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The statistics of self-avoiding walks �SAWs� on deterministic fractal structures with infinite ramification,
modeled by Sierpinski square lattices, is revisited in two and three dimensions using the reptation algorithm.
The probability distribution function of the end-to-end distance of SAWs, consisting of up to 400 steps, is
obtained and its scaling behavior at small distances is studied. The resulting scaling exponents are confronted
with previous calculations for much shorter linear chains �20 to 30 steps� based on the exact enumeration �EE�
technique. The present results coincide with the EE values in two dimensions, but differ slightly in three
dimensions. A possible explanation for this discrepancy is discussed. Despite this, the violation of the so-called
des Cloizeaux relation, a renormalization result that holds on regular lattices and on deterministic fractal
structures with finite ramification, is confirmed numerically.
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I. INTRODUCTION

Self-avoiding random walks �SAWs� constrained to oc-
cupy the sites of a fractal structure, the latter defined either in
two or in three spatial dimensions, constitute interesting
models of linear polymers embedded on irregular surfaces or
in porous media displaying spatial scale invariance �see, e.g.,
Ref. �1,2��. Many theoretically challenging issues remain to
be understood, among which we draw our attention here to
the shape of the probability distribution function �PDF� of
the end-to-end distance.

Fractal structures are classified into two categories, i.e.,
deterministic and random fractal substrates. Examples of the
former are the Sierpinski fractals �3�, which are further sub-
divided into structures with finite or infinite ramification
�3,4�. A typical example within the category of random frac-
tals is the incipient percolation cluster at criticality �5,6�.

In this work, we reconsider the case of a deterministic
fractal with infinite ramification �3,4�, in both two and three
spatial dimensions. The structures we study are represented
by the Sierpinski square lattices �sometimes called Sierpinski
carpets in d=2 and Sierpinski sponges in d=3�, to be defined
below. Our interest in such a type of scale invariant substrate
is motivated by earlier studies of SAWs on these structures
�7–9�, and in particular by our previous study on the corre-
sponding PDF of the end-to-end distance �10�. In that work,
we estimated the scaling form of the PDF by using the exact
enumeration �EE� technique, which permits to evaluate all
SAW configurations on Sierpinski square lattices up to a
�relatively small� maximum number N of SAW steps �N
=30 in d=2 and N=20 in d=3�, limited by the available
computer resources. We found that the so-called des
Cloizeaux relation �11� does not hold for this type of deter-

ministic fractal, in contrast to the behavior on deterministic
fractals with finite ramification. The question, however, re-
mains open whether such small N values, that suggest the
breakdown of the des Cloizeaux relation, are sufficient to
elucidate the truly asymptotic behavior of the PDF expected
for N�1.

In order to get further numerical evidence from which one
can better judge this intriguing scenario, we present addi-
tional results based on the use of the reptation algorithm
�12,13�. The latter, although not being exact, allows us to
study much longer chains than with the EE method, here up
to N�400 limited by the size of the fractal lattice that can be
generated. It should be emphasized that there exist other,
relatively more involved, accurate algorithms for studying
very long SAW chains, as for instance the method by Berretti
and Sokal �14� or the pruned-riched-Rosenbluth method by
Grassberger �15�. Although these methods can in principle be
implemented to our present problem, we consider here the
much simpler �constant chain length� reptation approach. To
better assess the validity of our results, we apply first the
method to the case of regular square lattices in both two and
three dimensions, for which the corresponding scaling expo-
nents are well known. From this test we will conclude that
reptation yields accurate results in the case of uniform sys-
tems, indicating among other things that possible nonergodic
configurations are not important for the present problem.
Based on these results, we expect that reptation can also
perform well on infinitely ramified fractals, in the sense that
the truly asymptotic behavior of SAWs can be detected with
sufficient accuracy for our present purposes. To give further
support to our numerical results, specially in three dimen-
sions, we combine reptation with Pivot moves, finding that
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the corresponding critical exponents of interest remain un-
changed.

