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The propagation of acoustic waves in a phononic crystal slab consisting of piezoelectric inclusions placed
periodically in an isotropic host material is analyzed. Numerical examples are obtained for a square lattice of
quartz cylinders embedded in an epoxy matrix. It is found that several complete band gaps with a variable
bandwidth exist for elastic waves of any polarization and incidence. In addition to the filling fraction, it is
found that a key parameter for the existence and the width of these complete band gaps is the ratio of the slab
thickness, d, to the lattice period, a. Especially, we have explored how these absolute band gaps close up as the
parameter d /a increases. Significantly, it is observed that the band gaps of a phononic crystal slab are distinct
from those of bulk acoustic waves propagating in the plane of an infinite two-dimensional phononic crystal
with the same composition. The band gaps of the slab are strongly affected by the presence of cutoff frequency
modes that cannot be excited in infinite media.
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The propagation of elastic waves in inhomogeneous me-
dia has attracted much attention over the last years. Recently,
there has been a growing interest in a special type of inho-
mogeneous material, the so-called phononic crystal, whose
elastic coefficients vary periodically in space �1,2�. The in-
terest in these materials arises mainly from the possibility of
having frequency regions, known as absolute phononic gaps,
over which there can be no propagation of elastic waves,
whatever their polarization and wave vector �3�. In addition
to their ability to behave like perfect mirrors, these structures
can prove particularly useful for applications requiring a spa-
tial confinement of acoustic waves and can hence be used as
acoustic filters or very efficient waveguides. All these func-
tions can be achieved in a very tight space of the order of
some acoustic wavelengths �4–10�. At the same time, the use
of elastic waves in piezoelectric slabs �which are often re-
ferred to as Lamb waves or plate modes in the literature� is
important in a variety of applications, including physical,
chemical, and biological sensors. Lamb waves and plate
modes can also be used for high-frequency applications, such
as radio-frequency filters �11�.

The purpose of this paper is to investigate theoretically
the propagation of elastic waves in the slab geometry with a
periodic variation of material constants in the plane, a struc-
ture to which we refer to as a phononic crystal slab. Such a
structure has for example been studied experimentally by
Zhang et al. �12�. These authors have identified directional
band gaps for slab or plate modes, though they term these
modes surface acoustic waves. We note that surface acoustic
waves exist in principle on semi-infinite media, or at least on
slabs much thicker than the surface wave penetration depth.
Directional �13� and complete �14� band gaps for surface
acoustic waves have been observed experimentally. In mod-
els, phononic crystals are generally considered infinite or
semi-infinite, whereas actual phononic crystals in experi-
ments are obviously of finite size, with the slab geometry
being the simplest and most widespread. It should not be
taken for granted that band structures and band gaps are
identical in the slab and infinite phononic crystal cases. In-

deed, we show in the following that they can differ signifi-
cantly.

The system considered in the computations to follow is a
square lattice of finite quartz cylinders �with their c crystal-
lographic axis aligned along the principal axis of the cylin-
der� embedded in an epoxy host material, as depicted in Fig.
1. The choice of quartz and epoxy as the composite materials
is based on the strong contrast between their mass densities
and phase velocities, as usual when complete band gaps are
sought. In addition, the piezoelectricity of quartz makes it
possible to generate and detect waves within the composite
material. As an example this property is exploited in piezo-
composite acoustic transducers. It should be noted however,
that piezoelectricity is not essential for the results we obtain.
In particular, it has only a faint influence on band structures,
which are mostly determined by elastic material constants.
Band structure calculations are performed by using the finite
element method with periodic boundary conditions �14�. We
show the existence of several full band gaps with a variable
bandwidth for acoustic waves of any polarization and inci-
dence. These band gaps are markedly different from those of
an equivalent two-dimensional phononic crystal, i.e., a
phononic crystal slab for which the thickness would be al-
lowed to go to infinity. We especially discuss the role of the

FIG. 1. Illustration of a unit cell structure.
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ratio of the slab thickness to the lattice period as a key pa-
rameter for the opening and the closing of the band gaps.

