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A formulation of the intermolecular force in the nonideal-gas lattice Boltzmann equation method is exam-
ined. Discretization errors in the computation of the intermolecular force cause parasitic currents. These
currents can be eliminated to roundoff if the potential form of the intermolecular force is used with compact
isotropic discretization. Numerical tests confirm the elimination of the parasitic currents.
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I. INTRODUCTION

The lattice Boltzmann equation �LBE� methods for non-
ideal gases or binary fluids have witnessed significant
progress in recent years �1–16�. The success of the LBE
methods can largely be attributed to their mesoscopic and
kinetic nature, which enables the simulation of the macro-
scopic interfacial dynamics with the underlying microscopic
physics. On the macroscopic level, most of these two-phase
LBE methods can be considered as diffuse interface methods
�17� in that the phase interface is spread on grid points and
the surface tension is transformed into a volumetric force.
Generally, diffuse interface methods have some advantages
over sharp interface methods because computations are much
easier for three-dimensional �3D� flows in which topological
change of the interfaces is complicated. When applied on the
uniform grid, LBE methods enjoy the unit Courant,
Friedrichs, and Lewy �CFL� property that eliminates any nu-
merical errors involved in the computation of the advection
operator. The inherent isotropy of the lattice guarantees iso-
tropic discretization of the differential operators in the LBE
framework. Free from advection errors and anisotropic dis-
cretization, LBE methods can deliver much-improved solu-
tions with the same grid resolution.

One undesirable feature of LBE methods as a diffuse in-
terface method is the existence of parasitic currents. These
currents are small-amplitude velocity fields caused by a
slight imbalance between stresses in the interfacial region.
Such currents increase as the surface-tension force; although
they can be reduced with large viscous dissipation �18�, they
never disappear in most cases. They restrict the range of
parameters that may be accessed by the diffuse interface
method. In the case of a 2D liquid droplet immersed in a
vapor phase, the flow tends to be organized into eight eddies
with centers lying on the interface. In the diffuse interface
method, the key to reducing the parasitic currents lies in the
formulation of the surface-tension force. Jacqmin �19,20�
suggested that the potential form of the surface-tension force
was guaranteed to generate motionless equilibrium states
without parasitic currents. Jamet et al.�21� later showed that
the potential form ensured the correct energy transfer be-
tween the kinetic energy and the surface-tension energy,

eliminating parasitic currents. Renardy and Renardy �22�
also noted that the surface-tension force needs to be canceled
by a pressure gradient and developed an accurate represen-
tation of the surface tension in the volume-of-fluid �VOF�
context.

Several attempts have been made to reduce the magnitude
of the parasitic currents and identify their origins �23–26� in
the LBE framework. Nourgaliev et al. �23� employed a
finite-difference approach in the streaming step of LBE and
reported reduced currents compared with the previous LBE
approaches. Lishchuk et al. �24� noted that the parasitic cur-
rents were unwanted artifacts originating from the mesos-
copic �or microscopic� nature of LBE methods having an
interface with a finite thickness, and they tried to incorporate
sharp interface kinematics into their LBE method. Cristea
and Sofonea �25� argued that the directional derivative op-
erator e� ·� in LBE �see Eq. �2.1�� generated parasitic cur-
rents in the interfacial region. All these LBE schemes were
able to reduce the magnitude of the parasitic currents to a
certain degree but never made them entirely disappear. Wag-
ner �26� proposed that parasitic currents are caused by non-
compatible discretizations of the driving forces and argued
that the different discretization errors for the forces compete
and drive the parasitic currents. He replaced the pressure
form of the surface-tension force with the potential form of
the surface-tension force and observed that the size of the
maximum velocity dropped to O�10−16�. Because of the nu-
merical instability of the LBE method, however, a tiny cor-
rection term with a small amount of numerical viscosity had
to be added in his simulation.

