the energy scale which invalidates
the scaling arguments presented above. This model is math-
ematically equivalent to a collection of quantum harmonic
oscillators, for which even in thermodynamic equilibrium,
TS=T is the equilibrium temperature, while the average en-
ergy �e�=� / �exp�� /T�−1� differs from the temperature, and
�e��T only in the continuum limit �e�	�.

The dynamics of the discrete model are as follows: The
bath is constructed from similar discrete energy particles in
equilibrium at temperature TB, thus with energies distributed
as pB�n���exp�−n� /TB�. In the interaction of particle i from
the system with a particle of energy eB from the bath their
total energy ei+eB is conservatively redistributed between
them by randomly choosing with equal probability a new
energy ei�� �0,� ,2� , . . . ,ei+eB� for particle i. In a dissipative
interaction between particles i and j of the system, each en-
ergy “quantum” � of the total energy eT=ei+ej has a prob-
ability � to remain with the interacting pair and a probability
1−� to be dissipated out of the system. The remaining en-
ergy eT� is then randomly redistributed between the two par-
ticles with equal probability for every outcome ei�
� �0,� ,2� , . . . ,eT��, and ej�=eT�−ei� �42�.

In order to solve this discrete energy model we turned to
Monte Carlo simulations. We numerically obtained the aver-
age energy as well as the energy distribution pn� p�n��,
from which the entropy s�−�n=0

� pn ln pn was calculated. We
kept the restitution coefficient �, the coupling strength f , and
the energy spacing � fixed and scanned the bath temperature
TB in order to obtain the dependence of entropy on the aver-
age energy for given �, f , and �. We compare this functional
behavior to the corresponding equilibrium behavior �i.e.,
conservative interactions�, where the entropy and average en-
ergy are related by

seq��e�� = ln �e�
�

+ 1� +
�e�
�

ln �

�e�
+ 1� . �29�

We subtracted seq��e�� from the numerically obtained s��e��
to yield the deviation from equilibrium behavior of dissipa-
tive systems displayed in Fig. 9.

For �e�	� the discrete energy model coincides with the
continuous energy one: For ��0 the entropy of the dissipa-
tive system in this high energy region can be seen to merely
be smaller by an additive constant from the entropy of an
equilibrium system with the same energy, as expected from
the scaling arguments for a system with a single energy scale
�Eq. �23��. For �=0, on the other hand, the entropy deviation
grows with energy �compare Eq. �28��, and TS differs from
TG even in this high energy limit, as predicted in the preced-
ing section.

YAIR SHOKEF AND DOV LEVINE PHYSICAL REVIEW E 74, 051111 �2006�

051111-8



We numerically differentiated s��e�� with respect to �e� to
obtain TS, and in Fig. 10 compare the functional dependence
of TS on �e� to the corresponding equilibrium behavior. That
is, for every value of �e� we normalize TS by the temperature
TS

eq required to give this average energy, were the system in
equilibrium. Since the entropy of a dissipative system is
smaller than that of an equilibrium system with the same
average energy, TS��e�� is generally larger than TS

eq��e��. For
��0, TS behaves as in equilibrium in the two extremes of
very high and very low energy and exhibits nonequilibrium
behavior only for intermediate energies ��e����. As dis-
cussed above, the discrete energy model is equivalent to the
continuous energy one in the high energy limit ��e�	��, thus
TS behaves as in equilibrium for ��0, and reaches a value
larger by a factor 1 / f from the equilibrium value for the
singular limit �=0.

For very low energies the system behaves as a two level
system, irrespective of whether it is in equilibrium or not.
For the system to have such a low average energy almost all
particles must be in the ground state �e=0�, and since the
occupation of states rapidly decays with energy, only the first
excited state �e=�� is relevant, while states of higher energy
have a negligible occupation. The energy distribution in a
two level system is characterized by a single number �the
ratio of occupation of the two states� and is hence not rich
enough to exhibit any features of a nonexponential energy
distribution. For intermediate energies the entropic tempera-
ture exhibits significant deviations from equilibrium behav-
ior even for ��0, as clearly seen in Fig. 10.

C. Configurational temperature

The hierarchy of effective temperatures given by TR
�n� �Eq.

�9a�� may be related to the hierarchy of the so-called hyper-
configurational temperatures. A recent extension of the virial
theorem states that for a system in thermodynamic equilib-
rium at temperature T with dynamics stemming from a
Hamiltonian H��pi� , �qi�� �1� i�N� the following relation
holds �23�:

��� H · B� �

��� · B� �
= T , �30�

where �� ��� /�p1 , . . . ,� /�pN ,� /�q1 , . . . ,� /�qN� represents
differentiation with respect to all phase space coordinates,

and B� is an arbitrary vector field in phase space satisfying

0� ���� H ·B� ����, 0� ���� ·B� ����, with ��� H ·B� � growing
slower than eN.

If the Hamiltonian is of the form H=�i=1
N pi

2+V��qi��, that
is, comprised of a kinetic term depending only on momenta
and a potential term depending only on coordinates, it is

useful to take B� =�� V. This yields a relation between the tem-
perature and ensemble averages of solely the particle loca-
tions, without the need of measuring momenta. This may be
used to define a configurational effective temperature in non-
equilibrium systems,

TC �
���� V�2�
��2V�

. �31�

The hierarchy of hyperconfigurational tempera-

tures TC
�n� �24� generalizes this by taking B�

= �0, . . . ,0 , ��V /�q1�n , . . . , ��V /�qN�n�, so that

TC
�n� �

��
i=1

N  �V

�qi

�n+1�
�n�

i=1

N  �V

�qi

�n−1�2V

�qi
2� . �32�

In order to interpret TC
�n� for our case we note that the model’s

dynamics in the nondissipative case ��=1� manifest a uni-
form single-particle density of states �35�. That is, in the
equilibrium limit our system is equivalent to a collection of
weakly interacting harmonic oscillators, with ei= pi

2 /2
+qi

2 /2, where �qi� and �pi� are some hidden coordinates and

FIG. 9. �Color online� The deviation of the entropy s from its
equilibrium value seq vs the average energy �e� for several values of
the restitution coefficient � and for coupling strength f =0.5.

