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In recent years, lattice Boltzmann methods have been increasingly used to simulate rarefied gas flows in
microscale and nanoscale devices. This is partly due to the fact that the method is computationally efficient,
particularly when compared to solution techniques such as the direct simulation Monte Carlo approach. How-
ever, lattice Boltzmann models developed for rarefied gas flows have difficulty in capturing the nonlinear
relationship between the shear stress and strain rate within the Knudsen layer. As a consequence, these models
are equivalent to slip-flow solutions of the Navier-Stokes equations. In this paper, we propose an effective
mean-free path to address the Knudsen layer effect, so that the capabilities of lattice Boltzmann methods can
be extended beyond the slip-flow regime. The model has been applied to rarefied shear-driven and pressure-
driven flows between parallel plates at Knudsen numbers between 0.01 and 1. Our results show that the
proposed approach significantly improves the near-wall accuracy of the lattice Boltzmann method and provides
a computationally economic solution technique over a wide range of Knudsen numbers.
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I. INTRODUCTION

Microsystems have developed rapidly since the concepts
of “lab-on-a-chip” and “micro-total-analysis-systems” were
introduced in the early 1990s. The benefits of miniaturization
include increased chemical yields, lower reagent consump-
tion, enhanced sensitivity, and reduced processing time.
More importantly, miniaturization may offer enhanced func-
tionality that cannot be achieved in conventional macroscale
devices. Recently, increasing numbers of miniaturized de-
vices have been developed that require an understanding of
the fundamental physics associated with rarefied gas flows in
the slip- and transition-flow regimes. However, predicting
such flows presents a significant modeling challenge due to
the fact that gas microflows experience a range of nonequi-
librium phenomena under standard operating conditions in-
cluding velocity slip and temperature jump at solid bound-
aries, and a nonlinear stress-strain relationship within the
Knudsen layer. Previously, these phenomena have only been
encountered in macroscale flows under extreme conditions
�1�.

Despite the major advances in microsystems technology,
the current lack of a fundamental understanding of micro-
scale and nanoscale gas flows is hindering the systematic
design of miniaturized devices �2�. The Navier-Stokes equa-
tions with no-slip boundary conditions often fail to explain
important experimental observations, e.g., that the measured
flow rate is higher than expected while the drag and friction
factor are lower than expected �3�. This is because the
Navier-Stokes equations can only describe flows that are
close to local thermodynamic equilibrium. When the mean
free path of the gas molecules approaches the length scale of
the device, the flow lacks scale separation and is unable to
achieve local equilibrium �4�. The critical parameter is the

Knudsen number, Kn= l /H, where l is the mean free path of
the gas molecules and H is the characteristic length scale of
the flow system. The Navier-Stokes equations with no-slip
boundary conditions are only appropriate when Kn�0.001.
However, gas flows in miniaturized devices are often in the
slip regime �0.001�Kn�0.1� or the transition regime
�0.1�Kn�10�. In these regimes, the gas can no longer be
described as a continuous quasiequilibrium fluid nor as a free
molecular flow �5�. In practice, most devices will operate
over a range of Knudsen numbers in different parts of the
device; this makes it even more difficult to develop a general
flow model.

The direct simulation Monte Carlo �DSMC� method
�a statistical molecular dynamics approach� can successfully
simulate high-speed transition flows �6�. In contrast, the
flows encountered in microscale and nanoscale systems typi-
cally involve low Mach numbers and low Knudsen numbers.
Under these conditions, the DSMC approach is not compu-
tationally efficient due to the requirement to perform large
amounts of data sampling in order to reduce the statistical
scatter in the predicted flow fields. This makes current
DSMC methods unsuitable for low speed, low Knudsen
number flows �7�. Similar problems occur in hybrid DSMC/
Navier-Stokes solvers for mixed-density flows �8� and direct
solutions of the Boltzmann equation �9�. Significant effort
has been made to extend the validity of continuum-based
equations and develop higher-order equation sets, such as
Grad’s 13 moment method and the Burnett equations. How-
ever, these methods have generally failed to produce satis-
factory results for low-speed flows in the transition regime,
although significant progress has been made in coupling the
Navier-Stokes equations with the Bhatnagar-Gross-Krook
�BGK� model �10�. The development of the information
preservation �IP� method for DSMC �11,12� appears to be a
promising approach while Baker and Hadjiconstantinou �13�
and Chun and Koch �14� have recently demonstrated that the
statistical scatter associated with Monte Carlo methods can
be reduced by considering only the deviation from equilib-
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rium. However, there is currently no comprehensive and
computationally efficient model that can simulate both low-
speed and low Knudsen number gas flows for 0.1�Kn�1.