In this paper, we will show that the potential form of the
intermolecular force in the LBE context eliminates the para-
sitic currents and presents a stable discretization scheme.
Specifically, the discrete Boltzmann equation �DBE� pro-
posed by He et al. �5� is analyzed, but the analysis is equally
valid for other LBE methods. Stability, order of accuracy,
and isotropy of the spatial discretization are examined.

II. THEORY

The DBE with external force F can be written as

�f�

�t
+ e� · �f� = −

f� − f�
eq

�
+

�e� − u� · F

�cs
2 f�

eq, �2.1�

where f� is the particle distribution function, e� is the micro-
scopic particle velocity, u is the macroscopic velocity, � is*Electronic address: thlee@ccny.cuny.edu
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the density, cs is a constant, � is the relaxation time, and F is
the averaged external force experienced by each particle. The
equilibrium distribution function f�

eq is given by

f�
eq = t���1 +

e� · u

cs
2 +

�e� · u�2

2cs
4 −

�u · u�
2cs

2 � , �2.2�

t� being a weighting factor. In the case of a van der Waals
fluid without the effect of gravity, the intermolecular attrac-
tion through the mean-field approximation and the exclusion
volume of molecules yield the external force �27�

F = ���cs
2 − p0� + �� � �2� , �2.3�

where � is the gradient parameter and p0 is the thermody-
namic pressure that separates phases. We call this form the
pressure form of the intermolecular force, or simply the pres-
sure form.

In this model, phase separation is induced by mechanical
instability in the supernodal curve of the phase diagram. Un-
fortunately, He and coworkers �27� reported numerical insta-
bility due to the stiffness of F. Lee and Lin �9� later showed
that the compact and isotropic finite difference yields stable
discretization as long as the mechanically unstable region is
resolved with enough grid points. The first term of F is to
cancel out with the ideal-gas contribution to the pressure and
may cause serious numerical instability when an inappropri-
ate discretization scheme is used. The second term, the ther-
modynamic pressure gradient, is mechanically unstable in
the narrow interfacial region, in which �p0 /�� changes its
sign. The number of grid points in this region should be
chosen large enough to resolve the change. The third term is
associated to the interfacial stress and should balance the
thermodynamic pressure gradient to maintain the equilibrium
interface profile. Without this term, the interface profile
would be a step function, which is numerically unsustainable
unless artificial smearing of the interface is introduced, sac-
rificing accuracy. We note that the interfacial stress term
alone does not trigger the parasitic currents. The parasitic
currents are initiated by a slight imbalance between the ther-
modynamic pressure-gradient term and the interfacial stress
term as a result of truncation error.

To avoid the truncation error, we recast Eq. �2.3� in the
same form as the interfacial stress term using the thermody-
namic identity. The mixing energy density for the isothermal
system is

Emix��,��� = E0��� +
�

2
����2, �2.4�

where the bulk energy E0 is related to the thermodynamic
pressure p0 by the equation of state �EOS�. The chemical
potential is the derivative of the bulk energy with respect to
the density

p0 = �
�E0

��
− E0, �2.5�

�0 =
�E0

��
. �2.6�

Using Eq. �2.6�, one can rewrite Eq. �2.3� in the potential
form

F = ��cs
2 − � � ��0 − ��2�� . �2.7�

The equilibrium profile is determined such that the energy is
minimized. Now �=�0−��2� is treated as a scalar and dis-
cretized in like manner.

