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By numerically solving the coupled laser Ginzburg-Landau equations and using the pulse tracing technique
to incorporate the cavity effect in the simulation, we have explicitly calculated the soliton polarization ellipses
throughout the cavity of a fiber-ring laser mode-locked by the nonlinear polarization rotation technique, and
investigated the soliton polarization dynamics in laser cavities. It was found that in a conventional stable
soliton operation state, although the soliton polarization varies as the pulse propagates, at a fixed position
inside the laser cavity the soliton polarization is invariant with time. However, in the presence of laser
dynamics, at a fixed location within the cavity the soliton could either have multiple alternating fixed polar-
ization states or no fixed polarization state at all, depending on the soliton dynamics.
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I. INTRODUCTION

Passively mode-locked soliton fiber lasers as an alterna-
tive source of ultrashort optical pulses have been extensively
investigated �1–4�. Various passive mode-locking techniques
such as the nonlinear loop mirror, the semiconductor satu-
rable absorber �SESAM�, and the nonlinear polarization ro-
tation �NPR� have been used to achieve the self-started soli-
ton operation of lasers. In particular, due to its simplicity and
ease of implementation, the NPR method was widely used
and theoretically intensively studied �5–8�. The NPR tech-
nique takes advantage of the weak birefringence of single-
mode fibers to generate a fast artificial saturable absorber
effect, which initiates the mode locking, and after the soliton
is formed, further stabilizes the soliton operation through
suppressing the cavity background-noise generation. Despite
the fact that standard single-mode optical fibers commonly
used for the construction of fiber lasers support two orthogo-
nal polarization modes, soliton propagation in laser cavities
is often treated as a scalar problem and the vector nature of
the wave is ignored. This approach is rigorous only if the
fiber is truly isotropic. However, in reality the fiber is always
slightly birefringent due to structure asymmetry, strain, bend-
ing, etc. The presence of birefringence lifts the degeneracy
between the two modes, resulting in differences in both
phase and group velocities �9,10�. Although it was recently
shown that for a passively mode-locked fiber laser with very
weak cavity birefringence, phase locking between the two
polarization modes could be achieved and consequently, the
vector soliton with its polarization state maintained during
the propagation could be formed in laser cavities �11,12�.
Obviously, in the NPR mode-locked fiber lasers the phases
between the two modes can never be locked. Thus it is worth
investigating how the polarization state of the vector solitons
formed in these lasers evolves. On the other hand, it was
both experimentally and numerically demonstrated that un-
der certain conditions the soliton emission of the fiber lasers
can exhibit period-doubling bifurcation and a period-
doubling route to chaos �13,14�. A period-doubling route to
chaos is a typical characteristic of nonlinear dynamic sys-

tems when they transit from stable states to chaotic states.
Hence it would also be interesting to know the impact of the
laser dynamics on the soliton polarization evolution in the
cavity.

We note that the polarization dynamics of vector solitons
in birefringent fibers have already been investigated previ-
ously �15–19�. Although the results of this research to some
extent gives an insight into the soliton polarization dynamics
in birefringent laser cavities, the soliton circulation in laser
cavities is inherently different from the soliton propagation
in optical fibers. It is because a soliton circulating in a laser
cavity is subject to periodic perturbation by cavity compo-
nents such as polarizer and polarization controllers, and the
system is nonconservative with the circulation accompanied
by periodic amplification and dissipation of the optical field.
To determine the distinct features of the polarization dynam-
ics of soliton circulation inside laser cavities, we conducted a
comprehensive numerical study on the soliton polarization
evolution in fiber-ring lasers passively mode-locked by the
NPR technique, taking into account all the possible influence
factors, especially those that distinguish the soliton circula-
tion in laser cavities from the soliton propagation in optical
fibers.

II. FIBER-RING LASER MODEL

A schematic of the fiber laser system modeled is shown in
Fig. 1 below. The cavity consists of one piece of 4-m-long
erbium-doped fiber �EDF� with group-velocity dispersion
�GVD� �2 equal to −10 ps/km2 and two pieces of 1-m-long
dispersion-shifted fiber �DSF� with �2=−2 ps/km2

connected at both ends of the EDF. Other cavity elements
include one output coupler with a coupling ratio of
0.92 / �1−0.92�=0.81/0.19, one polarization controller �PC�,
and one polarization-dependent isolator �PI�. As the cavity is
a ring, the PI plays the roles of both the polarizer, transform-
ing an arbitrarily polarized light into a linearly polarized one,
and the analyzer, introducing an intensity-dependent trans-
mittance �loss� to realize the fast artificial saturable absorber
effect so as to achieve passive mode locking �5�. When light
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is incident on a piece of single-mode fiber, it splits into two
polarization modes along the orthogonal principal axes of the
fiber. For the simplicity of calculation, we have assumed that
the principal axes of the different pieces of fibers in the cav-
ity coincide.