The paper is organized as follows. In Sec. II, we summa-
rize the quantities of interest and their scaling functions we
are considering, and discuss the rules of the reptation algo-
rithm employed. The method is tested for the case of SAWs
on regular lattices both in two and three dimensions. The
fractal lattices are discussed in Sec. III, for the two and three
dimensional cases. The conclusions are summarized in Sec.
IV.

II. SAWS ON REGULAR LATTICES

To characterize the spatial extent of SAWs on a given
structure, such as the square lattice, we consider the topo-
logical end-to-end distance l after N steps of the walk. In
particular, for square and simple cubic lattices, the l distance
between two points located at coordinates �x1 ,y1 ,z1� and
�x2 ,y2 ,z2� is defined as

l = �x1 − x2� + �y1 − y2� + �z1 − z2� . �1�

An illustrative example in d=2 is shown in Fig. 1. The
present l metric is equivalent to the more standard Euclidean
or r metric �i.e., r=	�x1−x2�2+ �y1−y2�2+ �z1−z2�2�, but has
the advantage that fluctuations are minimal permitting a
more accurate determination of the configurational expo-
nents defined below.

The end-to-end distance l�N� averaged over all SAW con-

figurations of N steps, denoted as l̄�N�, obeys the scaling
relation �16�

l̄�N� 
 N� for N � 1, �2�

which defines the critical exponent �. The latter depends on
the dimensionality d of the lattice. The probability distribu-
tion function for the end-to-end distance P�l �N�, normalized

according to �P�l �N�dl=1, obeys also a scaling form given
by

P�l�N� =
1

l
Fd� l

l̄�N�

 , �3�

where Fd�x� is the scaling function. Here, we are interested
in the asymptotic behavior of Fd at small x values, which is
expected to be given by

Fd�x� 
 xg+d for x � 1. �4�

The exponent g is expected to obey the so-called des
Cloizeaux relation �11�

g =
� − 1

�
, �5�

where � is the enhancement exponent. Note, that the expo-
nent g in Eq. �4� has been denoted as g1 in Ref. �10�. In two
dimensions, �=3/4, �=43/32, and g=11/24, while in d=3
one has �=0.58758, �=1.1575, and g=0.268 �2�.

A. Reptation algorithm

The reptation algorithm used here consists of two steps:
�a� picking up at random one of the two ends of the chain,
say the monomer at position �5, 3� in Fig. 1 and �b� choosing
one of its nearest-neighbor lattice sites at random as its pos-
sible new location. If the nearest-neighbor site is empty �e.g.,
the one at �5, 2� in the figure� the reptation is performed, and
the whole chain is moved along its track, as illustrated in Fig.
2. Otherwise, if the nearest-neighbor site is occupied, the
chain remains at its actual position, and the process is re-
peated from step �a� all over again. In the special case where
the occupied nearest-neighbor site corresponds to the other
end of the chain, the reptation move is accepted since the
occupied lattice site becomes free once the chain moves as a
whole.

FIG. 1. The l metric on the square lattice. In this example, we
show a SAW of N=8 steps �thin straight lines connecting nearest-
neighbor circles�, corresponding to N+1=9 monomers �full
circles�. The l distance between the end monomers at �1, 1� and at
�5, 3� is l= �1−5�+ �1−3�=6, corresponding to the length of the
dashed line �in units of the lattice constant�.

FIG. 2. Illustration of the reptation method. The end monomer at
position �5, 3� shown in Fig. 1 has moved to its new location at �5,
2�, carrying the whole chain with it along its track.
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B. Numerical results in two and three dimensions

The lattice sizes L employed were L=2000 in d=2
�square lattice� and L=500 in d=3 �simple cubic lattice�. The
initial SAW configuration was taken as a straight line. In d
=3, it has an U-shape for the largest N values considered �i.e.
N=400�. A sufficient number of preliminary reptation steps
are performed to achieve a completely random SAW con-
figuration. The evaluation of the end-to-end distance PDF is
started when the actual chain configuration has left all the
lattice sites it occupied at the initial configuration, has at-

tained a random shape, and hence has lost memory of the
initial configuration. Typically, the number of reptation steps
performed is of the order of 107 to 108, and the whole pro-
cess is stopped when the behavior of the PDF has reached a
stationary shape �typically after 102 independent runs�. All
resulting chain configurations are taken into account when
performing the statistical average of the PDF, including those
for which no move of the chain has taken place �see, for
instance, Ref. �13��. Since the SAW chain also diffuses on
the lattice, there is the problem that it touches the lattice
borders. To avoid such finite size effects, we apply periodic
boundary conditions.