In the vicinity of the critical point, EOS can be simplified
�28� for control of the interface thickness and surface tension
at equilibrium. We assume that the bulk energy E0 is �29�

E0��� � ��� − �v
sat�2�� − �l

sat�2, �2.8�

where � is a constant that is related to the compressibility of
bulk phases and �v

sat and �l
sat are the densities of vapor and

liquid phases at saturation, respectively. In a plane interface
at equilibrium, the density profile across the interface is

��z� =
�l

sat + �v
sat

2
+

�l
sat − �v

sat

2
tanh	2z

D

 , �2.9�

where D is the interface thickness, which is chosen based on
accuracy and stability. Given D, �, and the saturation densi-
ties, one can compute the gradient parameter � and the
surface-tension force �;

� =
�D2��l

sat − �v
sat�2

8
, �2.10�

� =
��l

sat − �v
sat�3

6
�2�� . �2.11�

In the limiting case of zero �, the interface thickness D goes
to zero. The above simplification may cease to be valid away
from the critical point, namely, at a large density difference
or an equivalently low temperature. In our experience, the
numerically sustainable interface thickness is D	3, below
which the LBE method becomes unstable or the interface
shape is distorted. At large density difference, either � or � is
compromised because of the lower bound for D. Since the
speed of sound is related to the bulk energy, changing �
implies the modification of the speed of sound of the bulk
fluid.

LBE is obtained by discretizing Eq. �2.1� along character-
istics over the time step 
t;

f��x + e�
t,t + 
t� − f��x,t�

= − �
t

t+
t f� − f�
eq

�
dt� + �

t

t+
t �e� − u� · ���cs
2 − � � ��

�cs
2

�f�
eqdt�. �2.12�

The time integration in �t , t+
t� is coupled with the space
integration in �x ,x+e�
t�. Application of the trapezoidal rule
for second-order accuracy and unconditional stability leads
to
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f��x + e�
t,t + 
t� − f��x,t�

=  −
f� − f�

eq

2�


�x,t�
−  f� − f�

eq

2�


�x+e�
t,t+
t�

+

t

2

�e� − u� · ��B�cs
2 − ��B��

�cs
2 �f�

eq��x,t�

+

t

2

�e� − u� · ��C�cs
2 − ��C��

�cs
2 �f�

eq��x+e�
t,t+
t�,

�2.13�

where the nondimensional relaxation time �=� /
t and is re-
lated to the kinematic viscosity by =�cs

2
t. The superscripts
B and C denote the second-order biased difference and the
second-order central difference, respectively, which are de-
fined as �9�

�
te� · �B���x� =
− ��x + 2e�
t� + 4��x + e�
t� − 3��x�

2
,

�
te� · �C���x� =
��x + e�
t� − ��x − e�
t�

2
. �2.14�

Lee and Lin �9� showed that discretizations of the directional
derivatives in the force terms at �x� and �x+e�
t� need to be
compact around �x+e�
t�. Derivatives other than the direc-
tional derivatives can be obtained by taking moments of the
1D finite differences with appropriate weights yielding iso-
tropic discretizations. The first and second derivatives are
discretized as follows:

��B���x� = �
��0

t�e��− ��x + 2e�
t� + 4��x + e�
t� − 3��x��
2cs

2
t
,

��C���x� = �
��0

t�e����x + e�
t� − ��x − e�
t��
2cs

2
t
,

��2���x� = �
��0

t����x + e�
t� − 2��x� + ��x − e�
t��
cs

2
t2 .

�2.15�

Here, we introduce the modified particle distribution func-

tion f̄� and equilibrium distribution function f̄�
eq to facilitate

computation;

f̄� = f� +
f� − f�

eq

2�
−


t

2

�e� − u� · ��C�cs
2 − ��C��

�cs
2 f�

eq,

f̄�
eq = f�

eq −

t

2

�e� − u� · ��C�cs
2 − ��C��

�cs
2 f�

eq. �2.16�

The density and the momentum can be computed by taking
the zeroth and first moments of the modified particle distri-
bution function

� = �
�

f̄�
eq = �

�

f̄�,

�u = �
�

e� f̄�
eq +


t

2
��C�cs

2 − ��C��

= �
�

e� f̄� +

t

2
��C�cs

2 − ��C�� . �2.17�

The space discretizations Eqs. �2.14� and �2.15� are chosen
such that Eq. �2.16� exactly satisfies Eq. �2.17�.