The geometry of a square lattice phononic crystal slab is
depicted in Fig. 1. The phononic crystal is assumed to be
infinite and arranged periodically in the x and y directions.
The structure has a finite size in the z direction. The whole
domain is split into successive unit cells, consisting of a
single cylinder of quartz surrounded by the epoxy matrix
�see material constants in Table I�. The inclusions are as-
sumed to have a circular cross section so that the filling
fraction is F=�r2 /a2=0.5, where r is the radius of the inclu-
sion and a is the pitch of the structure. Each unit cell is
indexed by �m , p�. The unit cell is meshed and divided into
finite elements connected by nodes as shown in Fig. 1 where
d denotes the thickness of the slab and a1 and a2 are the
pitches of the array �a1=a2=a for the square lattice�. Accord-
ing to the Bloch-Floquet theorem, all fields obey a periodic-
ity law, yielding for instance the following relation between
the mechanical displacements ui for nodes lying on the
boundary of the unit cell:

ui�x + ma1,y + pa2,z� = ui�x,y,z�exp�− j�kxma1��

� exp�− j�kypa2�� , �1�

where kx and ky are the components of the Bloch wave vec-
tors in the x and y directions, respectively. Considering the
periodical boundary conditions above allows us to reduce the
model to a single unit cell which can be meshed using finite
elements. A mechanical displacement and electrical potential
finite element scheme is used. Considering a monochromatic
variation of mechanical and electrical fields with a time de-
pendence in exp�j�t� where � is the angular frequency, the
general piezoelectric problem with no external applied force
can be written

�Kuu − �2Muu Ku�,

K�u, K��
��u

�
� = �0

0
� , �2�

where Kuu and Muu are the stiffness and mass matrices of the
purely elastic part of the problem, Ku� are K�u are
piezoelectric-coupling matrices, and K�� accounts for the
purely dielectric problem. u and � represent, respectively, all
displacements and electrical potential at the nodes of the
mesh, gathered together in vector form. As the angular fre-
quency � is a periodical function of the wave vector, the
problem can be reduced to the first Brillouin zone. The dis-
persion curves are eventually built by varying the wave vec-
tor on the first Brillouin zone for a given propagation direc-
tion. The full band structure is then deduced using
symmetries.

The quartz-epoxy structure with a filling fraction F=0.5
has been chosen for illustrations because it exhibits a clear
complete band gap for bulk waves propagating in the plane
of an infinite phononic crystal. Indeed, Fig. 2 displays the
phononic band structure along the high symmetry axes of the
first Brillouin zone, i.e., along the �-X-M-K-� path depicted
in Fig. 2. The plot shows the variation of eigenfrequencies
with the Floquet wave vector taken along the boundaries of
the first irreducible Brillouin zone. We observe in the low
frequency region the existence of two complete elastic band
gaps, within which the vibration and propagation of waves of
any polarization and incidence are forbidden. The first band
gap extends from fa=1100 to 1200 m/s while the second
band gap extends from 1350 to 1800 m/s, where f is the
wave frequency ��=2�f�. The two band gaps are separated
by a quasiflat single mode, the group velocity of which is
very small.

Let us now consider the effect of the finite thickness on
the band structure of a square-lattice phononic crystal slab.
To evaluate the effect of this single parameter, d, the filling
fraction will remain the same in the following as in the infi-
nite phononic crystal case of Fig. 2, i.e., F=0.5. As it is well
known that all band gap properties scale with the lattice
pitch, a, it is sufficient to study the influence of the thickness
to lattice pitch ratio, d /a. From a computational point of
view, it should be noticed that the band structure in Fig. 2 is
obtained from a two-dimensional mesh of the plane of the
infinite phononic crystal, with all three components of the

TABLE I. Material constants of quartz �crystal-lattice group 32�, and epoxy. Only independent constants are given for each material.