The numerical results for the scaling function Fd�x� /xd as
a function of x are displayed in Fig. 3�a� for d=2 and in Fig.
3�b� for d=3. The straight lines display the expected values
of the scaling exponents g. The good agreement of the nu-
merical results with the latter gives us confidence that the
present approach can be applied also to fractal structures for
which exact values of the exponents are not known.

It should be noted that Pivot �or Verdier� algorithms, ex-
tensively used on regular lattices, cannot be efficiently ap-
plied on their fractal counterparts since in such diluted lat-
tices many moves are rejected as they violate the geometrical
constraints and the chain gets easily stuck, making the con-
formational sampling virtually impossible. On the contrary,
in the case of reptation bottlenecks can be easily overcome
and the chain can “diffuse” on the lattice, thus exploring
essentially all accessible conformations. This has to be con-
trasted with the problem of ergodicity known for regular lat-
tices, where certain chain conformations are impossible to
occur with a reptation scheme �17�. However, the results
shown in Fig. 3 seem to indicate that the undersampling of
such chain conformations is not playing an important role in
determining the exponent g. We have performed also simu-
lations combining reptation with Pivot moves �tail and cor-
ner flips and crankshaft moves�, the latter allow the chain to
reach some configurations which can not be obtained with
reptation alone, thus mitigating to some extent the lack of
ergodicity of the method. The results however do not differ
from those shown in Fig. 3.

In the case of diluted lattices, we expect such non-ergodic
chain conformations to play an even less important role than
on regular lattices, being the scale invariant dilution of the
lattice on large length scales the dominant effect that deter-
mines the asymptotic shape of SAWs at vanishing end-to-end
distances.

III. SAWS ON SIERPINSKI SQUARE LATTICES

The Sierpinski square lattices considered in this work are
illustrated in Fig. 4 in two and three dimensions, at their
second generations �we use the translationally invariant
structure with the smallest lacunarity �10��. These determin-
istic fractals are said to be infinitely ramified, since one
needs to remove an infinite number of sites �asymptotically�
to isolate any given subset of the structure �3,4�.

FIG. 3. �Color online� The scaling function Fd�x� /xd vs x, for
the PDF of the end-to-end distance of SAWs: �a� in d=2 on the
square lattice and �b� in d=3 on the simple cubic lattice, for N
=100 �circles� and 400 �triangles�. The straight lines have the ex-
pected slopes, Eq. �5�, g=11/24�0.458 in d=2 and g=0.268 in
d=3.
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In this work, we have considered lattices of sizes L=3
�36=2187 �i.e., the sixth fractal generation� in d=2 and L
=3�35=729 �i.e., the fifth fractal generation� in d=3. The
initial SAW configurations were taken as straight lines, lo-
cated around the central hole of the fractal lattice, having an
U shape for large N. Here, we considered N up to about 400.
Preliminary reptation steps are performed as discussed for
regular lattices, such that the SAW chain gets completely out
of its starting track, has attained a random shape, and hence
has lost memory of the initial configuration. Since the SAW
chain diffuses on the Sierpinski lattice, there is the problem
that it might touch the lattice borders. If the SAW touches
any of the sites located at the external border of the fractal,
the run is stopped. Even though the chain explores large
areas of the Sierpinski lattice, this happened only a very
small number of cases. In such an event, only the chain con-
figurations before touching the boundary enter the averaged
PDF, so that the PDF is not expected to be altered. The
number of reptation steps performed is of the order of 107 to
108, and the whole process finished when the end-to-end
PDF takes a stationary shape �typically after 102 to 103 in-
dependent runs�.