The lattice Boltzmann method offers an attractive tech-
nique for microscale and nanoscale fluidic applications
where the microscopic and macroscopic behavior are
coupled. The method retains a computational efficiency com-
parable to Navier-Stokes solvers but is potentially a more
accurate model for gas flows, over a broad range of Knudsen
numbers, because its origins lie in kinetic theory. Since Nie
et al. �15� and Lim et al. �16� applied the lattice Boltzmann
method to simulate rarefied gas flows, many publications
have emerged, which demonstrate that velocity-slip and
temperature-jump phenomena can be captured by the lattice
Boltzmann equation �LBE� approach �17–26�. However, the
foregoing work focused on developing boundary conditions
for the velocity slip and temperature jump rather than con-
structing LBE models that conserve symmetry for the higher-
order moments �an essential requirement to obtain quantita-
tive results for high Knudsen number flows�. Consequently,
these lattice Boltzmann models are still working within the
Navier-Stokes slip-flow regime and are therefore restricted to
very low Knudsen numbers, i.e., Kn�0.1. In other words,
these models fail to capture the flow characteristics in the
Knudsen layer where the Navier-Stokes equations are not
valid. However, Sbragaglia and Succi �27� have recently ar-
gued that the LBE method should be able to provide a rea-
sonable description of rarefied gas flows beyond the hydro-
dynamic slip-flow limit and up to Kn�O�1�.

One of the most important tests for any transition-regime
model is whether it can capture the nonlinear flow character-
istics in the Knudsen layer. In order to simulate high Kn
flows, where temperature and density variations play an im-
portant role, one possible solution is to develop more ad-
vanced LBE models for the high-order moments. Recently,
Shan et al. �28� have shown that higher-order LBE models,
based on an expansion of the Boltzmann distribution func-
tion, can be constructed. In contrast, Benzi et al. �29� have
proposed a phenomenological pseudopotential to describe
molecular interactions at the surface. This approach could
offer a way of constructing a more comprehensive near-wall
treatment to capture nonlinear phenomena. However, no de-
finitive results have yet been produced to demonstrate that
either of these approaches can capture Knudsen layer effects.
In this paper, we propose an alternative and computationally
efficient method to extend the range and validity of the LBE
method into the transition regime.

II. CAPTURING KNUDSEN LAYERS

The Knudsen layer, or kinetic boundary layer, is a region
near a solid wall with a thickness of a few mean free paths
where the usual linear relationship between the stress and
rate of strain is no longer valid, i.e., the Navier-Stokes equa-
tions become inappropriate in this layer. Figure 1 illustrates
the velocity profile in the Knudsen layer for the particular
case of Kramers’ problem—gas bounded by a single planar
wall, subjected to a uniform and constant shear stress. As
illustrated in Fig. 1, the flow behavior in the Knudsen layer is

very different from that predicted by the Navier-Stokes equa-
tions and LBE models, which overestimate the velocity slip
at the wall.

Unlike the DSMC method, the mean free path must be
prescribed through the Knudsen number in LBE simulations
of rarefied gas flow. However, the presence of a solid bound-
ary will have a significant impact on the distance a gas mol-
ecule can travel between successive collisions, especially in
the near-wall region. As a consequence, the mean free path
will be smaller than that observed in the bulk flow. We there-
fore propose an effective mean free path, which is defined as
the average distance a gas molecule will travel between con-
secutive collisions with either another gas molecule or the
solid wall. This adjustment to the mean free path will only
apply in the Knudsen layer and, for isothermal rarefied gas
flow at low speed, the correction can be obtained from well-
documented work on the velocity defect in the Knudsen
layer for Kramers’ problem �30�.