We note that Salhi et al. have theoretically studied the
influence of noncoincidence of the axes on the laser opera-
tion �20�. It turned out that it affects only the area of the
mode-locking domains in the parameter space rather than the
soliton laser dynamics as is evident from the governing equa-
tions. Therefore we adopted the assumption to simplify the
numerical model. Actually, the effect caused by the possible
noncoincidence of the fiber principal axes has been implic-
itly considered in our model. It is accounted for by the PC
inserted in the cavity, which introduces a phase difference
�linear phase delay bias� between the two polarization com-
ponents. Inside the optical fibers the light will experience the
linear birefringence of the fibers and the nonlinear birefrin-
gence arisen from the self-phase modulation �SPM� and the
cross-phase modulation �XPM�, thus the polarization ellipse
of the light will normally rotate as it propagates. Depending
on the birefringence strength of the fibers, wave mixing be-
tween the orthogonal polarization components may also play
a role in the soliton polarization evolution.

Nonlinear wave propagation in a piece of linearly bire-
fringent fiber is well described by the coupled nonlinear
Schrödinger equations �NLSE� �9�
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which is related to the birefringence of the fiber. Moreover,
the GVD parameter �2, the third-order dispersion �TOD� pa-
rameter �3, and the nonlinear coefficient � for the two po-
larization modes are the same if they have the same central
wavelength �0, which was always assumed in the simula-
tions. Ax and Ay are normalized slow-varying envelopes of
the electric fields polarized along the two principal axes �de-
noted as the x and y axes, where the x axis is the slow axis�
of the birefringent fiber, and �= ��1x−�1y� /2 is the linear
group-velocity difference between the two polarization
modes. T and Z are the time and space coordinates referring
to a retarded reference frame moving at a velocity equal to
the average of the linear group velocities along the x and y
axes, which are defined as T= t−z /vg= t− ���1x+�1y� /2�z
and Z=z, respectively.

Define Ax=Fh exp�−j��z /2� and Ay =Fv exp�+j��z /2�.
Substitute them into Eqs. �1� and �2�. After some simple
algebra, we obtain
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For birefringent EDF, nonlinear wave propagation is de-
scribed by the coupled Ginzburg-Landau equations �21�
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FIG. 1. The fiber-ring laser system modeled.
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where the new terms �gp�T� /2�Fh and �gp�T� /2�Fv account
for the gain provided by the EDF whereas the terms
�gp�T� /2	g

2���2Fh /�T2� and �gp�T� /2	g
2���2Fv /�T2� repre-

sent the gain dispersion of the EDF.
gp�t�, the saturable gain in Eqs. �5� and �6�, is defined as

gp�t� = go exp�−
1

Es
	

−


t

��Fh�2 + �Fv�2�dt�
 ,

where go refers to the small signal gain, 	g refers to the gain
bandwidth, and Es is the saturation energy, which has a typi-
cal value of 1 �J.

Equations �3�–�6� are now ready to be solved numerically
by the standard symmetrized split-step Fourier method. To
also take into account the effects of the cavity components
and the laser cavity, we further used a so-called pulse-tracing
technique to simulate the soliton evolution in the cavity �8�.
The main idea of the technique is that we follow the circu-
lation of the soliton in the cavity and consider the action of
every cavity component on the soliton. The propagation of
the soliton in various pieces of fiber is described by either the
coupled nonlinear Schrödinger equations �for undoped fi-
bers� or the coupled Ginzburg-Landau equations �for doped
fibers� as given above. The functions of discrete cavity com-
ponents such as polarizers and polarization controllers are
modeled by 2�2 transfer matrices and their actions on the
optical wave are simulated by multiplying the light field with
their respective transfer matrices when the soliton encounters
them in the cavity. As this treatment is very similar to the ray
tracing by the matrix technique in geometrical optics and the
ABCD law in Gaussian beam optics, we termed it “pulse
tracing.” This technique assures that the obtained numerical
results satisfy the laser cavity resonant condition.

III. DETERMINATION OF THE SOLITON POLARIZATION
STATE

The polarization state of a continuous wave �CW� is de-
termined by the pattern traced out by the electric-field vector
tip as a function of time in a fixed transverse plane �fixed
space view�. In the context of optical pulses, this method is
still applicable if the pulse width is broad enough compared
with one cycle of the carrier frequency. For the soliton pulses
obtained in the passively mode-locked fiber lasers this con-
dition is well satisfied. Therefore, we used the same method
to determine the polarization states of the soliton pulses. The
two polarization modes of a vector soliton can be written as