Equation �2.13� can then be recast in a simpler form,

f̄��x + e�
t,t + 
t� − f̄��x,t�

= −
1

� + 0.5
�� f̄� − f̄�

eq���x,t�

+
�e� − u� · ��M�cs

2 − ��M��
�cs

2 �f�
eq��x,t�
t , �2.18�

where the superscript M denotes the second-order mixed dif-
ference defined as


te� · �M� =
1

2
�
te� · �B� + 
te� · �C�� , �2.19�

�M� =
1

2
��B� + �C�� . �2.20�

We note that although Eq. �2.18� appears to be explicit in
time, it is fully implicit for the relaxation term and the
intermolecular-force terms alike and, therefore, is uncondi-
tionally stable and second-order accurate.

III. NUMERICAL TEST

The test cases confirm that the LBE method with the po-
tential form is able to reach an equilibrium. Figure 1 shows
�u fields after 100 000 time steps, when steady-state solu-
tions are assumed. The interface thickness, droplet radius,
and relaxation time are D=4, R0=25, and �=0.5, respec-
tively. We fixed �=0.01, �l

sat=1.0, and �v
sat=0.1, in which

case the surface tension is �=2.187�10−3. As initial condi-
tions, a 2D droplet is generated at the corner of a 50�50
computational domain for a D2Q9 lattice. As a result of sym-
metry, a quadrant of the real domain is solved. Values of �u
are magnified by 1�105 times in �a� and 1�1015 times in
�b�. Figure 1�a� indicates the presence of parasitic currents
that are roughly aligned in the direction normal to the inter-
face, when the pressure form of the intermolecular force is
used. Away from the interface, the parasitic currents rapidly
disappear.
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Inexact satisfaction of �p0=���0 is responsible for the
parasitic currents. Following the analysis of Jamet et al. �21�,
the discretized relation for ��Cp0��x�= ���C�0��x� should be

�
��0

t�e��p0�x + e�
t� − p0�x − e�
t��
2cs

2
t

= �
��0

t�e����0�x + e�
t� − �0�x − e�
t��
2cs

2
t
. �3.1�

However, the Taylor series expanding the pressure and the
chemical potential reveals that the truncation error is propor-
tional to the density gradients

��Cp0��x� − ���C�0��x�

= �
��0

t�e�

6cs
2
t

�	 ��0

��

�
te� · ����
te� · ��2��

�x�
.

�3.2�

We observe that the flow does not exhibit any organized
eddies despite the presence of parasitic currents. We specu-
late that the absence of eddies is due to the isotropic discreti-
zation of LBE. The magnitude of the currents may be small,
but the most undesirable outcome of the parasitic currents is
the violation of mass conservation. Figure 1�a� shows that
the droplet radius is increased after long time integration.
Ideally, the net balance of mass flux across the interface re-
gion should be zero, even if the values of �u remain finite.
The potential form eliminates the parasitic currents, as nu-
merically confirmed in Fig. 1�b�. Nonisotropic discretization
also triggers spurious currents. Since a nonisotropic discreti-
zation such as standard central difference destabilizes the
LBE method, we are unable to replace Eq. �2.15� by the
standard central difference scheme. Instead, we perturb Eq.
�2.15� by only 10% of the standard central difference, which
is enough to break the isotropy. The modification takes the
form in the x direction as

��x���x� = 0.9 �
��0

t�ex,����x + e�
t� − ��x − e�
t��
2cs

2
t

+ 0.1
���x + �x� − ��x − �x��

2�x
, �3.3�

where �x is the lattice spacing in the x direction. As shown
in Fig. 1�c�, the flow is organized into eddies, and the mag-
nitude of the spurious currents is even higher than the pres-
sure form.