FIG. 10. �Color online� The ratio TS /TS
eq of the entropic tem-

perature to its equilibrium value vs the average energy �e� for sev-
eral values of the restitution coefficient � and for coupling strength
f =0.5.
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momenta. Each qi and pi change periodically with time as for
an isolated harmonic oscillator with energy ei. Occasionally
�that is, at a frequency much smaller than the oscillator’s
frequency� this energy is changed due to an interaction with
some other particle or with the bath. It is natural to extend
this description to dissipative ���1� cases as well, thus we
consider the case where V��qi��=�i=1

N qi
2 /2.

For a harmonic oscillator of given energy e, the tem-
poral average of q2n over many periods of oscillation is
en�2n−1�!! /n!. The particle’s energy changes with time due
to interactions, thus we average over its steady state distri-
bution, and obtain �q2n�= �en��2n−1�!! /n!. Upon substitution
in Eq. �32� we see that the hyperconfigurational temperatures
probe ratios between succeeding moments of the energy
distribution, and may thus be related to TR

�n� �defined in Eq.
�9a��:

TC
�2n−1� �

�q2n�
�2n − 1��q2n−2�

=
�en�

n�en−1�
� TR

�n�. �33�

TC
�2n� �see Eq. �9b�� is undefined since averages of odd mo-

ments of q vanish.
This demonstrates for one particular modeling the con-

nection between the configurational temperature TC and the
single particle energy distribution. We suggest that similar
relations hold in other systems, and that the hyperconfigura-
tional temperatures may be used to characterize the nonequi-
librium nature of energy distributions in general.

V. DISCUSSION

This paper investigates several nonequilibrium phenom-
ena observed in a minimal stochastic model for driven dissi-
pative dynamics. Our model is inspired by granular gases,
nevertheless we believe it may be relevant to a broader class
of driven dissipative systems. The model is simple enough to
admit an exact solution of the single-particle distribution in
terms of its moments, in the steady state as well as during the
evolution from any initial condition to this state. When con-
sidering particles with energies slightly larger than the aver-
age energy in the system, the high energy tail of the single-
particle distribution is seemingly overpopulated, as has been
found in granular gases. However, we have calculated the
very high energy tail and found that it behaves exponentially
with a decay constant corresponding to the temperature of
the driving bath TB. Generally, very high energy tails mani-
fest the bath distribution since dissipative interactions within
the system �where typical energies are smaller than in the
bath� hardly affect this tail. It will be interesting to investi-
gate the tail of very high energies in other dissipative sys-
tems, and to test whether they agree with the bath distribu-
tions.

Due to the nonexponential energy distributions of non-
equilibrium systems, the average energy, or granular tem-
perature TG, is just one energy scale characterizing the sys-
tem. Higher moments of the distribution define hierarchies of
effective temperatures TR

�n� and TM
�n�, which generally vary

with the order n of the moments, and coincide with the actual
temperature if the system is in equilibrium. The large n limit
of these effective temperatures relates to the high energy tail
of the distribution. In our model these effective temperatures
converge to the bath temperature in this limit, reflecting the
tail’s exponential behavior. Furthermore, we related these ef-
fective temperatures to the hyperconfigurational tempera-
tures TC

�n�, defined in Hamiltonian systems from particle lo-
cations.

Fluctuation-dissipation measurements characterize as-
pects of the second moment of the energy distribution and
thus show an effective temperature generally differing from
the granular temperature �or first moment�. Here we have
extended the calculations presented in �26� to general cou-
pling strength h between the system and the probe, and
moreover showed that single-particle and many-particle
measurements yield different effective temperatures TF

�1� and
TF

�N�. These results, together with those dealing with time
dependent measurements presented in �36�, call for examin-
ing these phenomena in more realistic dissipative systems.

Finally, we considered the entropic temperature TS ob-
tained by differentiating the entropy with respect to energy.
We showed that generally for a nonsingular system without
an internal energy scale, simple scaling arguments lead to the
exact coincidence of the entropic temperature with the granu-
lar temperature. When this scaling is not valid, TS is gener-
ally larger than the corresponding equilibrium value. It is
intriguing to test this scaling and its breakdown in the more
complex systems where TS can been measured.

We can identify an ordering of effective temperatures in
our model: For the hierarchies defined from the energy mo-
ments, both TR

�n� and TM
�n� grow with n; the fluctuation tem-

peratures TF are larger than the granular temperature TG; the
many-particle fluctuation temperature TF

�N� is larger than the
single-particle one TF

�1�; and all these effective temperatures
are smaller than the bath temperature TB. It will be interest-
ing to see whether such ordering occurs in other driven dis-
sipative systems as well.
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gous to �xi� in our model� is bound. However, for particles in a
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the particle heights �analogous to �xi� in our model� are un-
bound. Thus their fluctuations as well as their responses to
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�42� Note that in this model energy “quanta” are dissipated as if

they were distinguishable entities, whereas for redistributing
the remaining energy they are treated as indistinguishable.
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