E� x�z,t� = x̂�Fh�z,t��cos��̄0z − �0t + 
h�z,t�� , �7�

E� y�z,t� = ŷ�Fv�z,t��cos��̄0z − �0t + 
v�z,t�� , �8�

where �̄0= 1
2 ��0x+�0y� is the average of the wave numbers;


h and 
v are the phases of Fh and Fv, respectively.
In the context of laser cavities due to the effects of cavity

gain and gain dispersion, the solitons formed are generally
chirped. Therefore, the phases 
h and 
v vary with time.
Frequency chirp of a pulse causes polarization nonuniformity
across the pulse envelope. In our numerical simulations we

have calculated the frequency chirps of the soliton at differ-
ent cavity locations. It turned out that not only the chirp was
small �the maximum frequency shift �� within the FWHM
pulse width was no more than 0.66% of the carrier frequency
for the maximum pumping strength we chose� but also at a
fixed location in the cavity the chirp was fixed, i.e., it did not
vary with the number of round-trips the soliton had propa-
gated. It was generally believed that because of their inten-
sity difference, the peak and wing of a pulse formed in the
lasers passively mode-locked by the NPR technique will
have different polarization rotations and thus will experience
different attenuation by the intracavity polarizer. However,
our numerical studies show that when the mode-locked pulse
has evolved into a soliton, it has uniform polarization across
the pulse profile. Hence the soliton polarization could simply
be represented by the polarization state of any point in the
soliton pulse envelope. We therefore used the amplitudes and
phases of the two polarization components at the pulse en-
velope peaks �the group velocities of the two polarization
modes are always locked together, hence their pulse enve-
lope peaks coincide� to construct the instantaneous electrical-
field vector. The contour traced out by the combined
electrical-field vector tip was then the polarization ellipse of
the optical pulse at a position.

IV. SOLITON POLARIZATION EVOLUTION IN A CAVITY

Figure 2 depicts the soliton polarization evolution inside a
laser whose cavity length is equal to the beat length, i.e., L
=LB, under a stable single-pulse soliton operation. The light
after passing through the PC is elliptically polarized. As it
traverses further in the fibers, its polarization state varies.
Both the ellipticity and orientation of the polarization ellipse
change during the propagation. After one cavity length the
polarization ellipse makes a complete round of rotation �the
phase difference between the two polarization modes
changes by about 2��. At a fixed position in the cavity, the
polarization state of the soliton is fixed, which is invariant
with time.

Keeping all the other cavity parameters unchanged, the
fiber beat length was varied to L /LB=2, L /LB=3, and
L /LB=4. Similar soliton polarization state evolutions were
obtained, except that in those cases the number of rounds of
the polarization ellipse rotation completed over one cavity
length were different, which is close to the respective ratio of
the cavity length over the beat length. The soliton polariza-
tion state evolution along the cavity is caused by both the
linear and nonlinear birefringence with the former dominat-
ing over the latter according to the numerically calculated
results. For a close examination of their relative strength, we
calculated the phase difference between the two polarization
components accumulated in one cavity round-trip for various
strengths of the linear birefringence and tabulated in Table I.
The “�” signs in Table I indicate that the nonlinear polariza-
tion rotation added up to the linear polarization rotation. In
the practice, whether the nonlinear polarization rotation adds
up to or opposes the linear polarization rotation depends on
the specific orientation of the polarizer, namely, whether it
makes the light polarization component along the slow axis
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stronger or weaker than that along the fast axis. With all the
other cavity parameters being fixed and the orientation of the
polarizer being so changed that the energy ratio between the
two polarization modes was reversed, the phase differences
were recalculated and tabulated in Table II. It is evident from
the two tables that the strength of cavity linear birefringence
has little effect on the accumulated nonlinear phase differ-
ence between the two polarization modes, which is mainly
determined by the pulse energy ratio along the fast and slow
fiber axes.

It is obvious from the results shown above that, to pre-
serve the polarization state of the soliton throughout its
propagation in optical fibers, the linear birefringence of the
fibers used should be very weak, with the beat length being
in the order of ten times that of the length, only in this case,
the phase difference between the two polarization compo-
nents induced by the linear fiber birefringence could be ef-
fectively compensated by that caused by the nonlinear bire-
fringence.

V. SOLITON POLARIZATION DYNAMICS

Zhao et al. �13,14� showed that, in the fiber soliton lasers
if the soliton energy is strong, cavity nonlinear effects will
then become prominent, resulting in soliton deterministic dy-
namics including the soliton period doubling, tripling, and
route to chaos. Although the formation mechanism of these
phenomena in soliton fiber lasers has been extensively inves-
tigated and is relatively clear now, the question of how the
polarization states of the solitons evolve in the cavity when
they experience period-doubling or tripling bifurcation has
not been addressed yet. By applying the same methodology
described above, we further investigated the polarization-
state evolutions of these solitons.