Time evolution of the dimensionless radius for the poten-
tial form with different values of � is shown in Fig. 2. The
radii of the droplet undergo rapid initial decrease and reach a
steady-state value of R /R0=0.983. The decrease in radius is
because the steady-state density distribution is slightly el-
evated over the initial density ��0� distribution due to the
inclusion of radius R. Figure 3 shows the elevated steady-
state density � and pressure p distributions over the initial
distributions in the case of �=0.01. The Laplace law predicts
a pressure increase for a 2D droplet, which results in a den-
sity increase

pl − pl
sat =

�l
sat

�l
sat − �v

sat

�

R
, �3.4�

FIG. 1. �u fields after 100 000 time steps. Values of �u are
magnified by 1�105 times in �a�, 1�1015 times in �b�, and 1
�104 times in �c�. Solid lines represent �=0.2, 0.55, and 0.9, and
dashed lines represent the initial location of �=0.55.
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pv − pv
sat =

�v
sat

�l
sat − �v

sat

�

R
, �3.5�

where pl and pv are the pressures of liquid and vapor phases,
respectively. In Fig. 3�b�, pl and pv are in good agreement
with the pressures in the bulk phases obtained from the LBE
simulation. The pressure in the LBE simulation is defined by
p= p0− �

2 ��. The ratio between the surface tension calcu-
lated from the pressure differences in liquid and vapor
phases and the surface tension given in Eq. �2.11� is
�LBE /�=R�pl− pv�LBE /�=0.991.

Effects of � on the parasitic currents are examined in Fig.
4�a�. The relaxation time and the interface thickness are fixed
at �=0.5 and D=4, respectively. By fixing �, the viscosity of
the fluid is fixed. Given the interface thickness and the den-
sity ratio, higher � means higher surface-tension force as
well as less compressibility, thus implying a faster conver-
gence rate. When the time is nondimensionalized to the vis-
cous time of the vapor phase tv=�v

satv
satR0 /�, the conver-

gence rates for different � and models collapse on a single
curve. The maximum kinetic energy with the potential form
decreases exponentially to roundoff. On the contrary, the
maximum kinetic energy with the pressure form initially de-
creases at the same rate as that of the potential form but
eventually stagnates. The maximum steady-state kinetic en-
ergy of the pressure form decreases with �, as the surface-
tension force decreases accordingly. A similar trend can be
found when � is fixed and the relaxation time � is varied in
Fig. 4�b�.

We conducted comparisons of our method with previously
proposed LBE models under identical computational condi-
tions. Nourgaliev et al. �23� compared their model based
on Swift et al.’s bulk energy model �3� with Shan and
Chen’s interparticle-interaction potential model �2�. They
used the van der Waals EOS, whose free energy is E0
=�RT ln�� / �1−�b��−a�2. In their work a=9/49, b=2/21,
and RT=0.56 were chosen. The grid size was 100�100, the
droplet radius was R0=20, the relaxation time was �=0.3,

and the gradient parameter was �=0.037. We take the iden-
tical parameters and form of the free energy. Table I shows
the maximum value of the parasitic currents in terms of
Mach number. Only the present model eliminates the para-
sitic currents.

To test the stability of the present LBE model, we exam-
ine the inertial coalescence of droplets, driven by the surface
tension. Industrial applications of this process include emul-
sion stability, ink-jet printing, and coating applications. At
the moment of contact of droplets, the inversion of radius of
curvature causes a singularity, forming a liquid bridge be-
tween the droplets. The radius of the liquid bridge R0 then
grows as R0�t���t by equating capillary and inertial forces.
Aarts et al. �30� experimentally found the following prefac-
tors for the scaling relation: water, 1.14; 5 mPa s silicon oil,
1.24; and 20 mPa s silicon oil, 1.11. Inviscid incompressible
simulation by Duchemin et al. �31� predicted a rather large

FIG. 2. Time evolution of the radius of the droplet R nondimen-
sionalized to the initial radius R0. � is fixed at 0.5.