Material
Mass Density

�kg/m2�
Elastic constants

�1010 N/m2�
Piezoelectric

Constants �C/m2�
Dielectric

Constants �10−11 F/m�

� c11 c12 c13 c33 c44 c14 e11 e14 �11
S �33

S

Quartz �SiO2� 2648 8.674 0.70 1.191 10.72 5.794 −1.791 0.171 −0.0406 3.92 4.103

Epoxy 1142 0.7537 0.1482 3.8

FIG. 2. Band structure of a square-lattice two-dimensional infi-
nite phononic crystal of quartz cylinders in epoxy, computed for
waves propagating in the plane of the crystal. The product of the
frequency, f , times the lattice pitch, a, is plotted against the reduced
wave vector taken along the �-X-M-K-� path of the first irreduc-
ible Brillouin zone. The filling fraction is 0.5.
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mechanical displacements taken into account. In the case of
phononic crystals slabs, a three-dimensional mesh is used,
with all three components of the mechanical displacements
again taken into account. In addition, traction-free boundary
conditions are enforced on both the upper and lower side of
the slab.

Figures 3–6 display the bands structures for four different
values of d /a, i.e., 0.3, 0.5, 1.0, and 1.3, respectively. In all
four figures, the vertical axis is the frequency pitch product,
fa, and the horizontal axis is the reduced wave vector taken
along the �-X-M-K-� path of the first irreducible Brillouin
zone. In Fig. 3, d /a=0.3 and we find one complete band gap
between the seventh and the eighth bands. This complete
band gap extends from fa=1200 m/s to 1450 m/s, and the
relative bandwith 	f / fm equals 18.8%. As a first observation,
the band structure clearly differs from the infinite phononic
crystal case. In Fig. 4, d /a=0.5, the complete band gap ex-
tend from fa=1320 m/s to 1634 m/s and the relative band-
with increases to 21.3%. This demonstrates that the band
gaps are quite sensitive to the thickness to lattice pitch ratio,
d /a, and that this parameter can be tuned to obtain larger
relative bandwidths. For higher thickness to lattice pitch ra-

tios, we observe the existence of two complete band gaps.
Indeed when the thickness equals the pitch, as shown in Fig.
5, we observe the opening of two complete band gaps ex-
tending from fa=1070 to 1140 m/s and from 1325 to 1483
m/s, respectively. The higher complete band gap closes for
d /a=1.3, as shown in Fig. 6. This closing is caused by the
appearance of a new mode around fa=1300 m/s. This is the
first slab mode with a cutoff-frequency, as we discuss below.
It is worth noting that the low frequency band gap will also
be affected by the same mode when the thickness to lattice
pitch ratio is increased, and will eventually close.

It is well known that the uniform slab has three bands
starting from �=0, two of which have a sagittal polarization
while the third has a transverse polarization, whereas higher
bands have cutoff frequencies. Higher bands with cutoff fre-
quencies are intimately linked to the boundary conditions on
both surfaces of the slab. They are thus a manifestation of the
finite thickness of the slab and they do not occur in infinite
media. Therefore, when we deal with the low frequency re-
gion of the phononic crystal slab, it is sufficient to take into
account the lowest three bands, and of course their folding
caused by periodicity. In particular, this treatment is justified
for phononic crystal slabs whose thickness is small enough

FIG. 3. Band structure of a square-lattice two-dimensional
phononic crystal slab of quartz cylinders in epoxy. The filling frac-
tion is 0.5 and the thickness to lattice pitch ratio, d /a, equals 0.3.

FIG. 4. Band structure of a square-lattice two-dimensional
phononic crystal slab of quartz cylinders in epoxy. The filling frac-
tion is 0.5 and the thickness to lattice pitch ratio, d /a, equals 0.5.

FIG. 5. Band structure of a square-lattice two-dimensional
phononic crystal slab of quartz cylinders in epoxy. The filling frac-
tion is 0.5 and the thickness to lattice pitch ratio, d /a, equals 1.0.