The velocity defect, the difference between the actual ve-
locity and that predicted by the Navier-Stokes equations, in-
creases as the wall is approached. This particular problem
has been investigated experimentally and numerically for gas
flows at the incompressible and isothermal limit. Despite the
lack of a universally accepted description of the Knudsen
layer, there is clear evidence to suggest that the velocity de-
fect decreases rapidly away from a solid boundary and is
virtually zero outside the Knudsen layer, as illustrated in Fig.
1. For diffuse scattering of the gas molecules, Cercignani
�31,32� has shown that the velocity profile in the Knudsen
layer for Kramers’ problem is given by

u�y� = k�y + � − lI� y

l
�	 , �1�

where k is the velocity gradient in the bulk flow, �
=1.1466l is the slip coefficient, y is the distance normal to
the wall, and I is a function that represents the velocity de-
fect in the Knudsen layer. The mean free path in the bulk
flow l is defined as �� / p�
�kBT /2m, where � is the viscos-
ity, p is the pressure, kB is Boltzmann’s constant, T is the
absolute temperature, and m is the molecular mass. Tabulated
values for the velocity defect have previously been reported
�31,33–35� and compared with experimental data �36�.

FIG. 1. Schematic diagram showing the microscopic slip �uslip�
and macroscopic slip �us� for Kramers’ problem �30�. Actual veloc-
ity profile �—� and velocity profile predicted using the Navier-
Stokes and LBE models �– –� within the Knudsen layer.
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More recently, Lockerby et al. �37,38� developed several
expressions to approximate the Knudsen layer, including an
empirical expression, I�y / l��7/20�1+y / l�−2, and an alter-
native formulation for the velocity profile given by

u�y� = k�y + l
 2

�
+

7

10C
l�1 − e−Cy/l�	 , �2�

where C is a constant �see Ref. �38� for a more detailed
description�. For Kramers’ problem, C=1 leads to a velocity
profile that is very close to that obtained from both the lin-
earized Boltzmann equation and DSMC simulations.

To enable the Navier-Stokes equations to capture the ve-
locity profile in the Knudsen layer, an effective viscosity has
been proposed by Lockerby et al. �37�. However, to incorpo-
rate Knudsen layer effects in lattice Boltzmann models, it is
necessary to redefine the wall function in terms of an effec-
tive mean free path le. From kinetic theory, the viscosity is
related to the mean free path via �=�c	l, where c is the
mean molecular speed and � is taken to be a constant with a
value of 0.499 �39�. For an isothermal, incompressible flow
the mean free path is proportional to the viscosity and there-
fore the effective mean free path le can be obtained from

le =
l

1 + 0.7e−Cy/l . �3�

Equation �3� represents a wall function that can provide a
correction to the mean free path. Outside the Knudsen layer,
the effective mean free path in Eq. �3� approaches the mean
free path in the bulk flow l. However, at the wall �y=0�, the
effective mean free path is 1.7 times smaller than in the bulk
flow. Although the wall function defined in Eq. �3� is based
on Kramers’ problem, the velocity defect within the Knudsen
layer is a universal phenomenon found in all rarefied flows.
In the present study, the wall-function approach is incorpo-
rated into a D2Q9 LBE model and applied to a range of
shear- and pressure-driven flows.

III. LATTICE BOLTZMANN FORMULATION

To demonstrate the present approach, we consider the lat-
tice BGK model with an external forcing term Fi as proposed
by He et al. �40�;

� fk

�t
+ eki

� fk

�xi
= −

fk − fk
eq



+

�eki − ui�Fi

cs
2	

fk
eq, �4�

where fk is the velocity-distribution function, fk
eq is the dis-

tribution function at equilibrium, eki is the lattice velocity, ui
is the macroscopic velocity, cs is the sound speed of the
lattice fluid, 	 is the density, and 
 is the relaxation time. For
a two-dimensional, nine-velocity lattice model �D2Q9�, the
equilibrium distribution function can be expressed as

fk
eq = 	�k�1 +

ekiui

cs
2 +

�ekiui�2

2cs
4 −

uiui

2cs
2	;

�0 =
4

9
, �k =

1

9
�k = 1,2,3,4�; �k =

1

36
�k = 5,6,7,8� ,

�5�

where the lattice velocities ek are given by

e0 = 0,

ek = �cos� �k − 1��
2

�,sin� �k − 1��
2

�	c, k = 1,2,3,4,

ek = �cos� �k − 5��
2

+
�

4
�,sin� �k − 5��

2
+

�

4
�	
2c,

k = 5,6,7,8, �6�

and c=
3RT �R is the gas constant�. After discretizing Eq.
�4�, we obtain

fk�x + ek�t,t + �t� − fk�x,t�

= −
1


�fk�x,t� − fk

eq�x,t�� + �t
�eki − ui�Fi

cs
2	

fk
eq�x,t� , �7�

where =
 /�t is the nondimensional relaxation time and �t
is the time step.