FIG. 3. �a� Density and �b� pressure distributions vs the distance
from the droplet center 100 000 time steps; � is fixed at 0.5 and � at
0.01.
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prefactor of 1.62. The initialization of simulation of coales-
cence is particularly challenging. Duchemin et al. �31� and
Menchaca-Rocha et al. �32� smoothed the interface profile in
the region of liquid bridge to avoid infinitely large capillary
forces caused by the singular curvature. An effect of smooth-
ing could be slower initial growth of the radius of the liquid
bridge as a result of smaller capillary forces.

Instead of smoothing the initial profile, we choose to
separate two stationary droplets by the equilibrium interface

thickness D as shown in Fig. 5�a�. The intermolecular attrac-
tion acts at this distance and initiates the formation of the
liquid bridge. Figure 5 shows coalescence of two droplets.
Two 3D droplets are generated on a 200�400�200 periodic
computational domain for a D3Q27 lattice. The interface
thickness, droplet radius, and relaxation times for liquid and
vapor phases are D=4, R0=50, and �l

sat=0.01 and �v
sat=0.2,

respectively. We fixed �=0.02, �l
sat=1.0, and �v

sat=0.001.
Time is nondimensionalized to the inertial time of the liquid
phase ti=��l

satR0
3 /� �31� and is measured from the moment

of contact �Fig. 5�b��. The results are in good qualitative
agreement with previous experimental results �30,31�, except
for the elongated neck region due to initial separation. The
finite value of the initial separation relative to the radius of
droplets can be reduced by adopting a finer mesh or an adap-
tive mesh refinement.

Although the approach based on free energy is derived to
describe the near-critical behavior of nonideal gases at small
density ratio, it is generally believed to be valid even when
the density gradients become large �33�. As � decreases in
the present model, however, the approximation of the bulk
energy by Eq. �2.8� may become inaccurate. The effect of �
on the inertial coalescence of droplets, plotted in Fig. 6,
shows the time evolution of the nondimensionalized neck
radii for �=0.02, 0.01, and 0.005. The differences in the

TABLE I. Maximum value of the parasitic currents in terms of
Mach number at steady state.

Shan and Chen
model �23�

Nourgaliev
et al. �23� Present

Mamax 3�10−2 2�10−4 8�10−15

FIG. 4. Time evolution of the maximum kinetic energy for a
potential form and a pressure form of the intermolecular force; � is
fixed at 0.5 in �a�, while � is fixed at 0.01 in �b�.

FIG. 5. Coalescence of two droplets on 200�400�200 lattice
at D=4, R0=50, �=0.02, �l

sat=0.01, �v
sat=0.2, �l

sat=1.0, and
�v

sat=0.001. Time is nondimensionalized to the inertial time of the
liquid phase ti=��l

satR0
3 /�.

TAEHUN LEE AND PAUL F. FISCHER PHYSICAL REVIEW E 74, 046709 �2006�

046709-6



results are negligible in this range of �. The radii of the neck
converge to the line whose slope is 1.2 �30� after rapid early
growth, which is governed by the singular curvature at the
moment of contact. Using an inviscid incompressible nu-
merical method, Menchaca-Rocha et al. �32� reported slower

initial growth of the neck radius, followed by transition re-
gion.

IV. CONCLUDING REMARKS

In summary, two different sources of error in the compu-
tation of the surface-tension force lead to the development of
the parasitic currents. A slight imbalance between the pres-
sure gradient and the stresses due to truncation error initiates
the parasitic currents. As long as isotropy of the numerical
scheme is retained, the parasitic currents are kept aligned in
the direction normal to the interface. If isotropy is not main-
tained, however, the parasitic currents eventually develop
into the organized flow patterns. The LBE method with iso-
tropic discretizations can avoid the formation of these pat-
terns. Furthermore, the use of the potential form of the inter-
molecular force eliminates the parasitic currents to roundoff.
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