For these fractal structures, the scaling function Fd
S�x�

obeys, for small x, the relation

Fd
S�x� 
 xgS+df for x � 1, �6�

where df is the fractal dimension of the underlying structure.
In d=2, one has df =ln 8/ ln 3�1.893, while in d=3, df
=ln 20/ ln 3�2.727. The corresponding SAW scaling expo-
nents �denoted with the subindex S� take the approximate
values �S=0.75±0.05, �S=1.23±0.04, and gS�gS

EE

=0.54±0.03 �EE results �10�� in d=2, and �S=0.58±0.03,
�S=1.36±0.03, and gS�gS

EE=0.16±0.05 �EE results �10�� in
d=3.

The present numerical results are displayed in Fig. 5�a�

FIG. 4. �Color online� The Sierpinski lattice in �a� two and �b�
three dimensions at their second generation. The lattice size is then
L=3�32=27 in both cases. The SAWs can occupy only those
points of the fractal depicted by the full squares and by the full
cubes, respectively.

FIG. 5. �Color online� The scaling function Fd�x� /xdf vs x, for
the PDF of the end-to-end distance of SAWs on the Sierpinski
lattice: �a� in d=2 and �b� d=3, for N=100 �circles�, and 400 �tri-
angles�. The straight lines have the slopes gS

rep=0.52±0.05 in d=2
and gS

rep=0.33±0.05 in d=3.
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for d=2 and in Fig. 5�b� for d=3. The data collapse is good
in both cases, and values for the exponents gS can be ex-
tracted from the slopes of the straight lines depicted in the
plots. In d=2, we get gS

rep=0.52±0.05, confirming the EE
result �10�, gS

EE=0.54±0.03, in two dimensions. We note that
the value gS

EE=0.54±0.03 is not consistent with the des
Cloizeaux relation �5� which predicts gS

C= ��S−1� /�S

= �0.23±0.04� / �0.75±0.05�=0.31±0.07.
In d=3, we get gS

rep=0.33±0.05, to be compared with the
EE value �10� gS

EE=0.16±0.05. It should be noted that gS
rep,

although larger than gS
EE, is still inconsistent with the des

Cloizeaux relation �5�, which predicts gS
C= ��S−1� /�S

= �0.38±0.03� / �0.58±0.03�=0.62±0.09. Further numerical
support to the present data has been obtained by mixing rep-
tation with Pivot moves, as explained above for regular lat-
tices. Again, no difference between the results obtained with
the two methods has been detected. We hence argue that our
3D results should be free of problems related to ergodicity
and accurate enough to draw conclusions about the violation
of the renormalization rule considered here.

Actually, the discrepancy between the two numerical val-
ues gS

rep and gS
EE, can be attributed to the different chain

lengths considered in each calculation. In fact, the present
results are consistent with those of the EE method for inter-
mediate values of x, corresponding to shorter chain lengths.
Thus, in three dimensions the asymptotic behavior seems to
be reached for larger chains lengths as compared to the two
dimensional case.

IV. CONCLUSIONS

We have studied the statistics of SAWs on deterministic
fractal structures with infinite ramification modeled by Sier-
pinski square lattices. The different SAW configurations have
been generated using the reptation algorithm. The motivation
of the present study was to elucidate whether violations of
the known des Cloizeaux relation, obtained previously for
these systems using exact enumeration techniques for rather
short chains, can be considered at least qualitatively correct.
Our present results, based on extensive reptation simulations
�complemented by combining reptation with Pivot moves�
on much longer SAW chains turn out to be in support of the
EE conclusions. Only in three dimensions our new value for
the exponent gS

rep=0.33±0.05, describing the asymptotic
shape of the end-to-end PDF at small distances, turns out to
be a bit larger than its EE counterpart gS

EE=0.16±0.05 but
both are inconsistent with the des Cloizeaux prediction gS

C

=0.62±0.09. We think that the EE results in 3D lack of suf-
ficient chain length, being the truly asymptotic regime attain-
able for much longer SAW chains. We find that our reptation
results are consistent with the EE ones for shorter chains.
The problem remains open regarding the actual value of gS in
three dimensions. We can conclude, however, that whatever
this value would be, it is likely that it will be bounded by the
EE value from below and by the present reptation value from
above, thus permitting to argue that the des Cloizeaux rela-
tion is indeed violated on infinitely ramified fractal lattices.
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