Zhang et al. �20� have shown that the Knudsen number in
a D2Q9 lattice BGK model can be related to the relaxation
time as follows:

Kn =
 8

3�

� − 0.5�
NH

, �8�

where NH=H /�x is the number of lattice sites, �x is the
lattice length, and H is the height of the channel. Substituting
the effective mean free path from Eq. �3� allows the nondi-
mensional relaxation time to be written as

FIG. 2. Nondimensional velocity profiles for planar Couette
flow at a Knudsen number of 0.01. Comparison of the LBE solution
with the wall-function approach �—�; the LBE solution without the
wall-function approach �¯�; the Navier-Stokes slip-flow solution at
Ma=0.016 �– –�; the Navier-Stokes slip-flow solution at Ma=0.16
�---�; and the DSMC data at Ma=0.16 ���.
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 =
3�

8
� Kn NH

1 + 0.7e−Cy/l� + 0.5. �9�

Recent work applying lattice Boltzmann methods to rar-
efied gas flows has focused on the development of slip-
boundary conditions and currently there are many ap-
proaches to capture slip effects at the wall. Examples include
bounce back, specular reflection, or a combination of the two
�15,16,19,23,41�, kinetic theory boundary conditions
�17,42,43�, and a virtual-wall collision scheme �24�. In the
present investigation, a kinetic boundary condition
�17,42,44� has been used with the assumption of a fully dif-
fuse molecular reflection

��ek − uw� · n�fk = 
�ek�−uw�·n�0

��ek� − uw� · n�Rf�ek� → ek�fk�,

�10�

where k� and k are the incident and reflected directions of the
particles, uw and 	w are the velocity and density at the wall,
n is the unit normal, and Rf is the scattering kernel given by

Rf�ek� → ek� =
AN

	w
��ek − uw� · n�fk

eq�u=uw
. �11�

The coefficient AN in Eq. �11� is given by

AN = 	w


k

��ek − uw� · n�fk

��ek − uw� · n�fk
eq�u=uw

k
��ek� − uw� · n�fk�

. �12�

IV. RAREFIED FLOW BETWEEN PARALLEL
PLATES

The present wall-function technique for the effective
mean free path is based on Kramers’ problem: namely, a gas
bounded by a single planar wall and subjected to a uniform
and constant shear stress. However, this technique can be
applied to more complex geometries by assuming that the
influence of overlapping Knudsen layers is additive. For ex-
ample, if the distance between the parallel plates is H, then
the effective mean free path in the overlapping Knudsen lay-
ers can be assumed to be

FIG. 3. Nondimensional velocity profiles for planar Couette flow at Knudsen numbers of 0.25, 0.5, 0.75, and 1.0. Comparison of the LBE
solution with the wall-function approach �—�; the LBE solution without the wall-function approach �¯�; the Navier-Stokes slip-flow
solution �– –�; and the DSMC data ���.
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le =
l

1 + 0.7�e−Cy/l + e−C�H−y�/l�
, �13�

where y is the distance from one wall and H−y is the dis-
tance from the other wall. In this section, we test whether
this approach can provide accurate predictions over a range
of Knudsen numbers up to Kn�O�1�.

A. Planar Couette flow

The model was initially tested on a planar Couette prob-
lem consisting of a moving upper plate and a stationary
lower plate. The kinetic boundary conditions given in Eqs.
�10�–�12� were used to describe the molecular interactions
with the solid walls, while periodic boundary conditions
were implemented at the inlet and outlet. Figure 2 illustrates
the predicted velocity profiles for a planar Couette flow at a

FIG. 4. Nondimensional velocity profiles for planar Poiseuille flow at Knudsen numbers of 0.113, 0.226, 0.451, 0.677, and 1.13.
Comparison of the LBE solution with the wall-function approach �—�; the LBE solution without the wall-function approach �---�; Ohwada
et al.’s solution �45� of the linearized Boltzmann equation ���; and the Navier-Stokes slip-flow solution ���.
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Knudsen number of 0.01. For this problem, the nondimen-
sional velocity U is defined as U=u /Uplate while the nondi-
mensional distance is defined as L=y /H. To validate the
LBE wall-function technique, the results have been com-
pared to DSMC data and a first-order slip-flow solution of
the Navier-Stokes equations. The DSMC method is often
used as an independent numerical test and it is generally
accepted that the method provides an accurate description of
the flow characteristics within the Knudsen layer. In the
present study, the DSMC simulations were performed using
the computational scheme developed by Bird �6� and the
gas-surface interactions were modeled using a Maxwellian
diffuse-reflection boundary condition.