Figures 3�a� and 4�a� show, for example, the soliton evo-
lution of a fiber laser whose soliton repetition period is
doubled and tripled, respectively, compared to the conven-
tional soliton operation described above. Different from the
conventional soliton operation, where the soliton returns to
its original value after every round of cavity propagation �it
can therefore be denoted as a period-1 state�, the soliton in
the period-doubled or tripled state only returns to its original
value after every two or three round-trips of cavity propaga-
tion as a result of the laser dynamics. Figures 3�b� and 4�b�FIG. 2. �Color online� Polarization ellipses of light at various

locations inside the ring cavity. L is the cavity length.

TABLE I. Phase difference between the two polarization modes
accumulated in one cavity round-trip. The pulse energy along the
slow axis is roughly 2.5 times that of along the fast axis.

L=LB L=2LB L=3LB L=4LB

Linear alone −2� −4� −6� −8�

Actual −7.000 −13.224 −19.428 −25.665

Discrepancy +0.717 +0.658 +0.578 +0.532

TABLE II. Phase difference between the two polarization modes
accumulated in one cavity round-trip. The pulse energy along the
fast axis is roughly 2.5 times that of along the slow axis.

L=LB L=2LB L=3LB L=4LB

Linear alone −2� −4� −6� −8�

Actual −5.917 −11.973 −18.260 −24.605

Discrepancy −0.366 −0.593 −0.590 −0.528
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FIG. 3. �Color online� �a� Soliton evolution in a period-doubled
state. �b� The corresponding soliton polarization evolution in the
cavity. L: cavity length, L=LB.

FIG. 4. �Color online� �a� Soliton evolution in a period-tripled
state. �b� The corresponding soliton polarization evolution in the
cavity. L: cavity length, L=2LB.
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depict the corresponding soliton polarization-state evolution
in the cavity. It was found that in these states the soliton
polarization evolution still possesses such general character-
istics as those aforementioned for the period-1 state, i.e., the

polarization ellipse rotates as the soliton propagates in the
cavity, after one period returns to the original one and then
repeats, and the number of rounds of the polarization ellipse
rotation completed over one cavity length is close to the ratio
of the cavity length over the beat length with the discrepancy
arisen from the nonlinear birefringence required to achieve
and maintain mode-locking. Note that now one period corre-
sponds to two- or three-round-trip time. However, at a fixed
position in the cavity the soliton polarization states of the
adjacent round-trips are not exactly the same. It can be seen
that at a fixed position in the cavity there are two �or three�
clear polarization ellipses, and the orientations and elliptici-
ties of them are slightly different. Obviously, the polarization
state of the soliton also exhibits the period-doubling �tri-
pling� dynamics despite the fact that there is a polarizer in
the cavity, which determines the polarization state of the
light immediately after passing through it.

While in the periodic states at a fixed position the tips of
the electrical-field vectors can trace out clear polarization
ellipses, when chaos was entered �Fig. 5�a�� the profile of the
polarization ellipse was no longer well defined as shown in
Fig. 5�b�. This result suggests that when the soliton emission
of a laser becomes chaotic, its polarization at a fixed position
in the cavity is no longer fixed, but changes from round-trip
to round-trip. This feature of the soliton polarization evolu-
tion agrees with the soliton pulse intensity variation in the
chaotic state. As shown in Fig. 5�a�, at a fixed position in the
cavity the soliton intensity varies from round-trip to round-
trip. Nonetheless, we note that even in the chaotic state the
electrical-field tips still traced out a reasonably elliptical
shape, which implies that the round-trip-to-round-trip change
of the soliton polarization state was not too large.

VI. CONCLUSION

In this paper, we have explicitly calculated the soliton
polarization evolution in a fiber-ring laser passively mode-
locked by the NPR technique. By numerically solving the
coupled Ginzburg-Landau equations and using the pulse-
tracing technique to incorporate the cavity effect in the simu-
lation, we were able to determine and plot the polarization
ellipse of the soliton at every position throughout the laser
cavity. It was found that in the conventional stable soliton
operation, although the soliton polarization varies as it
propagates inside the laser cavity, at a fixed position the soli-
ton polarization is fixed, which is invariant with time. This
feature can be well understood as it is caused by the intrac-
avity polarizer. The presence of the polarizer in the cavity
provides a polarization feedback on the solitons circulating
in the cavity. Therefore, the polarization evolution of the
soliton is constrained by the laser cavity. It was also shown
that when the soliton exhibits deterministic dynamics, its po-
larization also displays the same dynamics. In this case at a
fixed position in the cavity the soliton could have several
discrete, fixed polarization states or even no fixed polariza-
tion state despite the presence of an intracavity polarizer.

FIG. 5. �Color online� �a� Soliton evolution in a chaotic state.
�b� The corresponding soliton polarization evolution in the cavity.
L: cavity length, L=2LB.
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