FIG. 6. Band structure of a square-lattice two-dimensional
phononic crystal slab of quartz cylinders in epoxy. The filling frac-
tion is 0.5 and the thickness to lattice pitch ratio, d /a, equals 1.3.
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with respect to the pitch of lattice, in which case the cutoff
frequencies are much higher than the band gap frequencies.
However, when the thickness of the slab is comparable or
larger than the pitch of the structure, higher order modes
should clearly be taken into account.

A gap map showing the dependence of complete band gap
frequencies with the thickness to lattice pitch ratio d /a is
shown in Fig. 7. It is plotted for the quartz/epoxy square-
lattice phononic crystal slab with a filling fraction of 0.5. The
first complete band gap opens at the ratio d /a=0.2 and
closes for a value of 1.3. The maximum width of the com-
plete band gap appears at d /a=0.5. The second complete
band gap exists in the domain 0.7
d /a
1.6 and reaches a
maximum band gap width around d /a=1.5. Its closing is due
to the appearance of a higher order slab mode. As a general
rule, when increasing the ratio d /a the cutoff frequencies of
higher order modes of the equivalent homogeneous slab will
decrease and eventually close the band gaps. This means that
when the ratio d /a is small, the creation of complete band
gaps is a consequence of the folding of the first three bands
at low frequency only. But the opening of complete band
gaps becomes more difficult as the ratio d /a gets larger. For
values of d /a larger than two we did not observe the exis-
tence of any complete band gap. It should be noted that in
practice the computation of thick slabs becomes more and
more difficult as the mesh size increases.

It might appear surprising that the complete band gaps of
the phononic crystal slab close as d /a goes to infinity,

whereas they remain open for an infinite phononic crystal
with the same structure. In fact, the infinite case is not ob-
tained as a limiting process as the thickness of the slab goes
to infinity, as it might be tempting to believe. When d /a
increases, higher order slab modes appear continously; they
eventually become infinitely many as d /a tends to infinity.
At the same time, their cutoff frequencies go to zero. In the
infinite medium case, the number of partial waves is fixed
�eight for a homogeneous piezoelectric plate�. The reason is
that higher order slab modes require boundary conditions on
both surfaces to be defined, whereas these boundary condi-
tions are replaced by radiation conditions at infinity in the
infinite case. In practice, any phononic crystal sample is of
finite size, for instance with the slab geometry. The idealiza-
tion used in models to turn a finite phononic crystal into an
infinite one relies on the assumption that higher order slab
modes cannot be excited in practice, in which case only a
limited number of bands should be kept in the band structure,
i.e., those bands that do not depend on the boundary condi-
tions at the surfaces. As an example, phononic crystal slabs
with a triangular lattice of air holes in epoxy on a glass
substrate were recently investigated experimentally using
Brillouin light scattering �15�. These phononic crystal slabs
had a thickness to lattice pitch ratio d /a=4.4. In Ref. �15� it
was assumed that the band structure for Brillouin phonons is
given by that of bulk elastic waves propagating in the plane
of the phononic crystal. However, at least the upper surface
influences the propagation of Brillouin phonons in the slab,
and the above approximation must be taken with caution.

We have here examined the propagation of elastic waves
in a phononic crystal slab consisting of piezoelectric inclu-
sions placed periodically in a host material. Our system is
composed of a square lattice of quartz cylinders embedded in
an epoxy matrix. We found two complete bandgaps with a
variable bandwidth for a filling fraction of 50%. In addition
to the three parameters that influence the formation of band
gaps in phononic crystals—the lattice symmetry, the filling
fraction, and the contrast between the physical parameters of
the constituents—we find that the thickness to lattice pitch
ratio, d /a, plays a crucial role in the opening of complete
band gaps. Indeed, this parameter conditions the cutoff fre-
quencies of higher order modes of the slab and hence the
closing of the complete band gaps as the thickness increases.
Significantly, the band structure of a phononic crystal differs
from that of the infinite phononic crystal with the same ge-
ometry and composition.
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