The current LBE model is only valid in the isothermal and
incompressible limit, and therefore the simulations are re-
stricted to low speed flow. Unfortunately, the DSMC ap-
proach is computationally expensive at low Mach numbers,
due to the requirement to perform large amounts of sampling
to reduce the statistical scatter. It is therefore necessary to
choose a Mach number that minimizes compressibility ef-
fects in the LBE model while reducing the computational
burden of the DSMC simulations. For a Knudsen number of
Kn=0.01, two Mach numbers have been considered: Ma
=0.016 and 0.16, respectively. Figure 2 shows that the
Navier-Stokes slip-flow solutions at these two flow speeds
are almost indistinguishable, demonstrating that compress-
ibility is negligible below a Mach number of 0.16. Moreover,
the LBE solution is in excellent agreement with both the
DSMC data and the Navier-Stokes solutions, confirming that
the proposed wall-function approach has a minimal effect at
low Knudsen numbers.

Figure 3 illustrates the growing influence of the Knudsen
layer as Kn is increased beyond the slip-flow regime. For
these results, the DSMC simulations were performed at a
Mach number of 0.16 to reduce the computational cost. As
expected, the LBE predictions without the wall function are
almost identical to the Navier-Stokes slip-flow solution. Both
the Navier-Stokes and lattice Boltzmann methods overpre-
dict the slip at the wall, with the velocity increasing linearly
from the stationary lower plate to the moving upper plate. As
the Knudsen number is increased, the predicted velocity pro-
files are shown to depart further from the DSMC data. How-
ever, when the wall function is incorporated into the LBE
model, the accuracy of the predictions is significantly im-
proved and the proposed model is clearly able to capture the
nonlinear flow behavior in the Knudsen layer.

B. Pressure-driven flow

The second test case considers fully developed pressure-
driven �Poiseuille� flow between parallel plates. To validate
the wall-function approach, the lattice Boltzmann results are
compared with data obtained by Ohwada et al. �45� using a
direct solution of the linearized Boltzmann equation.
Ohwada et al. assumed the applied pressure gradient in the
streamwise direction was small, so that the flow could be
considered incompressible. In the lattice Boltzmann simula-

tions, a uniform pressure gradient was applied in the stream-
wise direction while periodic-velocity boundary conditions
were used at the inlet and outlet.

Figure 4 illustrates the predicted velocity profiles across
the channel for various Knudsen numbers between 0.113 and
1.13. For this problem, the nondimensional velocity U is
defined as U=u /U, where U is the mean velocity in the
channel. The lattice Boltzmann simulations without the wall
function are almost identical to the Navier-Stokes slip-flow
solution and the discrepancy between these predictions and
Ohwada et al.’s linearized Boltzmann solution clearly in-
creases with the Knudsen number. However, adopting the
wall-function approach leads to a significant improvement in
the LBE predictions up to Kn�0.5.

In pressure-driven flows, the pressure gradient causes a
heat flux in the streamwise direction despite the uniform
temperature of the gas �45�. This higher-order rarefaction
effect cannot be captured using the current wall-function ap-
proach and causes the LBE model to increasingly depart
from Ohwada et al.’s predictions as the Knudsen number is
increased. For Kn�0.5, the wall function does provide an
improved description of the velocity profile but, in its current
form, is unable to capture the full nonlinearity associated
with the Knudsen layer.

V. CONCLUSIONS

A wall-function approach for the effective mean free path
has been proposed that enables lattice Boltzmann methods to
be extended beyond the slip-flow regime. For planar Couette
flow, the results indicate that the method significantly im-
proves the accuracy of lattice Boltzmann models, especially
in the near-wall region, and it has been shown that the
method provides a reasonable description of the nonlinear
flow characteristics in the Knudsen layer up to Kn�O�1�. In
the case of pressure-driven flow, the wall-function approach
provides a significant improvement for Knudsen numbers up
to 0.5 but the method is currently unable to capture the full
effect of the Knudsen layer for Kn�0.5. This approach has
been implemented without sacrificing the computational ef-
ficiency of the lattice Boltzmann method. However, the
present wall function is based on phenomenological observa-
tions for Kramers’ problem and this needs to be improved in
the future. The next stage of the investigation is to extend the
wall-function technique to incorporate additional effects,
such as surface curvature and temperature variations, and
address deficiencies in the prediction of pressure-driven flow
at higher Knudsen numbers.
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